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A time-dependent variational procedure is proposed that possesses the same constants of the
motion as the exact many-body Schrodinger dynamics. The class of trial wave functions is larger
than the manifold of Slater determinants that supports the time-dependent Hartree-Fock dynamics.
These wave functions can be regarded as superpositions of the eigenfunctions of the conserved ob-
servable of interest and the variational equations display the usual parametric structure, with proper-
ly admixed energy gradients and the symplectic metric tensor. In an application to the Lipkin-
Meshkov-Glick model, significant improvements over the usual mean-field or determinantal dynam-

ics can be achieved.
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I. INTRODUCTION

The realm of nuclear phenomena has received enriching
contributions thanks to the observation, over finite time
intervals, of the motion of several (yet few) degrees of free-
dom in a nucleus. Experiments involving the coherent
dynamics of many nucleons have been carried out in
present-day heavy ion accelerators, giving rise to a wealth
of data that manifests the fascinating dance of both
single-particle (sp) and collective coordinates.!™> Among
the various theoretical models proposed to explain most
features of the observed dynamics, the time-dependent
Hartree-Fock (TDHF) procedure occupies a honored site.
A recent review of the TDHF achievements and its
current range of applications to heavy ion collisions can be
found in Ref. 4, where room is devoted as well to com-
menting on the most prominent limitations of the ap-
proach, which can be traced back to its being a one-body
theory. Inclusion of two-body residual coupling gives rise
to a fairly complicated problem of quantal kinetics®—°
that remains so far computationally unsolved.

Recently, the verisimilitude of the TDHF version of the
many-body wave function has been examined from a dif-
ferent viewpoint—in the frame of a solvable quasispin
model.'” In that work we traced the motion of both the
exact and the TDHF wave function—the latter being a
Slater determinant—over a lengthy time interval, com-
pared to typical microscopic periods of a system with N
interacting quasispins. The shortness of the overlapping
time between both the wave functions has become evident,
coincidentally with the observation posed in another re-
cent related work on a simplified model.!! Furthermore,
the computation of a proper one-body observable—
namely, the expectation value of the quasispin vector 7,
denoted as the wave function polarization'®—showed indi-
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cations of a kind of recurrence phenomenon. Indeed, it
has been observed that although the exact and TDHF po-
larizations, starting from identical initial conditions, grow
rather rapidly apart, the modulus of Texact approaches
again the TDHF value on a long, i.e., macroscopic, time
scale. It must be remembered that the angle between the
exact and TDHF polarizations is, in this case, different
from zero, in correspondence with the fact that the respec-
tive wave functions do not overlap to a respectable
amount. This quasiparticle behavior has been interpreted
as a recurrence of the determinantal structure of the many
body wave function evolved from a Slater determinant at
t =0. It has been suggested (see Ref. 12, and also Ref. 13)
that this quasiparticle phenomenon could be traced to
quantal tunneling of the exact wave function between the
two degenerate sets of librations'* or local trajectories'® in
the TDHF phase portrait for the quasispin system.

In the many-body model under consideration, namely,
the so-called Lipkin-Meshkov-Glich (LMG) model'® the
generator of exact evolution commutes with the parity
operator.''® However, the TDHF motion is not labeled
by a constant parity, this being a typical example of sym-
metry breaking in the mean field. Our purpose in this
work is to examine the problem of dynamical symmetry
breaking on general grounds, raising the restriction to
quasispin models, and to prescribe a variational procedure
that does not suffer from such a limitation. In this spirit
we indicate a choice of nondeterminantal trial wave func-
tions for the time-dependent variational principle, whose
evolution ensures symmetry conservation at all times. The
equations of motion thus obtained describe what we
denote as the symmetry conserving variational dynamics
(SCVD); they are canonical on a symplectic manifold and
display the standard parametric structure'®?° with a prop-
er mean Hamiltonian and a similarly adequate metric ten-
sor that contains the admixture of parity eigenstates. Ap-
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plication of the SCVD prescription to the LMG model et al.?* as a prescription for a two-parameter TDHF
permits a discussion of the situations in which it yields a  model.

significant improvement over the TDHF procedure as one
regards the proximity to the exact wave function and the
one-body dynamics.

In Sec. II, the ingredients and hypothesis of our prob-
lem of interest are set and the general formalism is derived
and discussed. The particular case of the LMG model in
the present frame is worked out in Sec. III. The calcula-
tions performed to illustrate the applications are described
in Sec. IV, while the corresponding discussion and sum-
mary constitute the final section.

