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Riemannian corrections to velocity-dependent nuclear forces
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It is argued that there is a measurable difference between the two-nucleon potential in the Schrodinger
wave function and in the potential defined via meson exchanges, when relativistic effects are incorporated
as velocity-dependent contributions. This necessitates a reformulation of the usual scattering, deuteron,
and nuclear matter calculations.

NUCLEAR STRUCTURE Nuclear matter requires modified velocity-dependent po-
tential. Nuclear forces, momentum dependence induces Riemannian corrections.

A current problem in nuclear physics is to understand nu-
clear matter, i.e., the binding energy and saturation proper-
ties. Apart from theoretical considerations of the many-
body aspects of this problem, e.g. , three-body interactions,
there is still much current work being done to improve the
nucleon-nucleon potential used as input into calculations of
nuclear matter. Basically, the 2-7r and 3-m exchange region
and relativistic effects have not yet been definitively estab-
lished. For example, the Riemannian corrections presented
here have not been taken into account, and therefore recent
analyses, that conclude that problems in nuclear matter can-
not be remedied by a better choice of the two-nucleon po-
tential, may be premature. '

As the many-body problem is still essentially only formu-
lated as a nonrelativistic many-body Schrodinger theory, it is
necessary that the nucleon-nucleon potential be defined in
this context. This requirement has at least two implications:
(1) In fitting the parameters of the nucleon-nucleon poten-
tial, e.g. , coupling constants and masses of exchanged
mesons, to scattering data and properties of the deuteron
bound state, a Schrodinger representation must be used for
these calculations. (For example, a solely dispersion
theoretic potential would not suffice to be consistently used
for nuclear matter calculations. ) (2) Inasmuch as the three
basic nuclear physics problems —nucleon-nucleon scattering,
nuclear matter, and the deuteron —sensitively test the shape
of the entire range of nonrelativistic interactions, the last
two physics problems by virtue of cancellations of large con-
tributions, and the first by the wide range of the fit, it is im-
portant to include as much physical information regarding
meson exchange into the functional form of the potential
before the fitting process. That is, the parameters of the
potential must be independent of partial waves. The impor-
tance of maintaining this integrity of the interaction is in-
creased when extrapolating to new physical phenomena re-
quiring nuclear matter as input, e.g. , neutron stars. 2 Con-
ventionally, the calculation of these basic three nuclear
physics problems requires wave functions obtained from

(p'/m + V~) yg = EPp
( —V2/m + V~) fE =Ega

pE(r) =QE(r) +m J d r'GF(r —r') V&(r')Qz(r')

where @E is a plane wave for nuclear matter and the scatter-
ing problem, and is zero for the bound state. The Green's

function GE, with energy eigenvalue E, is different for each
problem. The reduced average nucleon mass is taken to be
m =0.938 92 GeV =0.185 28 fm ', using hc =0.197 329
GeV fm, and setting h =1 =c.

To calculate the properties of nuclear matter, an integral
equation is solved of the form

M = VM + VMGEM (2)

where M is a partial-wave reduced matrix to accommodate
eigenstates of J, L, and S . For the nuclear matter prob-
lem, M is the Brueckner-Goldstone E matrix used to define
the energy spectrum; this is derived from a diagrammatic
sum of ladder and self-energy VM interactions, and is not
simply a Lippman-Schwinger representation of the
Schrodinger equation. That representation for the T matrix
sometimes is used to calculate the phase shift of the scatter-
ing problem, 3 but often this is accomplished by direct in-
tegration of the differential Schrodinger equation. In either
case, according to arguments presented here, V& should be
used for the scattering problem.

The functional form of the potential is determined by set-
ting the Born term, M = VM, equal to the sum of Lagrangi-
ans of meson-exchange diagrams, or some corresponding
elementary particle representation as referenced below.
This is then projected onto five eigenstates of J, L, and S
complete to order p'/m, e.g. , 1 (central), a-t a2 (spin-
spin), L 5 (spin-orbit), St2 ——(3a.t

r" o2r" —o.
&

a-2) (t.en-
sor), and o.t po-q p/m'. [Note that in Appendix B of Ref.
3, there is a typographical error in the first sign of the last
line; it should read dv(r)/dr. ] Conventionally, VM is used
as V& in Eq. (1).

The long-ranged spatial extent of the nucleon-nucleon po-
tential is relatively fixed by the low energy scattering and
deuteron data, and is functionally determined primarily by
the static part of the m exchange. The short-ranged force is
within the relativistic range of interactions, and given the
constraints of the nuclear matter Schrodinger calculations, a
soft repulsive core is parametrized with respect to its depth
and breadth, although there is certainly room for improve-
ment in this description, e.g. , from quark models of high-
energy interactions.

