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The transition density between parent and analog states is studied with an eye on its role in
charge-exchange nuclear reactions. The structure of the target nucleus is described in a perturbative
approach, in which the Coulomb and asymmetry potentials mix the eigenstates of a charge-
independent single-particle Hamiltonian. In this model formulae are derived for the transition den-

sity, the Coulomb displacement energy, and the neutron-proton density difference, and their relation-
ship is used to estimate the transition density. This estimate shows that {i) the largest contribution
comes from the density of the excess neutrons; {ii) the weight of the Coulomb-mixing effect is small

up to excess neutron number 10, and grows rapidly beyond; {iii) the weight of the core polarization
term induced by the excess neutrons is modest and is the same for all nuclei. It is indicated that the
Coulomb effect may explain the departure from the Lane model of nucleon charge-exchange scatter-
ing found for heavy nuclei, whereas the core polarization may account for the observed anomalous
dependence of the 0' pion charge-exchange cross section on the number of excess neutrons.

NUCLEAR STRUCTURE Transition densities for charge exchange to IAS;
Coulomb and core-polarization effects.

I. INTRODUCTION

pq = g 5( r —r t ) ttq

with t;q being the q component of the nucleon isospin ten-
sor t;, and A being the target mass number. If M is as-
sumed to have pure isospin To ———,(N —Z) and

O'=To ' gt;

the transition density becomes proportional to the
neutron-proton density difference p„p=p„—pp in the tar-
get nucleus:

—1/2W= 2 To pp (3)

If, furthermore, W consists of a single configuration of
single-particle (sp) states P (r) whose space-spin parts are
the same for neutrons and protons, then p„p reduces to the
density of the neutron excess (ne),

hence

a=2Z+1

(4)

This paper is concerned with direct charge-exchange
transitions, such as (p,n), ( He, t), (m+, m ), (m, m. ), etc. ,
that lead from a parent state W to its isobaric analog @'.
If there is no target-projectile antisymmetry, the transition
density for such a process is given by

~p(r) = & C'
I s - i I

C & (I)

where

In real nuclei the isospin is impure, thus Eq. (3) is not
satisfied. Neither are Eqs. (3) and (4) equivalent, because

p p gains a large contribution from the self-conjugate core.
Owing to these facts, the computation of the transition
densities is not straightforward. Therefore, the isospin
impurity is usually disregarded, and the transition density
is either assumed to be given by Eq. (3) (Ref. I) or Eq. (4)
(Ref. 2).

The relationship between prescriptions (3) and (4) was
first studied by Lovas, Brown, and Hodgson. For (p,n)
scattering from medium light nuclei we showed that
prescriptions (3) and (4) give rather different results. 3 In a
semimicroscopic model we estimated the core effects and
found that the corrected transition density lies between
those of Eqs. (3) and (4). We, however, neglected the com-
ponent of @'of isospin T =To l. —

Auerbach and Nguyen Van Giai examined the same
problem in the context of pion charge exchange. They
pointed out that, because of the extreme sensitivity of such
a transition to the nuclear surface, the differences between
prescriptions (3) and (4) result in even larger discrepancies
in the cross sections. Subsequently, Auerbach and
Yeverechyahu demonstrated this by actual calculations for
the (~+,m ) cross section.

Auerbach and Van Giai advocate that Eq. (4) is the
correct prescription, at least for nuclei of small To. In
their considerations they have duly taken into account the
T =To I component of—N'. Their reasoning relies on
three premises: (a) the core contribution to p„p is brought
about by the Coulomb self-polarization of the core; (b) the
core effect on Ap is similar to that on the Coulomb dis-
placement energy b,E; and (c) as was demonstrated numer-
ically for the case of 'Ca- 'Sc (Ref. 6), the core effect on
hE is very small.

In this paper we shall examine the validity of these
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statements and, ultimately, of the prescription given by
Eq. (4). First we shall set up a perturbative model, which
is likely to be realistic for a broad class of nuclei (Sec.
II A), and introduce simplifications so that Eqs. (3) and (4)
are exactly valid (Sec. II B). Then we drop the simplifying
assumptions (Sec. II C), and assess the size of the various
correction terms (Sec. III). As a by-product, we shall ob-
tain formulae for various contributions to the Coulomb
displacement energy as well. The perturbative framework
we shall use is very appropriate for exploring trends of
behavior of many nuclei at a level of considerable generali-
ty. For actual calculations, however, there are more
powerful methods. In drawing the conclusions (Sec. IV)
we shall also discuss some points concerning the practical
calculation of the transition densities.

