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We have introduced a new "hole" formulation by using two rules for deriving the generator coor-
dinate method kernels of the multicluster system with any cluster partitions. The uniform formulae
for the overlap kernel, kinetic energy kernel, and potential energy kernel given in this paper can be
used easily and are available for computing codes without any further treatment. We have used
them to calculate the binding energies of 1p shell nuclei and 1p shell A hypernuclei.

NUCLEAR STRUCTURE Derived formulae of kernels. Calculated binding en-

ergies of 1p shell nuclei, A hypernuclei.

I. INTRODUCTION II. HOLE FORMULATION OF GCM KERNELS

During the last ten years, the formulation of the multi-
cluster model of nuclei has progressed. In the seventies
the three-cluster structure of ' C was investigated by
Horiuchi, ' Smirnov et al. , and Kato and Bando and that
of ' 8 by Deenen. Recently, Schmid developed the
three-cluster "fish-bone" model and a theory for describ-
ing the ¹ luster system. Meanwhile, in the two cluster
formulation, the p orbit of single particle states has been
taken into account. In either of the two cases, the deriva-
tion of the kernels is an essential procedure, but it is a la-
borious and tedious one. It is a major problem to ensure
the correctness of the kernels derived. This paper is de-
voted to giving a unified method which can be used to
derive any kind of generator coordinate method (GCM)
kernel in an easy and compact way. We call this method
the "hole" formulation.

In the "hole" formulation, we regard the nuclei as con-
sisting of nucleons and "holes" as Deenen did. But the
quotation marks around the word hole, hereafter deleted,
mean that it does not have the conventional meaning.
Here we introduce the hole to indicate the nucleon missing
with respect to the biggest 4mn nucleus in the region
under consideration, where m means the number of single
particle states in the cluster and n the number of clusters.
The 4mn nucleus is called the standard nucleus hereafter.
For example, ' B may be regarded as ' C with two holes
or ' 0 with six holes, while ' C or ' 0 is taken as a stan-
dard nucleus. In contrast to previous hole approaches, we
do not take a hole state as the time-reversal of a particle
state; neither do we consider it as belonging to any Hilbert
space. With the hole formulation, we can put the direct
kernel and exchange kernel in an analytic form so that we
can treat the nucleus with any partition systematically.

In Sec. II, the hole formulation of the LCM is given.
In Sec. III, we use this formulation to calculate the bind-
ing energies of 1-p shell nuclei. In Sec. IV, the binding en-
ergies of 1-p shell A hypernuclei are given.

A nucleus of A nucleons is partitioned into n clusters.
The ith cluster exhibits a harmonic oscillator shell model
configuration with the potential well at R;, and the state
of the nucleon in the cluster is denoted by y with a super-
script q (i = 1,2, . . . , n and q =s,p, d, . . . , m), that is,

where p~(r —R ) is the spatial part, X& is the spin-isospin
part, and p is the spin-isospin quantum number
(p=a,P,y,5). For clarity in our discussion, we take a for
a proton with spin upwards, P for a proton with spin
downwards, y for a neutron with spin upwards, and 5 for
a neutron with spin downwards.

It should be noted that the oscillator parameter b is tak-
en to be the same for all the states of the clusters, and is
also taken as one of the generating coordinates.

The generating function for the system is written as

~
%(,R)) =W

~
4(,R))=M +p~(; „—R;)

det
~

Iq)~(r; q„—R;)I ~,A!

(2)

where M is the total antisymmetrization operator for the
nucleons, and the subscript iqp (i'q'p') of r denotes that
the nucleon concerned belongs to the q (q') state of the ith
(i'th) potential well with spin-isospin p (p') before an-
tisymmetrization.

The GCM wave function is given by

(r )= J dRf(R) ~%'(r, R)),
where the integration is performed over the whole genera-
tor coordinate space [R;,(i=1,2, . . . , n),b] The ampli-.
tude f(R) is obtained by solving the Hill-Wheeler equa-
tion
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R H R,R' —EN R,R' R =0,
with

H(R, R')=(N(r, R) ~H
~

%(r,R')),
N(R, R')=(4(r, R)

~
%(r,R')), (6)

where H is the Hamiltonian of the system and is given by

g2 A A

r~~ei+ 2 r r V iqi ~ q I
')''2' iqp+i'q'p' i'q'p'

+ ~co~ —Tc. .

where

V( riqp ri q p')

(4) Consider a standard nucleus of 4mn nucleons. The
determinant is one with 4mn )& 4mn functions
ip&q(rj„„—R;), where the subscripts jrv of r label column
components and iqp label row components. In arranging
the determinant, we first consider different values of i (j),
then different states q (r), and finally iM (v).

If a nucleus has a hole in state (iqp) before antisym-
metrization with respect to the standard nucleus given be-
forehand, then the function ipzq(r —R;) in the standard nu-

cleus should be replaced by g(r —R;), which is defined by
overlapping

(7) g(r —R;)=P(r —R;)Xp, (10)

r r —R; q r —R'; =;; qq (11)

f dr P'(r —R;)f(r —R,' )

is the effective nucleon-nucleon potential, in general given
by

dr * r —R; r —R,' =0, (12)

H(R, b, R,b)

N(R, b, R,b)
=0,

in which the position of the center of the well of the clus-
ter R; and the oscillator parameter b are the variational
parameters.