However, the medium- and high-range scattering data and
the nuclear matter calculation are all quite sensitive to the
shape of the potential, which is quite steep in the 1 —,-3—,
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V~(r, p') = V~(r, p') +R/(6m) (4)

where R is the Riemannian curvature scalar. Also, JLS
eigenoperators in o-~ pVo-2 p contain linear d/dr operators. '
Similar effects arise in classical statistical mechanics, and in
at least one other (bio)physics problem, these Riemannian
effects, including contributions from linear momentum
terms as well, have been shown to be measurable. "'

GeV range. Empirically, the nuclear matter binding ener-
gy is —16 MeV at the Fermi momentum k~=1.33 fm ', us-
ing kprp=(9n/8)'i3, where ro is the saturation point. In
this range, momentum-dependent contributions from the
nonrelativistic reduction of meson exchanges are important,
as pointed out by the first calculations consistently using
momentum-dependent forces in all three basic nuclear phys-
ics problems. As derived from field theory, contributions
to VM of order p'/m' arise from nonrelativistic expansions
of nucleon spinors in the Born terms. The use of
momentum-dependent potentials is also derived for use in
modern potentials, from Regge-pole analyses8 and from
dispersion theory, especially of the 2-m and 3-m exchange
region. 9

For momentum-dependent potentials, previous calcula-
tions have used

V(r, p') = V(r, —'7,') (3)

and calculations have demonstrated that the operator depen-
dence can be accommodated in all three physics problems. '
Many calculations still use an "effective" potential to simu-
late the '7 operator dependence, but this procedure has not
yet been explicitly demonstrated to be a good or consistent
numerical approximation for the three basic problems.

However, all calculations to date that have used
momentum-dependent forces have not considered the ef-
fects of the p2 dependence in V(r, p') on the metric, which
is defined by the coefficient of V' in the wave equation,
and by the nucleon kinetic energy term in the full Lagrangi-
an in which the meson-exchanged potentials are included as
interaction terms.

Studies in other physics specialties have demonstrated
that, in a nonflat space, ' '" with momentum-dependence
affecting only quadratic momentum terms in the Lagrangian
of a path-integral defining P,

These contributions are to be expected if V~(r, p ) is to be
properly correlated with V&(r,p2).

A key point in this argument is that any path-integral-type
derivation of the K matrix —i.e., involving the time-folding
of a differential propagator —that begins with a two-body
momentum-dependent two-nucleon interaction, gives rise to
a calculable difference in the effective potential when com-
pared with the potential used in the two-nucleon
Schrodinger equation. Since the K matrix itself is not exact-
ly reducible to a Schrodinger partial differential equation,
this argument is invoked at the earlier stage first defining
the many-body operator containing VM, which of course is
widely assumed to at least model V&, before the self-energy
and ladder partial sums are taken. In any such derivation,
the modification of each kinetic energy term by its
momentum-dependent potential defines a nonconstant
metric giving rise to this effect.

To specify the momentum operators, first a covariant
Schrodinger equation is required for the scalar wave func-
tion W=g 'i4$, where Q is the conventional nonrelativistic
wave function. g =det(g&), where g„- = (g0) ' is the metric
of coordinates xj'.

i 8,% =Hq 'I = — (g'JW J) (+ Vq W
1

2pm
r

g 1/2
Q g 1/2g&jg + y

29m

8;[ . 1=9[ . . ]/Bx',

(sa)

where H~ is the differential Hamiltonian operator,
Vq = V@(x), and p, = m/2 is the reduced average nucleon
mass. The path-integral Lagrangian corresponding to H~ is

L = g x'x' —V —R/(6p )1

29m
(sb)

Note that the covariant divergence of the gradient (g~i+.j).;
reduces to the ordinary Laplacian '7„W in orthogonal coor-
dinates, and that R is defined here to have the same sign as
the Gaussian curvature.

g0 is defined here by the effect of V&(r; '7 2) on the flat-
space metric qt; in 0&. Considering a momentum-
dependent central potential, e.g. , S states,

1' 1

if),p=H~Q= ——g 'i 8;g'i g'JB, g ' + V, —R/(12p, ) @—= —
v)

' 8;7l'—ri'6 q
' + Vp Q—= —p + Vp Q

g'J = (1 + W) ri'J, v) = det( q;J )

V~(rp2) = Vs(r) —R (r)/(12@, ) +P W(r)/m, p W = Wp + Y'[ W, q]B;+Z[ W, q]

(6)

This choice of V~ leaves the path-integral Lagrangian for P,
L& (to be associated with VM and the K matrix), R free and
"gauge" free: R does not appear in the classical L&, result-
ing in —R/(12iL ) = —R/(6m) in H& instead of
—R/(6p, ) in Lq, . The covariance of (g"'W.i).; dictates the
ordering of p and 8'in H&, and also keeps L& a quadratic
form in x'x;, i.e. , not in (x' —w') (x; —w;) for some
nonzero w'. Note that

