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In order to study the gross effects of particle collisions, we formulate a model to include particle
collisions in the time-dependent mean-field theory. The model consists of the time-dependent
Hartree-Fock equation for the single-particle states and a linearized but truncated equation for the
occupation numbers, with the H-theorem and the conservation laws properly satisfied. Numerical
calculations are performed with a "conventional" set of basis states in which the occupied and the
unoccupied static Hartree-Fock states are boosted in the same way. They are carried out for the
head-on collisions of ' 0 on Ca and 'Si on Si at 100 MeV per nucleon. It is found that the
dynamics of the reaction is affected in only a minor way when particle collisions are included. The
projectile and the target nuclear matter appear to interpenetrate each other, with only a 20% reduc-
tion in the center-of-mass kinetic energies, just as in mean-field calculations with no particle col-
lisions. This result reinforces the idea that the conventional basis states do not include some impor-
tant degrees of freedom. It is suggested that in future work one should modify the basis in order to
allow for ample wave propagation in the direction normal to the collision axis.

NUCLEAR REACTIONS Extended time-dependent Hartree-Fock theory. Par-
ticle collision models. Numerical calculations for ' O+ Ca and Si+ Si at

Ei,b ——100 MeV per nucleon.

I. INTRODUCTION

In the time-dependent Hartree-Fock (TDHF) approxi-
mation, particles interact only through the mean field and
the collisions between particles are not taken into ac-
count. ' This may be a good approximation for low-
energy nuclear phenomena where particle collisions are in-
hibited by the Pauli exclusion principle. For
intermediate-energy heavy-ion collisions (with
E~,b/3 —fermi energy —35 MeV), the Pauli exclusion
principle may not be effective in preventing particle col-
lisions. It becomes important to consider both the mean-
field and particle collisions. Particle collisions are also
important in the study of the approach to equilibrium.

Previously, we incorporated particle collisions into the
mean-field theory. ' Starting with the equations of
motion for the Green's function, we obtained the extended
time-dependent Hartree-Fock (ETHF) approximation. It
consists of an equation of motion for the single-particle
wave function which is the same as the TDHF equation,
and a master equation for the occupation numbers. Subse-
quent investigations by other workers led to similar re-
sults. ' '" The collision term has also been examined from
a random matrix model' and by using a projection
method. ' In addition, it has been conjectured that parti-
cle collisions may be responsible for the time smoothing
leading to dissipation in a time-dependent and time-
smoothed mean-field theory. ' Other phenomenological
ways to introduce the collision term have been present-
ed, ' ' and numerical ETDHF calculations were per-

formed for simple systems. ' The complete set of non-
Markovian equations involving the one-body Green's
function has recently been solved for nonequilibrium nu-
clear matter. ' Also, the effects of particle collisions on
the mean-field potential and the procedures for maintain-
ing a diagonal occupation matrix have been investigated. '

As is well known, the TDHF approximation involves
rather time-consuming calculations. The ETDHF ap-
proximation is even more complicated as it requires the
evaluation of the two-body matrix elements between all
the pairs of single-particle states at each time step. The
suggested refinements' only increase the complexity of
the problem. It is desirable to approximate the ETDHF
theory. We call the resultant approximations the collision
model, in analogy with the collision models used to ap-
proximate the Boltzmann equations. ' ' As in the Bhat-
»gar, Krook, and Gross (BKG) collision model, ' which
first introduced the relaxation ansatz, we have simplified
the ETDHF theory so that it has the form of a relaxation
approximation. This (particle) collision model allows one
to study the gross features of the dynamical process.
Then, from such studies, one may be able to single out im-
portant degrees of freedom for use in future collision cal-
culations.

In our description, we have a complete set of time-
dependent self-consistent. single-particle states, each satis-
fying the TI3HF equation. The occupation numbers of
the single-particle states change with time due to particle
collisions. The collision model is obtained from the
ETDHF approximation by linearizing and truncating the
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master equation in order to include only the dominant
term, with the H theorem and the conservation laws ap-
propriately satisfied.