A. Hole state and rule I

For clarity in stating the hole formulation, we shall
specify the column and row subscripts of the wave func-
tion of the system in the form of a determinant.

iqp i q p )''V'( iqp ri'q'p')

&&I W MP P —+BP HP'I, —(8)

or by the Volkov interaction, and T, is the kinetic en-

ergy of the center of mass, and Vc,„i is the Coulomb po-
tential.

In the Hartree-Fock (HF) GCM variational method, the
total binding energy of the nuclear system is given by the
variational

where f( r —R;) is any function other than P( r —R;), and
g& is the conventional spin-isospin wave function; strictly
speaking, f(r R;) occ—urring here is a kind of function as
follows:

f( r R; ) = 8'grq( r——R; )

or

f(r R;)=8'P—(r —R;)

with 6 being any operator.
Here we should point out emphatically that because of

Eq. (12) P(r —R;) does not belong to the Hilbert space
spanned by Iipq(r —R;)I and is not the time-reversal of
iraq(r —R;); therefore it is different from the hole intro-
duced by Deenen.

Because we were only concerned with the overlap of
functions in the course of the derivation, the definitions
(11) and (12) for P(r —R;) are enough and the particular
forms are not of importance.

Therefore, the wave function of a nucleus with A nu-
cleons and h holes in hole formulation is

A h

~
+„(r,R)) =~

~
@„(r,R))=~ / ppq(rqp —R;) g g (r;,„—R; ) (14)

lqp I qp

and 3+h =4mn. The subscript u on 4 indicates the hole
formulation.

In the conventional formulation, the overlap kernel is
thus easily written as

N(R, R')=—(N(r, R)
~
%(r,R))

p, =a,P, y, 5

where Bz is a matrix resulting after summing over the
spin-isospin coordinates p, with elements

(&p )iqi q =+iqi ,q'', '

= f d r iraq" ( r R; )iraq ( r —R,' ) . —

The quasidiagonal form of Eq. (15) is due to the ortho-
gonality of spin-isospin states.

Therefore, for the standard nucleus, the overlap kernel

N(R, R )—= (C,(r, R) ~q, (r,R')) =(det ~&'~ )'.
(17)
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Hereafter we call the 8' matrix of Eq. (17) the standard 8
matrix. The subscript s on 8 in Eq. (17) emphasizes that
it is for the standard nucleus.

Actually, 8' has the same elements with respect to 8& if
the subscripts on the corresponding elements are the same;
the only difference between them is the dimension. 8' has
mn dimensions and 8& only has (mn —h&) dimensions,
where h& is the number of holes of the p kind of nucleons
with respect to the standard nucleus.

In hole formulation, we can similarly write the overlap
kernel

N„(R,R')=(@„(r,R)
~
%„(r,R'))

T„=N„(R,R' ) g g (t",)j, ;q(8"„);q .„, (23')
Jrv i,q

where

2

(t~)jpiq dr Ip* (r Rj )V Ip (r Ri )
/jan iq2m

is due to the definition (12) and the elements of the inverse

matrix 8"
u

—'
(Bv )iqjr ~iq,jr ~

are from Eq. (19).
For the part T„",we have

@=a,P, y, 5

with the elements of matrix 8&

8;q,'q if (iqp) is a nucleon state
(8");;i' 'q ' q

=
5.q .'q if (iqP) is a hole state .

With Eq. (19) we have

Ng(R, R')=N(R, R') .

(19)
and

(20)

u
—'

(Bv )iq jr =(Bv )iq jr

or
2

(t„")„; = — dr ip*"(r —Rj)V P(r —R,' )=0
2m

(26a)

(26b)

(27)

In summary, we have the following:
Rule (I). Taking the standard matrix 8', if the (iqp)

state is a hole, put the nondiagonal elements in the (iq)
column and the (iq) row into zero, and the diagonal ele-
ment into one. The resultant matrix is nothing but the
matrix 8& in Eq. (18). By this rule the overlap kernel

N(R, R' ) can be obtained from N, (R,R' ), the one for the
standard nucleus.

B. One body operator and rule II

We consider the kinetic energy operator as an example
of the one body operator,

(Bv )iqjr =0

if the (iqv) state is a nucleon state or a hole state, respec-
tively. Equation (27) is obtained from Eq. (19) also.

From Eqs. (24)—(27), we have

TN T. (2&)

In order to make use of advantages of the hole formula-

tion, we introduce a standard matrix t' of mn dimensions

with elements (26a) (in other words, it is nothing but one

for the standard nucleus), and a matrix C, which is de-

fined by

(21)
0 if iq =jr and (iqjj) is a hole

(C„);qj„—= .
(8 )iq j„otherwise

(29)

Correspondingly, in hole formulation we have

g2 A+h
T„=— 4„g VJ,„'0„)=T„"+'r„,

2m "
Jrv

(22)

where

where the superscript A(h) stands for the part which
comes from

A(h)
2Vjfv

Jrv

Explicitly we have
h n, m

T„"=N„(R,R') g g (t")j,;q(B" );q j„()
Jrv l, q

with mn columns and rows.
In terms of t' and C„, we finally get

nm

T=N„(R,R') g (t')j, ;q g(C„)iq j„
jr, iq V

(30)

In summary, we have the following:
Rule (II). Taking the matrix 8," from 8' and carrying

u
—'

out the inverse 8"„,if the (iqv) state is a hole before an-
tisymmetrization, put the diagonal element of the (iq) row

u
—'.

of the inverse matrix 8" into zero; the resultant matrix
is nothing but the matrix C . By this rule the kinetic en-

ergy kernel T can be obtained easily. We should point out
that Eq. (29) is the backbone of our hole formulation, with
which uniform expressions for T and V can be obtained.