II. TRANSITION DENSITY
AND COULOMB DISPLACEMENT ENERGY

A. Basic model

The nuclear model to be outlined treats the interaction
terms that distinguish between neutrons and protons as
first-order perturbations. As a zero-order approximation
to start with, we wish to choose a state in which p p

p"'
is satisfied, and, for simplicity, we take a single-
configuration state. (If natural orbitals are used, the
latter restriction is not necessary. ) To generate such a
state, we define an average sp field, which includes the
terms of the nuclear as well as the Coulomb force that are
scalar in the isospin space of any one nucleon. A state

TpTp & of the 2-particle system of isospin T = To and
isospin projection Tz ——To in this field will be considered
as the vacuum, on which W and @' are built.

We further assume that the rest of the interaction can
be represented by sp potential terms that are rank-one ten-
sors in the isospin space of any single particle. The per-
turbation potential is thus a combination of the sp
Coulomb potential terms Vc and asymmetry (or symme-
try) potentials U:

Xo'= —g vc(r,. )r", 0

„n' [jrn

nl jm

—n'[jm
JI

ntjm

——n'[ jmJj

Type 0 Type 1 Type 2 Type 3

FICx. 1. Visualization of the four types of the ph excitations.
The oblongs on the left and right represent the sp states filled by
protons and neutrons, respectively.

isovector core polarization (cp) effect induced by the ne, it
also distorts the density of the ne itself. Since ko is iso-
scalar in the A-nucleon space, it does not mix the total iso-
spin, and the Coulomb displacement energy can be written
as

AE =(O'
I

x'
I

4&'& —(w
I

4''
I
w&

In (5) the interaction between each nucleon pair is counted
double in order to represent the one-particle one-hole
(lplh) excitation effect of the two-particle interaction in
terms of the one-particle interactions Ko and ko proper-

8

Finally, we assume that the effect of the perturbation
terms (5) consists in mixing

I
ToTo& with the isovector

monopole states [~'
I

To & ]r, , where [ ]z signifies iso-

spin coupling. The monopole state is characterized by the
excitation

q1~'T ~ Cnn'lj ~ J~J~ —~ ~ ~ L n'ljm (1/2) nlj, —m, (1/2) Jr
nn'jlm

(0) c , . (1) c , . (2)
nn 'jI1+— . +Cnn'Ij Cnn 'jl

nn'ljm 2J + 1 2 nn'ljm
2J' + 1 nn'ljm 2J + 1

where a„ ljm ( 1/q), and a l . (,/z), , are Particle and hole
Z

creation operators, respectively, and c„n lj can be deter-
rnined through a Tamm-Dancoff diagonalization. The
overall factor of c„„'iz is chosen so that c„„i~™ybe real
and normalized as

= —f I'c(")Po(r, r~, . . . , rz)dr, (sa)
where the summations g' ' run over excitations

e', = g g U(r, ) t, . t, , (5b)
j=1 i&j

where the indices Ap of K& and k„ indicate the tensorial
character in the isospin space of the A nucleons. The per-
turbation K0 causes the Coulomb self-polarization,
whereas the role of ko is twofold: while it represents the

njlm~n'1jm (n') n)

of type a defined in Fig. l. (Excitations of type 3 are not
included since even the heaviest nuclei have too small ne
to allow such excitations over their basic configuration. )

Now, with the admixtures kept only up to first order,
W and 4' may be written as

~=
I ToTO&+ax, r, l~ I To &]r,+ar, +i, r,[~'

I To&]r,
(9)

1 To —1 To 1 To+ I@'=
I To To —1&+a+, , z. &[~ I To&]r, —i+ar, , r, i[~

I TO&]r, —i+ax, +i, z, &[~ I To&]T 1— —
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where

ttrr = E—r [&~o l~ ]r «o++o)
I ~o~z&

with Ez. being the excitation energy of [~'
I

To &]r . The
terms multiplied by arr can justly be ignored if W is a

ground state since the maximum value of ar +i r among2

all nuclear ground states is 0.006 (Ref. 9) and the other
coefficients are of the same order of magnitude.

This framework for the treatment of the Coulomb mix-
ing is very close both to the standard procedure of es-
timating isospin impurities and to the "analog-state
method" to calculate AE. The present approach is more
approximate than the "analog-state method" in that here
we represent the two-body potentials by their one-particle
approximants —but this is a good approximation. Our
earlier model was more limited than this one because of
its special purpose. It was devised to bridge over the gap
between the pure-isospin reaction model of Lane' and the

isospin-mixing structure model of Brown, Massen, and
Hodgson" for the target ground state as W. Since 4' is
not within the scope of that structure model, it had to be
shaped consistently by additional assumptions. It was as-
sumed to be similar to W, and so no T = To —1 com-
ponent was included. Furthermore, the perturbation +0
and excitations of types 1 and 2 were dealt with in an ad
hoc manner. Here we wish to elaborate the model in full
generality and treat all excitations and perturbations prop-
erly.