II. VARIATIONAL DYNAMICS
OF A SYMMETRY-CONSERVING
STATE VECTOR

In this section we will develop and discuss a general
prescription for the parametric dynamics, induced by the
variational condition, of a nondeterminantal, symmetry-
conserving state vector. We formulate the problem as fol-

lows. Let X= {)/(\#} be a basis for a Lie algebra, I:I\(i) a
generator of evolution that commutes with the Casimir
operator of the algebra and I a Hermitian constant of the
motion, [ﬁ ,f ]=0, with an orthogonal (not necessarily
orthonormal) set of eigenvectors {|s)}. Let g=[0(x)

=expi’-i] be a dynamical group on the Grassmann man-
ifold of Slater determinants, or generalized coherent
states?1'?2 (GCS),

|Z)Y=0(Z)|ref) , 2.1)

with |ref) a given reference state and X a complex vector.
Let { P;} be a set of eigenprojectors,

IB =PI, 2.2)
(I, being the time-independent eigenvalue of 1), we can
extract the eigenvector |s), parametrized on the mani-
fold, as a linear combination of GCS’s,

|s(X))=F, | %)
= [duy (Y IB%) 7).

Here du(¥ ) is the invariant measure on the manifold.??

Single determinantal (TDHF) dynamics assigns, via the
variational principle, a Hamiltonian evolution law to the
parameters x* of a trial wave function of the form (2.1).
According to the variational formulation of quantum
dynamics discussed by Rowe,'?° these equations of
motion respond to the general law (summation convention
for Greek indices is hereafter used)

(2.3)

. i)
Xx'=—A(X|H|X), (2.4)
Th 8x"< |4 | )
where o, is the symplectic metric tensor,
o=t |(525% |25 %)— (35 % |22 2.5)
ox# | ox” ox¥ | ox#

We note that Eq. (2.4) has been extracted as well by Kan

Now, we are especially concerned with the case in
which the expectation value

fz)=(x|T|%)
does not remain constant on the trajectory (2.4). We pro-
pose an alternative to the single determinantal dynamics
(2.4) and (2.5) allowing the initial single determinant

| X(0)) to admix configurations in the course of evolu-
tion,

[X(0))— | W(8) =2 a,(1) | s(X(D)), (2.6)
s
in such a way as to keep the action integral
t ~ 5
= "(w( —i— |W(¢ .
s ft]dt< ) |A~i (t)) @7
at an extremum. The variational prescription reads'®:?°
8 (W) =i (8Y | W) —i(W¥|6¥), (2.8)
where, having defined
Ho=(s|H|s)/(s|s) (2.92)
and
ag=la;|*(s|s), (2.9b)
we can write
H W)= a,x; . (2.10)
s
In addition, the time derivative reads
|W)y=d, |s)+Da,|s)
(2.11)

=24 [s)+2ax"|sy) .

As a first realization of Eq. (2.8) we find, choosing the
coefficients of da;,

iag(s|s)=a,(s |s)H;—iY as{s|s') . (2.12)

Because |s) is an eigenvector of I, and assuming that the

lat/t\er isA _not explicitly time dependent (i.e.,
idl /dt=[1,HY), it is easy to verify that

(s|s")=(s|$)8 . (2.13)
Thus,

iag=%a , (2.14)
where

Ly=H;—i{s|s)/(s|s) (2.15)

is the Lagrangian for the configuration |s). Equation
(2.12) expresses the fact that the positive number a; denot-
ing the probability for configuration |s) to occur in |¥)
is a constant of the motion, and, consequently,
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(W1 |¥)=Ja,l, (2.16)
s

remains constant as well, as required by the exact dynam-
ics. This property suggests the denomination symmetry-
conserving variational dynamics (SCVD) for the present
trial. We realize that the state vector (2.6) represents a
true improvement with respect to the single-determinant
ansatz. Notice that no restriction to norm-conserving
variations has been imposed anywhere; indeed, the conser-
vation of «;, indicates that

(W) | (D) =Fa,=1, 2.17)

provided that (¥(0) | W(0))=1.
As a further consequence of (2.13) we obtain, for the to-
tal Lagrangian

L) =7 (V) —i (V| ¥)
:Easfs

It is now a trivial exercise to demonstrate that the Hamil-
tonian dynamics possesses the same form as in (2.4),
namely,

(2.18)

9
dxH

where the tensor of the sympletic metric exhibits the con-
figuration mixing,

Oy = 2,050,,(s)
=iy a,({s,|s,)

The short-hand notation |s,)=8]|s)/8x* is hereafter
used.