2

(t„")p iq
——— f dr g "(r RJ)V yq(r —R'; )=—0

or
2

(r„")j„j,——— f dr p'(r —Rj)V g"(r —RJ )=0
2m (24)

C. Two body operator

The typical two body operator is the potential energy
operator. Using the same arguments as in subsection 8,
we have
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A+h
v(r;q„—r(,„) v = 4„g v(r;q„—r),„) v„) .

lqp+ Jrv irp+jrv

We first consider the Wigner part of the nuclear potential; the kernel of this part is

A+h

&qp&& q p

(31)

(32)

Since V operates on two different columns of
~

)Ii„) only and the terms in the expression are all determinant, similar to
the work of Horiuchi we can formally set

iqp i q p ')'='@iqp~i'q'p'

Then we can find

w
nm

+g(R~R ) g g ( Upv)iq, i'q',jrj'r'( i), )i q , iq'( 'v )j'r', jr
iq, i'q' pQv

') Jr,J r

(33)

with

u
—1 u

—' u
—' u

—'
+ g ( Ui)(~ )iq, i'q',jr,j'r'[(&i(, )i'q', iq(&p )j'r',jr (&p )i'q',jr( p )j'r', iql

P

(34)

and

U«q. z„z „ if (iqp), (i'q'ji, ), (jrv), and (j'r'v) are all nucleons
pv )iq, i 'q',jrj 'r'

0 otherwise

A. + +

Uiq i' ''r 'r' = rid r2f' r1 —Ri g r2 —RJ V r1 —r2 p r1 —R&' f r2 Rj

(35)

(36)

Obviously, if the subscripts of U run over (l,s) to (n, rn), we have the standard matrix U with the elements

rr~
~iq, i 'q',jr,j 'r' = +iq, i 'q',jr,j 'r' .

In terms of U' and C, we finally have

VP" yR'

X„(R,R '
2

nm

) g Uq, ,q. pj.„. g. (C~);.q. ,q(C )j „p+g [(Cq);q,q(C~)j „p—(Cp);q p( ~)&, ,q] . (3 )

For the Bartlett term

A+h8
iqIjl, ~jrv

(38)

we should note the following conditions:
(a) If (p, v) =(a,y), (ji, ,v) =(P,5), or iM =v, the operator P does not result in any new contribution to the wave function

~

)Ii„);in other words, P is just a unit operator in this case.
(b) If (iLi, v) =(a,P) or (p, v) =(y, 5), the operator P will interchange a and P, and y and 5 in

~

iIi„).
We take ' C as an example and consider the interaction V(r&~ r3~)P only. Si—nce ' C is a 4n nucleus,

V (2a, 3P)=—(@("C)
~

V(~& —r3ji)P
~

+("C))

811 0 831 0 0 031

812 0 832 0

813 0 833 0

0 021 0 811

2 0 ~22 0 812
0 023 0 813

0
0

8 0
0 Bg0

0 6I32 0 0
0 033

821

822 0 0 0

823 0

0

(39)
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where

BJ= f dr p(r R;—)p(r —RJ ),
OJ:—f dr p(r R—; )8'(r )y(r —RJ ),

and the symbol—:indicates that Eq. (41) is only as formal as Eq. (33).
Permutating the 2a (second) column with the 3P (sixth) column, we obtain

B~~ 03~ 3~ 8~~ B2~ 02

V (2a, 3p)= —det
I By I

det
I
Bs I B12 I932 B32 B12 B22 622—B 8

2
Bf3 33 33 ' ]3 23 23

(40)

(41)

= ——N(R, R' ) g U2( gJ(B ');P(B ')J2,
2

(42)

~3J' ~2t = U21, 3j .

In general,

(33')

V (iqpjrv)= ——N(R, R') g (U );q,'q J„J„(B& ).J „,q(B );
1q,JT

(43)

It is found that the operator P results in the exchange of state subscripts (i', q') and j('r') with an additional minus sign.
(c) If (p, v) =(a,5) or (p, v) =(P,y), then the result after the operation of P is zero. We take ' C as an example again:

V (2a, 35)=—(C("C)
I
V(r, —r„)P 4("C))

2

=0. (44)

For the Heisenberg operator P, we have the following
three conditions:

(a) If (p, v)=(a, P), (p, v)=(y, 5), or p=v, the operator
P' does not change the wave function

I
4„),just like a

unit operator.
(b) If (p, v) =(a, y) or (p, v) =(P,5), the operator P' will

interchange spin-isospin states a and y, or /3 and 5 in

I
4„), resulting in the exchange of the state subscripts

(i'q') and j('r') in the final results with an alternation of
sign, just like in (b) of the Bartlett term.