The transition density and the Coulomb displacement
energy are obtained by substitution of (9) and (10) into (1)
and (6). The terms independent of the coefficients aran

can be related to

with the use of (2) and (5a), respectively, and of the
Wigner-Eckart theorem. In the first-order approximation
for the coefficients arz- we obtain

To+ 1
1

X E.-'[&~o
I
~"]:, iP il ~o~o&&~o, ~o-l l(~oi+~oo)[~'I ~o&]:,

T=TO —1

To+ 1

+ g Er '[&~o l~' ]r,(&o++o)
I

~o&o&&'ro &o —1 IP—' i[~'
I ~o&]r,

T TQ

To+ 1

&E=(2&o) ' f p"'(r)Vc(r)dr —2 g Er '[&~o l~' ]r, i(&o++—o) I
2o &o —1&&~o &o —1 &o[~'I ~o&]r~ i—

T=TO —1

To+1

Er [& ~o
I

~ ]To(&o+ +o)
I ro~o & &

'ro'lo &o[~
I

~o &]~To

The formulae of hp and AE do apparently show some
formal similarity. To elucidate the analogy more explicit-
ly, consider a case in which the states concerned have
good isospins and are related by

@'=To ' gtg

Using the signer-Eckart theorem, one can prove that

bE'=To ' f Vc(r)bp(r)dr . (12)

It is conspicuous that the zero-order terms of (11) satisfy
this relationship. Because of the isoscalar nature of
however, (12) must hold for the monopole admixture
caused by ko as well. On the other hand, for the contri-
butions b,p

"' and b,E '"' from the isovector Coulomb ad-
mixture, the VA'gner-Eckart theorem implies

bEc'"'=2To ' f Vc(r)hp '"'(r)dr (13)

Equation (12) is thus not maintained unless b,E '"'=0.
However, as we shall see in Sec. IIB, such a situation is
not entirely unrealistic.

B. Simplified model

Having outlined the general framework we shall work
with, we temporarily introduce three further approxima-
tions:

(i) We neglect the isospin splitting of the monopole
state, i.e., take all ET =E. This is expected to be a reason-
able approximation for nuclei of small To since the split-
ting of E is roughly proportional to To. (See Sec. III.)

(ii) We assume that M, involves neither excitations
from nor to sp states that are occupied by neutrons but are
not occupied by protons. The excitations allowed now are
those denoted by type 0 in Fig. 1. This approximation
again seems allowable for nuclei of small To since the
fewer the excess neutrons are the less their contribution
counts in the collective monopole excitation.

(iii) We ignore ko. When adopting this approximation,
one may look for support in former calculations for b.E.
For 'Ca it was found that the cp adds to AE only 0.1

MeV, and its contribution grows only by a factor of 3.5
between 'Ca and Pb (Ref. 12).
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It follows from approximation (ii) that Mi
I

Tp Tp —1)
is a pure 2p2h state, and hence is orthogonal to
Ãp I TpTp ) which is a lplh state. For similar reasons,

I

~,'
I To, To —2) is orthogonal to Ãp

I Tp, Tp 1—). Using
these facts and the Wigner-Eckart theorem, it is straight-
forward to prove that

& To Tz
f
Ão[~

I
Tp & ]v = & 10ToTz f TTz & & ToTo

f
Ko~o

f
To To &

& To»o —1
I

p'—i[~'
I

To &]2; = —
& 11To To —1

I
TTo & & To To IPo~o I

To To &

1 1

[&To l~' ]2 —ip —i I
ToTo&=&1 —1 ToTo

I
T To —1&&ToTo l~oPol ToTo& .

(14)

bp= ,' To '"—bpo—(bpo=p"'), (15a)

Substituting these formulae into (11) and using (i), (iii),
and the orthogonality relation of the Clebsch-Csordan
coefficients, we find that the expressions in the large
square brackets in (11) vanish, so

Ri2 ———,(Ri+R2), Ci2 ———,(Ci+C2) . (17d)

Once approximation (i) is abandoned, Er does not fac-
tor out in (11), and the orthogonality of the Clebsch-
Gordan coefficients no longer causes a full cancellation.
We obtain

bE=(2To) bEo bEo—:f p (r) Vc(r)dr

(15b)

bpi ——Oo( —4TpCpRo/Ez. + i),
EEi =28o( 4ToCo—/Er, +i) ~

(18a)

(18b)

Equations (15) satisfy (12), and (15a) is nothing but
prescription (4) save that p"' here is built up from orbits in
the average of the neutron and proton sp potentials. Had
we neglected the T = Tp —1 term of 4' as in Ref. 3, there
would be a net contribution from the Coulomb terms in
the large square brackets, which shows that this neglect is
not justifiable. We can also easily prove that approxima-
tions (i)—(iii) are necessary to obtain prescription (4). The
relationship (12) is, however, satisfied without requiring
(iii).