An illustration of the dynamics in Egs. (2.18) and (2.19)
will be given in the next two sections in the frame of the
two-level quasispin model. It is interesting to remark that,
opposite to what happens in TDHF evolution, multideter-
minantal dynamics cannot be expressed in terms of a non-
linear generator of motion. In other words, we cannot
write, in general,

PWY=8w)|¥),

except for very specific situations. This fact contrasts
with single-determinantal dynamics; we can show that Eq.
(2.4) provokes a time variation of | X ) as follows,

il [ X)=ix i|x
Yar ! ax”

Oy i’ =—"—3 (V) (2.19)

—{sy]s,)) (2.20)

(2.21)

0% &
. —1 —
=i(o )V"_E;;;XV [X) . (2.22)
The latter expression is locally valid, i.e., it can be stated
in a neighborhood of |ref) where one may not bother at
all about the nonvanishing commutators [X, v] Equa-
tion (2.22) is thus a typical mean-field evolutlon law,

1 ) =8"F(%) %), (2.23)
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where
gHF(

and the mean-field frequency is proportional to the Ham-
iltonian vector field 8.7 /dx*,

=0HF(%).X, (2.24)

o7
HF_ , _—1
Q) =07 ), 3k (2.25)
Thus,
QuF 3% (2.26)
ox"

if the x’s are canonical coordinates.
We note, however, that if we select the spanning space
|s(2)) of Eq. (2.6) as

Is(t))new= |s(t)>trueexp

t
i [z |, e
[where | s Y™ is the one in Eq. (2.3)], the time derivative
| W) in Eq. (2.11) changes into

| W)mev =g, (£ =0)|5(r))me, (2.28)

and, utilizing the same local criterion as in (2.22), we ob-
tain

i W)Y =8(a,(0),%) | W)™ . (2.29)

Here the nonlinear generator 5’:) possesses the same struc-
ture as (2.24) with the frequency (2.25), referred to the
Hamiltonian # (V) and the configuration mixing metric
in (2.20). This indicates that | ¥)™", where we have re-
moved all relative phases other than the initial ones and
those provoked by the motion of the states |s(X(¢))), does
evolve as a single determinant would, but under a modi-
fied, configuration-mixed generator of motion. The true
state vector | V) undergoing the variational dynamics can
be generated from | W)™ as

—iSP,Y, (2.30)

s

| W) =exp | W)yrew |

where

v,= [z, . 2.31)

Thus, the projection indicated in (2.30) is meant to restore
the relative phases among the amplitudes a,(?), as demand-
ed by the Lagrange equation (2.14).

III. AN APPLICATION TO QUASISPIN DYNAMICS

The Lipkin-Meshkov-Glick'® (LMG) model consists of
a set of N particles in two energy levels (o= +1) of suffi-
cient degeneracy, interacting through a two-body force
that can scatter two particles across the gap of width e.
The LMG Hamiltonian reads

A ~ 1 A2 ~2
A=el,++vJ, +7_), (3.1)

where the quasispin operators

J.=Sa*a _, (3.2a)
p

p"p
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<~

=, (3.2b)

(3.2¢)

NV

=1 +
- 2 2 Uapaapa
p,o

expand an SU(2) algebra. The Hamiltonian is block diago-
nal in the irreducible representations of SU(2), the unper-
turbed ground state belonging to the completely sym-
metric one (J =N /2), which turns out to be the most in-
teresting representation.

It is well known that the N-fermion Slater determinants
are in one-to-one correspondence with the GCS’s of the
SU(2) group'®!42122 defined as the rotations of the ex-
tremal state |J,=—J),

|7Y=R(r)| =J), (3.3)
where

A -1 A A

R(7)=exp ta—n—]-ﬁ—('rJJr—ﬂr*J_) (3.4

[7]

The complex parameter
0 _.
T=tan—e ~'?
2

corresponds to points on a Grassmann manifold—actually
the Bloch sphere.

The LMG model possesses an important symmetry,
since the Hamiltonian (3.1) preserves the parity of the
difference between excited (0=1) and unexcited (0= —1)
particle numbers. The parity operator may be written as'®

iﬂf i
.@:e ZexfrJ .