(c) If (p, v) =(a,5) or (p, v) =(P,y), then the result after
the operation of P' is zero.

For the Majorana operator P'= —P P, we have the
following:

(a) For the case (p, v) =(a,P) or (p, v) =(y, 5), the opera-

tion of P P gives the same effect as the operation of P
in case (b) above.

(b) For the case (p, v)=(a, y) or (p, v)=(P, 5), the opera-
tion of P P gives the same effect as the operation of P
in case (b) above.

(c) For the case (p, v)=(a, 5) or (p, v)=(13,y), the opera-
tion of P'P behaves the same as case (b) of both P' and
P47

In short, for the cases p&v, the operation of P'P re-
sults in the exchange of the state subscripts (i'q') and (J'r')
with an alternation of sign, just like (b) of both P' and P .

(d) For the case p=v, the operator P'P does not
change

I
4„),just like a unit operator.

Finally, for potential (8) in terms of U' and C&, we ob-
tain the following general expression:

V(R, R')=(C
I VI 4')

Ng(R R ) g U~~q '

q p J p'((IV+B 0 M) g [(C&)'q' q(C~)J' ' J (Cp)'q'jp( p)J'p' jq]
iq, i'q' P

+ +[8'(C„);q ~q(C„)J „p +M(C„),', ;q(C );q,p]
p+v

+2IB[(C ); q,q(Cr)J„J„+(Cp);q,q(Cs)J'„p
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—II[(C ); q,q(Cp)J „p +( Cr);.q, ,q( Cs).,„

(C—)i „;q(Cr); q,„(C—~)J „;q(Cs)i'q, jr] I ) .

III. CLUSTER STRUCTURE IN LIGHT NUCLEI

As the first example of application of the formulae for
the kernels, we investigate the 1-p shell light nuclei. As
mentioned in Sec. II, for this region we can take ' 0 as the
standard nucleus to construct the standard matrix
8',t', O'. Then, according to the nucleus we want to inves-
tigate, we assume a special configuration, that is, specify
some states being occupied by protons or neutrons, some
being empty or holes before antisymmetrization. Next,
taking rules (I) and (II) into account, we obtain the matrix
Bp and C~.

In this paper, we assume the 1-s shell state is the only
state that can be available in every cluster, so that at least
four clusters are needed for a nucleus heavier than ' C. It
is worth pointing out that if a nucleus under consideration
is assumed to be in a configuration with some clusters
completely empty, that is, with the cluster number n less
than four, we still treat it as a four cluster structure with
some hole clusters. Therefore in the hole formulation we
can systematically treat 1-p and 1-s shell nuclei with one,
two, three, and four cluster structures in a single comput-
ing code. The configurations of the particular nucleus are
treated as input data of the code.

In the Hartree-Fock GCM formulation, Eq. (9) has

I

S2——R3—
n ]R]+n2R2

n)+n2

n $ 0 $ +n 2 R.2 + Pg 3 R 3

Pl ) +Pl2+n3
4

0= gn;R;,

where n; and R; are the numbers of nucleons and coordi-
nates of the well in the ith cluster, respectively. S~ is tak-
en parallel to the axis Z, S2 parallel to the x-z plane so that
8 is the angle of S2 with respect to the z axis, and S3 has
the polar angles f and p with modS3.

We take the Volkov No. 1 force as the effective two-
body nuclear force:

seven variational parameters for four cluster configura-
tions. The seven variational parameters consist of one in-
trinsic parameter b, the harmonic oscillator, and six
geometrical parameters, S~, S2, 8, S3, f, and p, which are
the Jacobi coordinates of the centers of the pot"ntial well
as shown in Fig. 1,

SI——R2 —R),

V(r~ —r2)= [ —83.34exp[ —P~(r~ —r2) ]+144.86exp[ —P2(r& —rz) ]](0.44 —0.56P P ) (46)

in MeV, with P& ——0.39062 fm and P2 ——1.48721 fm
The resulting binding energies and configuration pa-

rameters of the wave function for the nuclei with assumed
cluster partitions are shown in the following subsections.

FIG. 1. The Jacobi coordinates for a four cluster configura-
tion.

A Li

As shown in Table I, three cases are treated, a+a,
He+ T, and n+p&+n&, where each term means a clus-

ter ordered in a series of i=1,2,3 from left to right, and
the arrow $ ( l ) means spin upwards (downwards). It is in-
teresting to notice that a+d and a+pt+n g both mani-
fest themselves as being the same thing. In the
a+ pt + n t configuration, in spite of the fact that the
proton and neutron have been artificially separated into
two clusters, the spacial structure of this configuration
with minimum energy still exhibits a spacial configuration
in which the proton cluster and neutron cluster are close
to each other to recombine to a deuteron subsystem. A
crude estimate of the rrns radius of the cluster
R =(r )'~ —1 5'~ b Here b —. 1.6 f.m as shown in Table
I; then R —1.9 fm for each cluster. The distance between
the centers of the proton and neutron clusters is about 0.3
fm. Therefore in the deuteron subsystem, the distributions
of the proton and neutron are almost overlapping. The ra-
dius of the deuteron subsystem is 1.9 frn + 0.15 fm=2 fm,
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Configuration
of clusters a+d He+ T a+p T+& T