C. Corrections to the simplified model

where

2TQ —1

2Tp(To+1)(2Tp+ 1)

Tp+ 1 2Tp+ 1 Tp
X +

ETo i ETo EZ o+ '
ETo+

Correction (ii) amounts to allowing for excitations of
types 1 and 2. The number of possible excitations 1 and 2
increases with Tp, and for heavy nuclei their weight is
comparable with those of type 0. Therefore, it is not
enough to keep the linear terms in the quantities of index
1,2. The result is

We shall now restore the original model and present the
corrections entailed. The "exact" Ap and AE may be de-
rived by substituting the second-quantized form of ~,',
p~, Kp, kp,

I
Tp, Tp 1), and

I
Tp, Tp ——2) into (11) and

evaluating the vacuum expectation values obtained. In do-
ing so, one has to observe the isospin-polarized nature of
the vacuum

I ToTp). Since some of the terms are labori-
ous but all are straightforward to calculate, we omit the
derivations.

We shall present the "exact" Ap and AE step by step, in
terms of additive corrections obtained by lifting approxi-
mations (i), (ii), and (iii) successively. The result is thus
expressible as

bp= , To ' (bpo+bpi—+bp2+bp3),

bE = (2To ) '(bEo+ bE i +bE2+ b E3 ) .

2To —1 1

TQ To —].

2TQ 1 2Tp+ 1
Op ——

2TQ

1

To

Tp+ 1
ET +i

Tp

The third correction is obtained as

bp2=~i[ —2To«oR i2+Ci2Ro)/Er, + i]

+~2( —4TOC12R 12/ET, +1»

bE2 =28i( —4TpCpCi2 /Ero+ i )

+2~2( 4ToC i2/Ev;+—i)

where

(20a)

(20b)

(21)

In presenting these terms it is useful to define the follow-
ing quantities:

( )

2 nn'Ijm 21+1
(17a)

with

bp3 ———40[ToR o+ ( To+ 1)R,2],
bE2 = —4Q[ To Co + ( To + 1 )Ci 2]

(22)

C~= f Vc(r)R (r)dr,

U = f U(r)R (r)dr (a=0, . . . , 3),
(17b)

(17c)

0= I Up+ [(2Tp —1)/(4Tp)] Ui

+[(2Tp+5)/(4Tp)]U2I /Er, . (23)
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We see that, as envisaged in Sec. IIA, correction (iii)
satisfies Eq. (12), while corrections (i) and (ii) obey Eq.
(13).

III. ESTIMATE FOR THE CORRECTIONS

The adequacy of Eq. (4) was primarily inferred from a
case of To —,

' ——(Ref. 6). Looking at Eqs. (19) and (21), we

see that for To —,
' ——the first two corrections happen to

vanish. This fact shows that the case of To= —,
'

is very

special, and underlines the importance of a closer exam-
ination of the behavior of the corrections. This could be

done by carrying through the Tamm-Dancoff calculation
and the evaluation of the corrections for many cases.
However, sacrificing accuracy, we can gain more insight
by estimating the ingredients of bp by general considera-
tions.

The behavior of the corrections is largely determined by
their implicit dependence on To through CoR o,
CORi2+CizRO, CizRi2, 0, and ET. Therefore, to explore
b,p;, we need to know something of these quantities. It
provides a starting point that p„p is also expressible in
terms of them:

1 To 1 1 1 To+1
+ CORO+ (COR ip+Ci2RO)+ CizR i2ET To+1 ET +i To+1 E To 0

—40[TpRp+(To+ 1)R i2 j (24)

Moreover, owing to the normalization condition (8), for a
given Z, the quantities R —=Rp+R&2 and C:—Cp+C&2 are
more or less independent of To. In particular, To ——0 im-
plies R =Rp C=Cp and R&2 ——C&2

——0. In a nucleus of
To ——0, p„z (—=p„~) comes solely from the Coulomb force,
thus (24) reduces to

p„p
——4CR/ET, +i . (25)

To estimate 4p~ and hp2, we proceed in two steps: we
first relate p„~ to bpo p"', and then —r—elate dpi and bp2 to
p„p through decomposing C and R into Cp+ C~2 and
Ro+R &2, respectively.