Since Z is a cyclic operator of order 2 (P?*=1), the pro-
jectors associated with the symmetric and the skew-
symmetric subspaces are

(3.5)

P,=11+2), (3.6a)
P=t01-2). (3.6b)
The action of Z on a GCS is easily determined,
P|ry=|—-7), 3.7
and its expectation value reads
N
~ 1— 2
P BRI
1+ 7|
=cosMo<1. (3.8)

It is also clear that the TDHF Hamiltonian presents the
symmetry

(r|H|7y=(—7|H| —7) (3.9a)
and
(r|H|—7)y=(—7|H|7). (3.9b)

The TDHF equations of motion have been studied by
Kan et al.,'* who performed a detailed analysis of the or-
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bits 7(#) and the energy surface in a canonical phase space
{(p,q)}. When the order parameter X=V(N —1)/€ is
zero, the only allowed orbits are straight lines (p=cte) in
phase space, or circumferences parallel to the equator on
the Bloch sphere (quasispin rotations). As X increases
from zero to unity, the perturbation manifests on the or-
bits as oscillations around the original circles. When X be-
comes larger then unity, a new kind of orbit appears in ad-
dition to these global trajectories—actually a class of libra-
tions or closed paths in the neighborhood of each ex-
tremum on the variational energy surface. A similar
analysis recently has been presented in Ref. 15.

Now, in view of Eq. (3.8), it is clear that the TDHF
equations of motion 7(¢) [or 6(z), ¢(1)] are parity violating,
but the magnitude of this effect may differ from one orbit
to another. The amount of symmetry breaking is mea-
sured by the difference, on a given trajectory,

A({ Z ))=max[cosV6(z)] —min[cos"6(1)] , (3.10)

so it is expected to play an important role for strongly de-
formed orbits (X >1) and low particle number. This is
precisely the case examined in Ref. 10.

In order to utilize the SCVD prescription for the trial
wave function (2.26), we write the parity eigenvectors

l+)=%2(|r)+|—r)), (3.11a)
and the corresponding Hamiltonian in (2.10),

H=a, X +ta F_, (3.12a)

as+=+[1+cosV0(0)], (3.12b)

. 1+cos” —%0
. =€J(—cosB+X sin’Ocos2p)—— . (3.12
* + P Tcos™e (3.120)

The mean parity 7= (W | P | W) is

7T=a+—a_=cosN9(0) , (3.13)

and it is a constant of the motion as shown in the previous
section. Owing to wave function normalization
(a4 +a_=1) the energy surface is actually parametrized
by three real variables, i.e.,

K (V)=7(m,0,p) .

The sympletic metric tensor in (2.20) reads

d
=—0p(6 .
06 dBp( ), (3.14)
where
p@)=a,p (O)+a_p_(6), (3.15a)
1Fcos ~16
p+(0)=(1—cosb) e (3.15b)
and the Hamiltonian equations in (2.19) read
o0 =—[p@ 2% (3.16a)
9
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1 0%
a0

We remark here that p(6) defined in Eqgs. (3.15) is the
canonical momentum conjugate to the coordinate
q =@ +cte; indeed, it can be observed that Egs. (3.16) are
Hamilton’s equations of motion,

o(1)=[p'(0)] (3.16b)

. o

=—— 3.1
)4 2 (3.17a)
. oK

=—. 1
q ap (3.17b)

It is easily verified that, for the Lagrangian in (2.18), we
have, in this case,

Re.¥ =5 —pq . (3.18)

The relative phase ¥=W¥_  —W_ between the symmetric
and the skew-symmetric amplitudes a . (#) evolves in time
according to

V=Re(.L, —.L_)

=X, —X_—¢p,—p_). (3.19)
It is easy to see from Egs. (3.14) to (3.16) that the TDHF
equations of motion!®!* are recovered when A(7) <<1. In
addition, Eq. (3.18) indicates that local SCVD trajectories
(librations) are expected to reflect the oscillation of the
SCVD wave function between the two degenerate TDHF
orbitals .|7) and | —7). Indeed, one realizes that while
. —2_ does not change sign on an orbit, ¢ does; thus
the relative phase oscillates with a typical frequency close
to
1

T
=—T-f0 [ (¢ =2 _(t)]dt"

where T is a period of the SCVD motion.