S) (fm)
S2 (fm)
8 (rad)
b (fm)

1.53

1.587

0.937

1.620

1.85
0.927

—0.5X 10
1.591

(MeV) —16.099 —13.45(vie)
—16.20

Projected L=0
1

2
3
4

—19.99
—2.72

—17.93
—1.59
—8.59

—16.76
—8.02

—14.72
—11.38
—16.44

—19.84
—2.34

—17.80
—1.85
—9.09

which is somewhat less than the one of the free deuteron.
This means that the deuteron cluster is more tightly bound
than the free deuteron.

This example gives us an indication that the partitions
of clusters may be chosen somewhat artificially, but some
of them are equivalent. Later Be will be given as another
example. It brings us some benefits. First, it shows that
the nucleus in the cluster model has its own cluster struc-
ture which is somewhat independent of the cluster parti-
tion given beforehand. Second, as it is known, Volkov
force is well determined from He data, 'but it is not ap-
propriate for describing the deuteron, so now we may find
an alternative or a comparison for the deuteron cluster.

In order to get more information, we have carried out
the orbital momentum projection

~
%1 ) = [(2L + 1)/8m. ] J dc' &00(cg)R (ci))

~

4) .

The excitation energies of odd parity L = 1,3 states are far
from those of even parity L=0,2,4 states, which is in
qualitative agreement with experiments. The quantitative

TABLE II. Li. The resulting binding energy and configura-
tion from the HF GCM calculation. The experimental binding
energy at the ground state is —39.2465 MeV (Ref. 9).

TABLE I. Li. The resulting binding energy and configura-
tion from the HF GCM calculation. The experimental binding
energy of the ground state is —31.994 MeV (Ref. 9).

discrepancy is expectable. For higher excitation, the sim-
ple projection could not describe the properties of these
states well enough. Other effects must be taken into ac-
count, such as the variations of geometry shape (here the
distances between the clusters) or of the well parameter
with respect to the low lying states; that is, we must solve
the Hill-Wheeler equation for these states.

From Table I, we find that the lowest state of the
He+ T cluster structure in Li is at —16.76 MeV with

orbital momentum I.=0, which is 3.2 MeV above the cor-
responding one of a+I structure. Since we did not intro-
duce spin-orbit coupling (the introduction of which is
straightforward) in these calculations, naturally we can as-
sume that the experimental 3.563 MeV (Ref. 9) (with
J =0+) state of Li is identified as this state and the 5.37
MeV (2+) is identified as the L=2 state of He+ T [three
states located in this region, the 5.65 MeV (1+), the 4.31
MeV (2+), and the 2.185 MeV (3+), are identified as the
L=2 state of a+ d, because of the consideration of iso-
spin].

But we should point out that because these cluster
structures have close energies, the interference between
them is not negligible. Therefore the above identification
only reflects the main character of these states.

B. 7Li

Three cluster structures, a+ T, a+ d T +n T, and
a + d & + n &, have been assumed for low lying states. But
from Table II, we find that there is a big gap in energy
which separates the spectrum of a+ T far from the others.
Therefore we think that at least below 12 MeV excitation
energy the a+ T structure is dominant.

The lowest state is —30.89 MeV with orbital momen-

Configuration
of clusters a+ T a+d T+n T a+d T+n g

S) (fm)
Sq (fm)
0 (rad)
b (fm)

2.246

1.520

1.382
0.4635
3.025
1.693

2.296
1.793
1.744
1.637

Projected L=0
1

2
3

—13.86
—30.89
—11.79
—9.70
—6.48

(MQV) —25.27(vie)
—12.10

—4.37
—14.795
—0.11
—9.69
—0.02

—11.49

—6.01
—18.168
—5.22

—16.67
—3.74

0 f 2
i I I l

(in fm)

FIG. 2. The spacial structures for Li in a+ T, a+d T+n T,
and a+d T+n J, configurations. The sizes of the circles do not
indicate the real sizes of the ciusters and are only used to reflect
the number of nucleons included schematically.
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Configuration
of clusters

S1 (fm)
S2 (fm)
0 (rad)
b (fm)

2.854

1.413

a+d $+d $

3.047
1.556

—0.5X10-'
1.430

a+d g+d$

1.385
1.438
1.847
1.715

(MeV) 44 97 4I Ig(vie)
—10.55

Projected L=0
1

2
3
4

—50.765 —47.465
—15.013

—48.086 —44.843
—11.962

—40.361 —37.318

—16.106
—0.058

—13.478
—0.030

—12.492

TABLE III. Be. The resulting binding energy and configu-
ration from the HF GCM calculation. The experimental bind-

ing energy of the ground state is —54.499 MeV (Ref. 9).

turn L = 1 of a+ T structure. Since the triton has intrinsic
spin and parity —, , the calculated lowest state should be
the two states of J = —, and —, , which are the ground
state (—', ) and the first excited state [0.4776 MeV ( —, )]
from experiment.