For " Ca we find (Fig. 2) that, beyond the outer (nega-
tive) peak of p„~, p„~—p„~= —p„~. Indeed, the relationship

p 0
pnp pnp = 2Topnp

is found to hold in the 4.5 & r & 6 fm region for all Ca iso-
topes. If the cp is neglected, this takes the form

Tamrn-Dancoff calculation. In this picture we have

NZ
CpRp = CR, CpR )p+C&2Rp =

N2
2

Ni2
C)2R )p

—— CR,
N2

2NoN )2 CR,
(28)

1 A
A) ——

2 40

1
A =—

2 40

N2
og

N

N~2

N , (&a~i+&i2L92),

(29)

where Ni2 ———,'-(Xi+%2) and K =Xo+Xiq. Now, substi-
tuting (28) and then (27) into (18a) and (20a), we find that,
in the tail region (1.3A'~ &r &1.75A'~ fm), the magni-
tude of hp& and hpz relative to p"' is given by the coeffi-
cients

p"'= 2Top„z (for —Ca, 4.5 & r & 6 fm) . (26) I'espectlvely.

To extract something general from this observation, we
have to know the behavior of p„~ as a function of A. Ow-
ing to the uniformity of the Coulomb repulsion for all nu-
clei and to the vanishing of the volume integral, p„z has
much the same shape, as in Fig. 2, for all A: it has a large
positive and a smaller negative peak and a flat tail. From
the results for ' 0 (Ref. 13), Ca, and Ni (Ref. 3) we can
infer that at equivalent points (e.g., at corresponding peaks
and along the tail) p„~ cc A. On the other hand, the propor-
tionality of the nuclear volume to A implies p"'/To CC A
With these trends taken into account, Eqs. (25) and (26)
yield

I I

g
(I 2Ca)-g (aoCa )

~„, ("Ca)

—,(A/40) p"'= 4TiiCR/ET +i—
(1.3A' &r &1.75A' fm) . (27)

I

3 4

r (fm)
We decompose R into Ro+ —,'(Ri+R2) by assuming

that each term R; is proportional to the number N; of pos-
sible nucleon excitations njlrn ~n +1,j/m of type i (Fig.
1). This is in accord with the spirit of a first-order

FIG. 2. Comparison of the neutron-proton density difference
of Ca with that caused by the presence of the ne in Ca. It is
seen that, beyond 4.S fm, p„~( Ca) —p„~( Ca) = —p„~( Ca).
(Calculations described in detail in Refs. 3 and 11.)
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+ —,[T ( T + 1)—To ( To + 1)—2] U/2 (30)

was used with fico=41/2 'i MeV and U =100 MeV. In
counting the possible nucleon excitations the standard ex-
treme sp model has been adopted.

The results show that correction (i) is insignificant, and
correction (ii) is likely to be large only for heavy nuclei.
The reliability of these estimates depends on the radial re-
gion actually responsible for the transition and on the size
of p"' in this region relative to the ph states involved in
the monopole. The corrections are bound to be underrated
in the extreme tail region (r) 1.752'i fm) as the ph
states contain highly excited particle orbits, whose exten-
tion is larger than that of the sp states occupied by the ne.
Since all density terms are very small in this region, this
effect may only be observable where the cross section
comes solely from this region, namely, at extreme forward
angles. In the more significant part of the tail

The quantities 8;, X;, and A; are tabulated for a couple
of nuclei in Table I. In calculating Ez-, the formula

Ez. -(Mco+ 10 MeV)

(1.3A'i &r & 1.753'i3 fm), however, the individual shape
of p"' is not likely to cause fluctuations in p"'/Tp relative
to p„& larger than, say, a factor of 2. Because of the very
different shapes of p"'(r) and p„~(r), however, the more the
inner regions contribute the less clear the picture becomes.
But even in the extreme case when the whole volume con-
tributes, our estimates are likely to work as order-of-
magnitude estimates.

To weigh up the size of hp3, we use the fact that it is
equal to the last term of p„~ in (24). It is now convenient
to apply approximations (i) and (ii). Inserting (23) in (24)
and (22), we obtain

pap =p +4( Co —To Uo )R o /E,

hp3 = —4To UoRo/E,

KE3 —— 4ToU—oCo/E .