(3.20)

IV. NUMERICAL EXAMPLES

Equations (3.16) have been numerically solved for
several initial conditions 7(0) and for different particle
numbers N and order parameters X. In Fig. 1 we show the
SCVD phase portrait {(p,q)} for N =6 and X=1.5, this

c1HF

FIG. 1. The phase portrait {p(z),q(¢)} in the self-consistent
variational dynamics (SCVD) description, for particle number
N =6 and interaction strength ¥ =1.5.
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being a selection of parameters that permits us to observe
major differences between SCVD and TDHF descriptions
(the latter being shown in Fig. 2). The orbits in both fig-
ures are in one-to-one correspondence, i.e., they have
evolved from identical initial conditions. The phase coor-
dinates are, in both cases, the TDHF canonical ones,!*
Pyr= —N cosO and ggr=¢. This choice has been made
in order to facilitate the comparison between both flows
and it has been seen that the diagram (pscyp,gscvp) With
the coordinates pgcyp=p(6) [see Egs. (3.14)] and
gscvp =qar differs only slightly from the one shown in
Fig. 1. It is interesting to note that the 4th and 10th orbits
are rotations in TDHF and librations in SCVD; this is a
manifestation of the fact that critical points on the energy
surface are not located at the same position in either
description. Furthermore, one can see from the corre-
sponding expressions of the mean energy that the so-called
critical orbits, i.e., those containing the poles, bear dif-
ferent energy values in the two approaches. For example,
the south polar orbits correspond to the TDHF energy
—eJ and to the SCVD energy —eJ(1—a_/J).

Notice that, opposite to what happens in the TDHF
case, the SCVD frame does not allow an analytic evalua-
tion of stationary points. In the present context, it is not
obvious that we must search for a “phase transition” like
the well-known Hartree-Fock one.!* The SCVD energy
hypersurface is labeled by three parameters, namely, the
coordinates 0 and ¢ and the parity 7, the latter being
fixed by the chosen initial conditions. Thus, a phase tran-
sition, regarded as a qualitative change of the topology of
the phase portrait {(6(¢),(t))} might be either observed
or unobserved depending upon the specific projection of
the three dimensional phase space that one selects for the
drawing.

Larger values of particle number cause the two patterns
to collapse into the single TDHF flow. Indeed, already
for N=25, the SCVD phase portrait cannot be dis-
tinguished from its TDHF counterpart, insofar as X
remains not too much higher than unity. For low particle
number, say N=6, and X below the phase transition, a
similar observation holds, except for the fact that SCVD
rotations exhibit larger wiggling in the neighborhood of
the poles.

[

PH F

1|¢1ll¢\L/L

1

o
N
=

FIG. 2. The same initial conditions and parameters in Fig. 1,
evolving according to the TDHF law.



28 SYMMETRY-CONSERVING VARIATIONAL DYNAMICS: ...

In order to measure the quality of the different ap-
proaches to the exact dynamics, we have computed the
values of the overlap between (a) exact and TDHF, (b) ex-
act and SCVD, and (c) SCVD and TDHF wave functions.
These quantities are shown in Fig. 3 for N=6, X=1.5,
6o=cos~!(—0.8), and @y=0; the trajectory is a libration
(orbit number 2 of Fig. 1). The improvement of SCVD
upon TDHF is remarkable, since the former overlaps the
exact wave function above 70% (0.84 is the minimum
overlapping amplitude in Fig. 3) during several oscilla-
tions of the TDHF orbit. Indeed, it is well known!®!1123
that TDHF is a short-time approximation to the true
dynamics, due to its classical characteristics; by contrast,
SCVD makes room for significant quantum effects like
tunneling below the barrier between the two degenerate en-
ergy minima characteristic of this model. This feature is
further illustrated in Fig. 4, where the same overlaps are
displayed in the case of orbit number 7 (cos6y,=0.6). This
trajectory is a rotation in either portrait and it is seen that
the SCVD pattern remains close enough to TDHF to yield
no significant improvement with respect to the latter.

A second and important test consists of computing the
mean values of one-body observables. In quasispin

models, the observable of interes/t\ is the polarization J,

given by the expectation value of T with respect to a given
state vector | ¢), i.e.,

3':<Q J|¢)
¢ (ple¢)

We have calculated jf‘,, with the three selections for |¢),
namely, exact, SCVD, and TDHF state vectors. Indica-
tive results of these calculations are the angle B between
?mct and either approximate polarization, and the
modulus |3¢ |. Note that | Jrpur| always equals the
representation label J. In Fig. 5 we show the cosine of the
angle B (corresponding to the same dynamics as in Fig. 3)
and it is clearly seen that it remains close to unity during
most of the interval displayed on the time axis; this is
another indication of the already observed fact that the
SCVD wave function approaches the exact one to a better
extent than TDHF. The modulus of the polarization is

4.1)

1 ~
a o
P~ ]\.\‘ I¢ 4 \\
é 4 W l’i A\ as (]
wi WL\ A I Y
4 (YA} I i\
3 vy N 1y
A U v
2 ’\{ y i
S 1 i '
o i) \
5 SRy \
2 Y \
2 ] M/—KEelscvD)]
w vV —-KE|TDHF>|
g ——|<SCVDITDHF|
et
1
telk

FIG. 3. The overlap between wave functions calculated with
different methods for the librational orbit number 2 of Fig. 1.
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FIG. 4. Same as in Fig. 3, for the rotational orbit number 7.

displayed in Fig. 6.