In the following energy region we can reasonably as-
sume that the He+ d structure is the predominant one,
because in a+dg+n& structure u and neutron clusters
automatically recombine to a He subsystem, shown in
Fig. 2.

Although the o. + d g + n t and a + d g + n g structures
appear to be different in these calculations, if we consider
channel spin or total spin as a good quantum number and
take spin-orbit coupling into account, we will have both
structures mixed.

C Be

Like in the Li case, the structures of a+ o. and
a + d g + d 4 give similar results. Two deuteron clusters

TABLE IV. 1-p shell nuclei. The resulting energies and configurations from the HF GCM calculation.

Nucleus Configuration ~ b (fm) S1 (fm) S2 (fm) 8 (rad) S3 (fm) g (rad) y (rad) (M V)(x),
16O

15O

15N

14O

14C

14N

14O

14C

14N

13C

13N

12B

12C

11C
11B
11C
118
10Be
10B

10Be
10B

sB
sB
'Be
8L'

'Be
8B
14O

14C

'Be
9B
10B
12C

a+a+a+a
a+a+a+ He
a+a+a+ T
a+a+'He&+ He&

a+a+ Tf+ T$
a+a+ He&+ Tg
a+a+a+(p yp l)
a+a+a+(n fn $)
a+a+a+d
a+a+a+n
a+a+a+p
a+a+ Tf +n f
a+a+ Tf +p f
a+a+d f +p $

a+a+d &+n g

a+a+d $+p t
a+a+d f+n f
a+a+n f+n f
a+a+p f+n f
a+a+n f+n$
a+a+p f +n $

a+d f+p f+p T

a+d t+p t+p 4

a+d t+n $+p f
a+d f+n f+n$
a+d f+p f+n f
a+d f+p$+p$
a+a+ He&+ He&

a+a+ Tt+ Tf
a+a+n
a+a+p
a+d+a
a+a+a

1.363 1.473
1.400 1.563
1.403 1.463
1.443 1.768
1.439 1.553
1.439 1.672
1.426 1.722
1.433 1.410
1.429 1.611
1.437 1.655
1.431 1.854
1.502 1.556
1.499 1.778
1.476 2.091
1.471 1.980
1.543 1.980
1.543 1.779
1.552 1.882
1.499 2.187
1.512 1.967
1.499 2.1870
1.844 1.495
1.635 2.431
1.620 1.810
1.616 1.626
1;718 1.368
1.620 1.979
1.457 1.636
1.450 1.422
1.484 2.410
1.482 2.590
1.499 1.703
1.403 2.101

1.276
1.354
1.266
1.422
1.144
1.318
1.492
1.221
1.395
1.433
1.606
1.133
1.236
1.372
1.415
1.211
1.142
0.943
1.381
0.897
1.381
1.807
1.521
1.035
0.886
1.368
1.550
1.301
1.009
1.040
1.310
1.889
1.820

1.5708
1.5695
1.5710
1.5708
1.5650
1.5708
1.5708
1.5708
1.5708
1.5708
1.5708
1.377
1.5708
1.5708
1.5708
1.5708
1.353
2.9906
1.5708
2.9681
1.5708
1.8704
1.9844
0.0666

—0.3 X 10-'
1.8404
0.8267
1.5708
1.5708
1.5680
1.5708
1.0976
1.5708

1.203
1.157
0.970
1.153
0.878
0.979
1.200
0.697
0.978
0.733
1.094
0.778
1.114
1.740
1.049
1.241
0.869
1.046
1.047
0.876
1.047
1.827
0.990
1.379
0.669
0.779
1.641
1.286
0.976

1.5708
1.5671
1.5716
1.5708
1.5650
1.5708
1.5708
1.5708
1.5708
1.5708
1.5708
0.4216
1.5708
1.5708
1.5708
1.5708
0.2854

—0.1265
1.5708
2.9879
1.5708
1.8238

—0.1213
1.8831
3.1066
2.0142
0.8447
1.5708
1.5708

1.5708
1.5694
1.5714
0.9203
0.6226
0.7632
1.5708
1.5708
1.5708
1.5708
1.5708
2.7856
1.5935

—0.2X10—'
0.7 X 10-'
1.702
2.6969
1.4489
0.1X 10
0.4X 10-'

—0.9 X 10-'
1.8125
0.4X 10-'
0.0758

—0.200
0.5 X 10-'
3.1410
1.6682
1.5915

—137.4
—104.2
—111.2
—76.8
—91.5
—84.6
—81.5
—96.1

—88.2
—81.17
—74.84
—59.01
—53.11
—49.58
—56.05
—36.49
—41.97
—38.2
—41.76
—45.80
—41.76
—6.57

—13.07
—18.29
—22.36
—10.03
—13.29
—71.22
—83.95
—40.14
—36.78
—41.69
—77.08
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recombine to form an a subsystem only having a distance
of separation of 0.5 fm in spacial structure. Furthermore,
the energy spectrums of the two structures are the same,
and the energy difference between L =2 and L =0 of
a + a is 2.679 MeV and that of a + d & + d l is 2.66 MeV.
The energy difference between L=4 and L=0 of a+a is
10.404 MeV and that of a+I t+d g is 10.088 MeV (refer
to Table III). Unlike the Li case, the total binding ener-
gies of the two structures have a discrepancy of 3.3 MeV.
We attribute this to the Volkov force which we have
adopted. In spite of this, we still assume these two struc-
tures are equivalent just as in Li.