(31)

(32a)

(32b)

In these equations all R, C, and U appear with sub-
script 0 only, thus in this approximation correction (iii)
represents just the cp. Substituting (17a) and (17c) into
(31) and (32), and then (32) into (16), we obtain

(p) cp„=p"' 4E 'R g —— (P„,
~

—V +T U
~ $„1 ),.n i, 2(2J +1)

(o) c„~p=-,'To-'" p" 4E 'Ro —&-
v'2(2j + 1)

(p)
bE=(2To) AEo 4E Co g— =. (Ant)m I

ToU 4n'tom )
nn ~jm 2(» +1)

(33)

(34)

Equation (33) shows that the shapes of the Coulomb and
cp terms of p„& are identical, their signs are opposite, and
their magnitudes compare as Vc does to TpU. However,
while the Coulomb term of the transition density,
bp "'=hp|+bp2, given by Eqs. (18a) and (20a), is only a
small fraction of the large Coulomb term of p„~ [cf. Eq.
(24)], in the case of the cp, the full correction term of p„~
is added to bp. This result confirms the conjecture put
forward in our former work. Moreover, since both p"'
and bp3 are proportional to To//I, the magnitude of bp3
relative to p"' must be more or less the same for all nuclei.
Therefore, the cp effect in the transition density must be,
for most nuclei, far more important than the Coulomb ef-
ect.

To assess the strength of the cp contribution to the den-
sities, let us consider the Ca isotopes again. For these nu-

clei Vc(r)=3U(r) (within the nuclear volume), and we

may assume that, similarly, Cp 3Up. Substituting 3Up
for C in (25) and inserting p„„of(25) in (26), we find that
in the tail region

p"'(Ca) = —24To UoRo/E .

A comparison of this result with (32a) reveals that

b,p3- —,'p"' (1.3A'i &r &1.75M'i fm), (35)

and, as was mentioned above, this estimate should hold for
all nuclei.

Just as for the items in Table I, Eq. (35) may be expect-
ed to hold within a factor of 2, but in the cp transition
amplitude drastic departures are possible if the inner re-
gions contribute to it or the extreme surface dominates the

TABLE I. Coefficients in the correction terms to the transition density. The quantities H; are defined in (19) and (21); X; is the
number of possible sp excitations of type i (Fig. 1) and A; are given in {29).

Nucleus

4'Ca
48Ca

~Zr
116Sn
2 Pb

7.0&& 10-"
4.4~ 10-'
2.0&& 10-'
2.3~ 10-'
2.9~ 10—'

4.1 &&
10-'

7.8 ~ 10-'
4.5 &&

10-'
4.0~10 2

3.2 &&
10-'

6.0&& 10
3.4~ 10-'
2.5 ~ 10—'

1.8 ~ 10-'
8.7 &&

10-'

&o

18
18
32
34
42

2
8

10
16
44

0
0
0
8

20

3.5 ~ 10-4
2.1)& 10
3.8 ~ 10-'
5.3 &&

10-'
1.3 ~ 10—'

2.0 &&
10-'

1.6&&10 '
2.5 ~10-'
8.4&&10 '
3.3 X10-'
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transition. In any case, this contribution is always non-
negligible. Since the cp is governed by the distribution of
the ne, hp3 should follow the fluctuations of Apo ——p"' be-
tween different nuclei. Because of this property, A~ and
A2 can be reinterpreted as the magnitudes of ~i and bp2
relative to Apo+ Ap3.

The treatment of the cp effect on the (p,n) cross section
in Ref. 3 can be considered as an approximation to the
model outlined in the present paper. The main additional
approximations in it are that the density terms coming
from a nonperturbative nuclear model are treated as if
they had been calculated perturbatively, and no provision
is made for excluding spurious isosopin mixing. The term
Ap3 is calculated by subtracting the Coulomb term from
the core contribution to p p.

For all the cases calculated (for Ca isotopes at 25 MeV
and for Ni at 22.8 MeV bombarding energy) in the inter-
val 20'—180' the cp appears as a solid 5—20% effect in
accord with Eq. (35). At extreme forward angles, howev-
er, the cp effect is much larger. At 0' it enhances the
cross section by factors of 4, 2, 1.5, and 1.4 for Ca, Ca,

Ca, and Ni, respectively. This is obviously the cp ver-
sion of the surface effect mentioned in conjunction with
the Coulomb contribution. Indeed, for the Ca isotopes
Ap3 dominates over Apo in the outermost region.

To estimate the corrections to the Coulomb displace-
ment energy along the lines followed so far would be diffi-
cult for bE; gain contributions from bp;(r) over all r.
Nevertheless, since there is a one-to-one correspondence
between the terms of Ap and b E, some qualitative features
of b.E; can be deduced.