Selections of parameters X and N and initial conditions
different from those here displayed (any X smaller than
unity, any N larger than 25, initial position on an SCVD
rotation rather than on a libration) shows that (i) Bscyp is
always smaller than Brpyr although they might differ
slightly, and (i) | T scyp | always remains closer to the ex-
act figure than | - | . A long-time analysis shows that
while all SCVD and TDHF quantities depart from the
corresponding exact ones, the former approach does it at a
much slower rate.

V. DISCUSSION AND SUMMARY

In this work we have proposed a variational dynamics
based on a larger set of trial functions than TDHF. The
wave functions are admitted to be linear combinations of
Slater determinants, but only in order to include the quan-
tal effects related to the existence of N-body dynamical in-
variants (N-body symmetries). The evolution thus formu-
lated keeps the value of any function of the invariant at a
constant figure.

The state of the N-body system is no longer described
by a Slater determinant, but rather by a superposition of
them with amplitudes fixed by the initial conditions and
relative phases determined by the trajectory. In this con-
text, the motion of the system may be followed on the

L -
- \\\ l[ \\\~
] . ,,
Q 4 \\ !
8 - AN /
o . I N .
v’ 1
telh
b —SCVD
e ~—=-TDHF
-1

FIG. 5. The cosine of the relative polarization angle as a
function of time, in the conditions of Fig. 3.
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14

N

POLARIZATION I"" |

FIG. 6. The modules of the polarization vector as a function
of time, in the conditions of Fig. 5.

manifold of the Slater determinants, although it must be
kept in mind that both the symplectic metric that converts
the Grassmann manifold into a phase space [Egs. (2.20)]
and the effective Hamiltonian [Eqgs. (2.10)] depend on the
initial symmetry conditions.

At first sight, one could assert that the larger the set of
trial functions, the larger the accuracy of the approximat-
ed dynamics. This seems to be true, but it is seen that in
some cases the improvement may be rather poor. In the
light of SCVD, we can indicate two situations where it is
necessary to include a quantal description of the sym-
metries in order to really improve the approximations.
One of them is wherein TDHF dynamics depends strongly
on the initial mean value of an observable A and the trial
functions display an important quantal dispersion with
respect to the A eigenfunctions; in other words,
({A42)—(A4)»)'? is not much smaller than (A4) at all
times. In this case, it can be expected that different eigen-
spaces of A acquire significantly time-varying relative
phases during the evolution. The other situation men-
tioned above is that in which the observable changes by an
important amount over an interesting TDHF trajectory.
In such a case, the SCVD trajectories on the symplectic
manifold can differ considerably from the TDHF ones.

All these features have been examined on the LMG
model. Regarding the overlap between approximated and
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exact wave functions as a measure of the quality of the
description, the best fits are obtained for low particle
numbers, moderate values of the interaction strength
above the TDHF phase transition, and initial conditions
associated to TDHF librations. In those situations, the
two general reasons for the need of symmetry restoring are
better fulfilled.

It is important to remark that, as SCVD phase portraits
like the one shown in Fig. 1 are considered, one cannot as-
sociate their changes of shape with phase transitions since
they are not simple projections of the full SCVD phase
space {(p,q,m, | ¥))}. The one-to-one correspondence be-
tween phase flows claimed in Sec. IV is related to the
determinantal initial conditions that evolve on a hyper-
plane w=cte under SCVD dynamics. In other words, the
SCVD phase portrait is built up picking just one SCVD
orbit from each constant-m hyperplane and projecting
them together on a p-q space. Notice that each of these
orbits is labeled by a constant energy, the same as the cor-
responding TDHF path.

Since many interesting problems about symmetries and
TDHF dynamics are to be formulated and discussed, it
could be instructive to apply the SCVD method to other
solvable models, especially to those possessing larger num-
bers of symmetry-related eigenspaces than LMG. It
would be of interest as well to examine the case of systems
where the amount of symmetry breaking is weak. The
study of more realistic models will require suitable ap-
proaches for the projectors ﬁs, in order to render the cal-
culations feasible.
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