Because the Pauli principle makes the a+dt+dt
structure move to a higher energy region and have a dif-
ferent spacial structure from a+a and a+a t+d L, it is
reasonable to regard it as the dominant configuration in
the higher energy region. According to this, a new cluster
structure state may be observed in the background of the
continuum of near 30 MeV excitation energy. '

D. Nuclei heavier than Be

In Table IV, we list the results of nuclei from Be to ' 0
(19 nuclei with 33 cluster structures). The binding ener-
gies are in agreement with experiment, especially in ten-
dency. We should point out that if only the relative values
are concerned, the agreement is more satisfying. For ex-
ample, the difference in binding energies between Be and
B has the theoretical value of 3.35 MeV in comparison

with the experimental value of 1.85 MeV, and that be-
tween Be and ' C is 36.94 MeV (theory) in comparison
with 34.01 MeV (experimental), and so on.

The above calculations are rudimentary, because we
only take them as illustrative examples for the hole formu-
lation. These calculations can be regarded as references
for further investigation.

IV. A HYPERNUCLEI IN THE CLUSTER MODEL

We have carried out the GCM calculation of A hyper-
nuclei. The procedures are the same as described above
except for a new ingredient, the A particle. This new in-
gredient brings in two things to do, first, to choose the
proper A-X interaction and second, to derive the new
terms in kernels related to the A particle.

We still adopt a Gaussian-type form factor as the form

factor of the A-X interaction. There have been several
kinds of Gaussian-type A N-interactions" in usual shell
model calculations. But none of these gave rise to satisfy-
ing results for A-particle binding energies, ABE. Taking
~ C as an example, it is 28.32 MeV in the paper by Bas-
sichis and Gal and 21.48 (17.76) with a zero (0.5) Major-
ana term of A-N interaction by Ho and Volkov, which are
all far from the experimental value of 11.69+0.12 MeV.
For AO, a result o. 42 MeV is given in Ref. 11, which is
much larger than 22.7 MeV, the upper limit of the
60 &A & 100 region of nuclei. ' Considering that ~BE in-
creases with mass number 3, these results are hardly right.

Considering that these A-N interactions come from fit-
ting A-p low energy scattering data or ~BE of ~He as the
authors of Ref. 11 declared, we think these A Nintera-c-
tions are dominated by the s wave component and that the
p component is underestimated. But for those nuclei men-
tioned above, the P component of the interaction plays an
important role. So the large deviations from experiment
occurring in the papers of Ref. 11 are not surprising.
Therefore we must find some ways to emphasize the p
wave component in the A-N interaction if we want to
describe the 1-p shell nucleus region with it.

First, considering that there is broken SU3 symmetry
between the N Nand A--N forces and that the P com-
ponent of the N Npotenti-al is weaker than the s one, we
suggest that the A-N force has similar behavior so that the
A Npotential ha-s a shortened force range or a weakened
strength. Therefore the first way is to shorten the attrac-
tive force range from certain kinds of N-N or A-N forces
which are available. Here we have taken Volkov force No.
1 of the X-X interaction as a starting point from which,
through fitting the A-particle binding energies of Be and
'3C, the first set of A-N force for the I-P shell region is
obtained.

Second, we take into account the fact that the A-N in-
teraction arises from 2' and X meson exchange as the
leading term, which gives us some information on the
force ranges. Directly, we take these ranges as the attrac-
tive and repulsive force range, respectively, then adjust the
attractive strength to fit the binding energies of ABe and
„'C. In this way the second set of A-N force for the 1-p
shell is fixed.

These two obtained sets of A Nforce of Gau-ssian type
are shown as follows:

Vzz(r) = j —85.8 exp[ (r ll. 12 fm) ]+145 e—xp[ —(r I0.85 fm) ] I (0.44+0.56P"),

V~&(r)= I
—63exp[ —(r/1. 05 fm) ]+144.86exp[ —(r/0. 60 fm) ]](0.8+0.2P")

(47)

(48)

(in MeV), where P" is the Majorana operator.
According to the general definition of the A-particle

binding energy, ABE,

—~BE=BE(A+ 'Xg ) —BE("Xg), (49)

where BE("Xz) stands for the total binding energy of nu-
cleus X in its ground state, the subscript A indicates the
hypernucleus, and

„+iBE(g+'Xs ) =
( )

HA =H V++ g VA+( r jap rg)
2ppl p

(51)

where the subscript zero denotes the HF GCM minimum.
The Hamiltonian is given by
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and the wave function

—R, ),
with H and

~

'p ) given in Eq. (7) and Eq. (2}, respectively,
and q&(r~ —RI) being the A-particle wave function with
the same harmonic oscillator parameter b as nucleons in

the hypernucleus (the consistency assumption), RI being
the coordinate of the center of the potential well which the
A particle is engaged in.