The Coulomb terms of p p contribute to AE; multiplied
by the same diminutive factors 8 that appear in hp;.
Moreover, when Eqs. (28) are substituted in (18a) and
(20a), bp& and bp2 appear to be proportional to p„~ given
in (25). Therefore, if Vc(r) were constant throughout the
nuclear volume, Eq. (13) and the vanishing of the volume
integral of p„„(r) would imply that bE& bE& ——0. Of-—
course, Eqs. (28) are not exact, and Vc(r), though smooth
and flat, is not constant, so b,Ei and bE2 do not in fact
vanish. Nonetheless, this speculation indicates that the
Coulomb corrections to hE must be less important than to
Ap.

Similar reasoning is applicable to correction (iii). If we
restrict correction (iii) to the cp as we did in estimating
kp3 the volume integral of Ap3 vanishes. Thus the cp
term in bE is nonzero due only to the departure of Vc
from Vc ——const, which implies that the relative impor-
tance of AE3 is much smaller than that of Ap3.

These considerations reveal that it was not justified to
conclude from the smallness of the corrections to AE that
they are small also in Ap. On the other hand, they show
that our evidence for the cp effect being sizable in Ap does
not contradict the former finding that it is small in AE.

IV. SUMMARY AND DISCUSSION

An idealized charge-exchange transition assumes parent
and analog states in which the nucleon distributions are
the same. In real nuclei, however, both the self-conjugate
cores and the valence nucleon orbits are distorted in the

two states relative to each other. In an sp model the in-
teractions responsible for this are the isovector Coulomb
term (5a) and the asymmetry potential (5b). Their effect
consists in mixing the states concerned with the isovector
monopole state. The perturbative model used has made it
possible to study, term by term, the Coulomb and asym-
metry contributions to the transition density hp along
with the contributions to the Coulomb displacement ener-
gy b,E and the neutron-proton density difference p„~.

By this means we could simply formulate the
correspondence, between hp and AE, referred to in Sec. I
as premise (b). It was found that bp and b& are built up
from terms which strictly correspond to each other. How-
ever, the formula for this correspondence contains a coef-
ficient, which depends on whether the terms concerned
originate from an isovector mixing, like the Coulomb
terms [Eq. (13)], or not, like the ne terms and the asym-
metry terms [Eq. (12)]. As was expected, the ne contribu-
tions Apo ——p"' and bEo are the largest. As to the two
corrections to Ap, we can sum up the results as follows.

We know empirically that each Coulomb potential term
Vc is somewhat larger than the asymmetry term TOU.
Therefore, if they contribute with equal weights, as in the
case of p„~ [Eq. (24)], the Coulomb contribution is larger
than the asymmetry contribution. In bp (and bE), howev-
er, the two effects appear very differently. While the
asymmetry-potential contribution to Ap equals that to p„~,
the Coulomb contributions are not related simply. Al-
though the two Coulomb contributions are built up from
the same blocks, these add up constructively in p„~, but
largely cancel each other in 5p.

The Coulomb admixture may be split into two parts:
the first containing all purely core effects and the second
the corrections due to the ne. It is the contribution of the
first part to bp (as well as to bE) that cancels out: it has
been shown to vanish exactly in our model. The ne gives
two distinct corrections: Ap& due purely to the isospin
splitting of the monopole state [Eq. (30)], and bp2 coming
from ph excitations involving the ne (Fig. 1). The esti-
mates show bp& not to exceed 1.5% of p"' in the surface
region (1.3A'~ &r &1.752'~ fm), and even bp2 appears
smaller than what was envisaged for the Coulomb term of
bp in Ref. 4. It is about 2% for Ca and Zr, but as
large as 33% for Pb. (See Ai and A2 in Table I.) This
last fact may well be the cause of the hitherto unexplained
systematic breakdown' of the Lane model' found just for
the heavy elements in a comprehensive survey. ' '

Because of the large spatial extension of the monopole
state, further away from the nuclear center,

~
bp '"'(r)

~

tends to exceed the density of the ne, p"'(r); thus b,p
changes sign. This may have a drastic effect on the To
dependence of the 0 charge-exchange cross section. Such
an anomaly has been observed in ( He, t) scattering from
rare earth nuclei. ' To explain it, the Coulomb effect
should be invoked, along with multistep processes.