~ W~ ( 1 for all reasonable two-
nucleon potentials in the nonrelativistic region. In this
form, Eq. (6) can be solved straightforwardly, as demon-
strated previously. ' Typically,

( ) exp( —p I')
Vlf

similar to V, (r)/m, where p, is the mass of the meson ex-
changed, and 6„ is proportional to the square of the
nucleon-meson coupling constant, g„NN. A proper potential
must also be smoothly cut off to blend into the soft core,
but these effects on the shape are not included here. For
the vr meson, the average m mass, p, =0.13803 GeV,
yields the longest-ranged force, but G„—(p, /m)', and
there is not much contribution to R. However, for a scalar
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meson simulating the m-m exchange, i.e., a-, or for the p
meson, the central force has 6 —1, and so these effects
might be measurable. As shown in Fig. 3 of Ref. 7, this is
the dominant contribution to the 'So state.

To perform this calculation, the arc length in isotropic
form is defined as

ds =gjx'xJ=A (r')dr' +r' (d0 +sin gdg )
r'= [1+W(r)] -'r',

A (r') = 1 ——W'(r) „[1+W(r) ]
2

[ ],= 6[ . ]lr')r

This gives the Riemann tensor in coordinate space as

R;"./, = r "/, —r;k J + r; I "/, —r;kr ".

Fjj =g [&J,k] =
~ g (gk~ +gjk; —ggk)

(10)

the Ricci tensor as

Rg = Rgb

and the Riemannian curvature scalar as

R=R
Use of

(12)

A r=Ar,
,r ~ ,r

yields

Z(r)=, , 1—,+2 1

r', A (r')
r'A (r')

A (r')' (14)

Although more calculations using the full V&, VM, and
8''7 terms are required for definitive analyses, an esti-
mate of the order of Riemannian corrections to nuclear
forces is gained by examining graphs of the ratio R/(6m): V,

ds =(1+W) (dr +r dg +I sin gd@ )

This can be put into "standard form, "' which is more con-
venient for further calculation:

in Fig. 1(a). For this example, simulating the leading term
of a scalar o- meson central potential, p, =0.420 and
6 =g =2 238,

V, = -g'r 'exp( —o-r)

W =g' (2mr) 'exp( —or)- (15)

To gauge the sensitivity of this correction to changes in the
potential, Fig. 1(b) presents a similar plot, but with
W —W set arbitrarily. (Born amplitudes of meson ex-
changes may contribute with weights of either sign, depend-
ing on the eigenvalues of eigenoperators of J', I. , and S',
and the isospin of the exchanged meson. )

It now is clear that these Riemannian corrections are
small, but not negligible. For example, if a velocity-
dependent potential were fitted to data using the
Schrodinger equation, this potential would have to include
the curvature term. The parameters of this fit most likely
would be only slightly affected. However, in calculating the
nuclear matter E matrix, which is derived from a Lagrangi-
an or Hamiltonian representation, this curvature term would
not appear, thereby directly affecting the binding energy and
saturation properties. A correction on the order of 1/0 in
the potential could mean on the order of 1-MeV correction
to the binding energy (a cancellation of the kinetic energy
and the self-consistent nuclear matter potential), especially
if this correction were influential in the steep part of the po-
tential, and if it affected the tensor-to-central ratio of poten-
tials in the S~.

In the absence of a bona fide relativistic field theory, con-
sidering nonrelativistically reduced momentum-dependent
forces as a perturbation on free nucleon propagators is ad-
mittedly a useful but phenomenological procedure. As
stressed in Ref. 1, functionally quite different potentials,
static and momentum-dependent, give similar results for
nuclear matter after they are fit to the scattering and deu-
teron data, albeit this must yet be tested for momentum-
dependent potentials correctly including the m-vr region.
That is, the binding energy versus saturated ro may lie out-
side the empirical range. This also might be true for dif-
ferent phenomenologically derived momentum-dependent
potentials, in the absence of any distinction between func-
tional contributions used in the scattering/deuteron and nu-
clear matter calculations. However, in the presence of
momentum-dependent forces which surely exist in the con-
sidered nonrelativistic range, e.g. , those calculated here arise

0.010
A[N)
6mV,

0.105

-0.035
2

0.030
r /

FIG. 1. (a) Using parameters simulating a scalar o- central potential, the ratio of A/(6m):V, is plotted vs r in the range 2-6 GeV . (b)
A similar plot to (a), but with 8' —O'. For large r, this ratio tends asymptotically to —

6 (p, /m ) = —0.0334 in (a), and to

+ 6 (p, /m) in (b).1
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from kinematic factors in the free nucleon spinors (others
arise from interaction terms), it is clear that Riemannian
corrections account for measureable differences in the po-
tential ultimately used, between calculating fits to the empir-
ical scattering and deuteron data, and calculating properties
of nuclear matter.
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