In terms of the hole formulation described in the previ-
ous section, the kernels which have included the new
terms relative to the A particle are given by

2

Tg(R, R' ) = T(R,R' )+,i2 N(R, R' ),
4m Ab' (52)

A h

V~(R, R' ) = V(R,R' )+N(R, R' ) g (Cp);q p(WpUq p. I ( +MA Uq (.I p),
p, iq,jr

(53)

Np(R, R')=N(R, R') . (54)

Still the Volkov force No. 1 is adopted for the N-X in-
teraction, and the results for 1-p shell hypernuclei are
shown in Tables V and VI. Good agreement is obtained in
the whole region. ' It is interesting that the agreement is
far better than that of the total binding energies. More-
over, it is surprising that the results reproduce not only
the general tendency of the A-particle binding energy with
mass numbers, but also the details.

(~ C,~ B) and (~Be,&Li) belong to isobaric doublets, there
are large splittings in BE. Some ascribe this to the charge
symmetry breaking of the A Ninteracti-on, '2 because the
Coulomb force gives the opposite contribution. In our cal-
culations, we have used the A Nforce wit-h charge sym-
metry; still, the results obtained are in good agreement

with experiment as shown in Table V. Therefore we sug-
gest that the large splitting in „BEof (AC,zB) could be
due not only to the charge asymmetry, but could also
come from a sort of "consistency effect" in the total sys-
tem. Because of the repulsive effect of the Coulomb force,
the distances between the clusters in ~ C should be larger
than those in A B, but the sizes of the clusters in z C are
smaller than in A B (refer to Table VI); this is due to the
N-N and A Ninteractions -to increase overlapping of the
clusters and minimize the energy, that is, the "consistency
effect" named above. Possibly it could be used to recon-
cile the charge symmetry of spin-spin splitting in the A N-
interaction mentioned by some authors. '

Nuclear

TABLE V. The A-particle binding energies of 1-p shell hypernuclei.

core

16O

15O

15N

14O

14N

N
12C

11C

11B

10B

9B
8B
8Be

Be
Be
Li
Li

'He
He

4He

(AX) Configuration

a+a+a+a
a+a+a+'He
a+a+a+ T
a+a+a+(2p )

a+a+a+d
a+a+a+p
a+a+a
a+a+ He
a+a+ T
a+a+d
a+a+p
a+ He+p
a+a
a+ He
a+(2p )

a+T
a+d
a+n
He

BF(A + lX)(I)

—151.107
—116.928
—124.698
—92.925

—100.391
—85.486
—86.487
—61.401
—66.314
—50.926
—44.459
—24.060
—52.117
—31.802
—22.493
—29.888
—21.182
—24.120
—8.240

—27.347

GABE"'

13.741
12.681
13.454
11.407
12.187
10.644
9.407
9.287

11.023
10.223
7.679
8.713
7.144
8.500
8.757
4.616
5.083
5.499
2.330
0.203

BE(A + lx)(II)
A g

—158.179
—122.359
—130.239
—97.022

—104.549
—88.577
—88.926
—62.580
—67.183
—51.114
—44.075
—22.358
—51.210
—29.743
—19.679
—29.947
—20.405
—22.786
—5.773

—28.444

BE(II)

20.813
18.122
18.995
14.504
16.345
13.735
11.846
10.466
11.892
10.411
7.295
7.011
6.237
6.441
5.943
4.675
4.306
4.165

—0.137
1.300

ABE(exp)

13.59+0.15

11.69+0. 12
10.76+0. 19
11.37+0.06
10.24+0.05
8.89+0. 12
7.88+0. 15
6.71+0.04
6.84+0.05
5.16+0.08
6.80+0.03
5.58+0.03
4.18+0.11
2.39+0.03
3.12+0.02
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TABLE VI. The configuration parameters for isobaric doublets A C and ~ 8 from the HF GCM cal-
culation.

Configuration
of 'C

(I) A-N force
(II) A-X force

Nuclear core
of "C

Configuration
of A'B

(I) A-X force
(II) A-X force

Nuclear core
of "B

b (fm)

1.471
1.437

1.465

b (fm)

1.476
1.439

1.470

1.648
1.651

2.140

S) (fm)

1.504
1.505

1.987

1.316
1.312

1.587

1.085
1.084

1.392

0 (deg)

100 46'
81 9'43"

89'59'58"

0 (deg)

107'2'9"
75 59'12"

90'0'22"

V. CONCLUSION

In this paper, a systematic and general approach to
finding the kernels of the GCM has been given. As seen
from Secs. III and IV, this approach is powerful and com-
pact. With the kernels obtained in the hole formulation,
the 1-p shell nuclei, A hypernuclei with a one, two, three,
or four cluster configuration, and the A %interaction -for
this nucleus region have been investigated with a single
computer code. As already mentioned, this was almost
impossible in the cluster model before. Roughly speaking,
with the usual procedure it may take several months to

find kernels for a single nucleus, say for ' C, and to check
whether the kernels obtained are correct. So it is no doubt
that our formulation will save a great deal of time.

The course of deriving the kernels of the GCM present-
ed here is almost a conventional routine without any com-
plicated and laborious mathematics, and rather easy to
manage with.
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in the Nuclear Theory Lab of the Institute of Atomic En-
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