Not being associated with isospin mixing, the asym-
metry contribution hp3 does not disturb the validity of the
Lane model. It also consists of two parts: the cp correc-
tion and a minor correction to the ne. We have shown
that the cp correction to hp is uniform for all nuclei, and
in the tail region (1.3A '~ &r & 1.753 '~ fm) it is about
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one-sixth of p"' [Eq. (35)]. This is a modest but non-
negligible departure from prescription (4). The signifi-
cance of the cp may, however, be greatly enhanced at for-
ward angles in the charge-exchange cross section since,
beyond 1.75M'~ fm, bp3(r) damps down more slowly
than p"'(r) .Model calculations show that this effect de-
pends on Tp strongly. In the 0' cross section of pion sin-
gle charge exchange on Ca isotopes To anomalies have
been observed. ' Since for Ca isotopes both the Coulomb
effect and multistep contributions must be small, we sug-
gest that the cp is the likeliest to explain this anomaly. Of
course, the cp must also contribute to the similar anoma-
ly' in ( He, t). We thus argue that, negligible as it ap-
pears in b.E, the cp effect is appreciable in hp, and hence
premise (a) is not well founded.

What we call cp is, in general terms, the effect of the ne
on the shape of the orbits in the self-conjugate core. The
cp arises because of the t i. t2 terms in the nucleon-
nucleon force (which may be hidden in the spin-exchange
term in the case of zero-range forces) and of the Pauli
principle. The latter contributes to the cp by making the
interaction matrix eleinents of like and unlike nucleons
different and limiting the phase space available for any
one core neutron and proton differently. In our approach
the cp is mediated by the asymmetry potential, whose non-
locality was disregarded here. Both empirical evidence
and microscopic calculations show that our asymmetry
potential is a fairly realistic substitute for the underlying
microscopic interaction. In fact, such a potential correctly
predicts the observed sp energies' as well as charge densi-
ties. On the other hand, it agrees qualitatively with the
asymmetry potential emerging from the Skyrme interac-
tion in the Hartree-Fock model. '

It is nevertheless true that delicate effects such as the
Coulomb energy (Nolen-Schiffer) anomaly and the
change of the rms charge radii along isotopic chains ' are
not satisfactorily accounted for by a local-potential
single-configuration model" of the fashion we adopted
here. Recently, however, Caurier and Poves demonstrat-
ed impressively that these effects may be attributed to a

I

kind of cp. This result casts doubt on premise (c). But the
cp that had to be postulated to this end acts in an unex-
pected fashion. It compresses the neutron distribution and
expands the proton distribution. If it could be represented
by a local asymmetry potential, this would be negative,
which is at variance with all previous findings. Charge-
exchange scattering experiments on isotopic chains
analyzed in a model treating isospin properly may be the
most direct tests on the sign of the cp.

Our model treats the isospin satisfactorily, but in other
respects it is inferior to some of the standard nuclear
models. For an actual realistic calculation, the reduction
of the problem to a local nucleon-nucleus potential, the
first-order treatment of the perturbation, the postulation
of a discrete isovector monopole state, etc., would be un-
necessarily restrictive. Instead of a practical implementa-
tion of our model, we therefore recommend the use of an
isospin-projected Hartree-Fock model. In such a model
the wave functions can be written in the form

aT T +T T +aT +1,T +T +1,T + (36a)

4'=a N +a'
To —1 To —1 To —1 To —1 + To To —1 TO To —1

(36b)+aT, +1,T,—1~'T, +1,T,—1+ '

and Eq. (1) can be evaluated with direct numerical
methods.

For nuclear ground states the isospin-projected
Hartree-Fock model of Caurier, Poves, and Zuker 9 is
fully appropriate. In some of the integral properties, such
as rms radii, AE, etc., the isospin projecting may not be
crucial, but as far as densities are concerned, it seems to be
indispensable. This model, however, needs to be im-
proved by including the T =To —1 term in Eq. (36b). In
fact, aT i T i ——0 was assumed even in the calculations

0 ' 0

intended to explain the Nolen-Schiffer anomaly. Howev-
er, as had been stressed by Auerbach et al. , in calculating
bE one has either to keep all T = To, To+1 admixtures or
none. In our model the terms of hp and hE cor:iing from
+To —1, T —ix0 are

&p= ——, To I2ET, i(2Tp —1)[(2Tp+1) 'CpRp+Tp (CoRi2+Ci2Rp)+Tp (2To+1)Ci2Ri2]I,

&E= —(2To) I4ET, --i (2To —1)[(2To+1) Co+ 2To 'CoCi2+ To (2To+ 1)Ci2] I . (37)

Note that in these terms CpRp and Cp appear with coeffi-
cients, which do not vanish in the limit of zero monopole-
state splitting. Therefore, apart from the case of Tp ———,',
for small To, 5p and 5E are larger than Ap1+Ap2+Ap3
and AE1+AEz+ bE3, respectively. Owing to the cancel-
lations between the positive and negative regions of Rp(r)

in Cp (see Sec. III), this error might not invalidate the
conclusions on hE, but would certainly be fatal in hp.
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