When we apply the collision model to specific problems,
it is necessary to choose a truncated set of basis states. In
line with conventional TDHF calculations, the simplest
basis is the set of static Hartree-Pock states (some of
which are unoccupied}, all initially boosted with the ap-
propriate momenta. Thus, the occupied and unoccupied
states in each nucleus are treated in exactly the same way.
We shall first report on the results using such a conven-
tional set of basis states for the collision of ' 0 on Ca
and Si on "Sj at 100 MeV per nucleon. These results are
then analyzed to determine whether important degrees of
freedom are properly being included in the conventional
set of basis states.

This paper is organized as follows. We first summarize
the ETDHF approximation in Sec. II in order to introduce
model equations for the mean-field theory with particle
collisions. In Sec. III, we use the H theorem and the con-
servation laws to determine a class of collision models
with different degrees of nonlinearity in the occupation
numbers. Then in Sec. VI, specializing to a linear approx-
imation, we discuss numerical details for calculations of
' 0+ Ca and Si+ Si. The results for head-on col-
lisions at 100 MeV/nucleon are presented in Sec. V. Fi-
nally, in Sec. IV we suggest that various deficiencies in the
implementation of the present collision model may be

remedied in future studies by including additional degrees
of freedom in the single-particle wave functions.

II. APPROXIMATE COLLISION MODELS

(2.1)

where h is the single-particle Hamiltonian and 1 uF(p) is
the mean-field density-dependent potential defined in the
usual way. ' The density p in (2.1) is defined as

p(r ) = g n, lt, (r )q;(r ) .
A. =1

(2.2)

The occupation number n ~ satisfies the master equation

Bng

at
=F.(["]), (2.3)

where

We first summarize the ETDHF approximation which
forms the basis for the particle collision models in the
mean-field theory. The ETDHF equations of motion con-
sist of an equation for 1(~,

isa, y =hl(

$2
V + F nF(p) gg, A, =1,2,

2fpz

QO

F~([nx])= g [n3n~(l nx}(—l —n2) nkn2(I n3)(1 n4}]D{ex+e2 e3 e4} ~~21 v'l34&~ I'.
~ 2, 3,4

(2.4)

The quantity e~ is given by

+7 ~F(P
2m

(A2
~

v'
~

34)~ is an antisymmetrized two-body matrix element of the residual interaction v', and D (@&+@2—e3 —e4) is de-
fined by

I x234~2
D(Eq+e2 e, e4)=- —

2~[(~~+~&—~3 —~~}'+(I~&3~~2}'1
(2.6)

where I ~$34 is the sum of the single-particle widths of the states A, , 2, 3, and 4.
We now construct linearized collision models in the following way. We first assume that at every time step, it is possi-

ble to find a set of equilibrium occupation numbers n ~', A, = 1,2, , satisfying

(2.7)

We next define the difference
(e)

n~ ——n~ —n~ (2.g)

and expand qF([n~]) with respect to 5nq. If 5nq is small so that higher-order terms can be neglected, we obtain the
linearized equation

Bn~
~

( A,2
(

v'
(
34)„('D (eg+ e2 e3 e4)——

Bt %234

)& [ —5nq[nz'(I n3')(1 n4')+n3'—n4'(I n—q' )] —5n~[nq—'(I n3")(1 n4')+n3'n—q'(I n—q' )]—
+5n 3 [n ~"n 2'( 1 —n 4' ) +.( 1 n~" ) ( 1 n2' }n q' ]——

+5nq[nq'nq" (1 n3 )+(1 z'n(I }—n—2
—)n3 ]] (2.9)
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We rewrite this equation as

Bng 5ng 5n2 5n, 5n,
+ +

dr Tg & 72 3 73 4 r4

where

(2.10)
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and
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I
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(2.13)

(2.14)

Note that, from symmetry, the last two terms in Eq. (2.10)
are equal. By assuming constant matrix elements and a
uniform density of states, one can obtain the following
very crude estimates:

j =2,3,4,
1 1 1

(2.1 5)—x, '

where X, is the {arbitrarily large) number of states in the
system. Furthermore, if 1/zz, 1/~3, and 1/~4 are constant,
we have

I

thermal equilibrium has not been achieved, the set In~(t) I

is different from In~'(t)I. The two sets are equal only
when the system attains true thermal equilibrium.

Equation (2.17) is a linearized and truncated approxi-
mation of the original master equation. It is essential that
it preserves the H theorem and the conservation laws. We
show in the next section how these requirements can be sa-
tisfied.

It is instructive to rewrite Eqs. {2.1) and (2.17) in densi-

ty matrix form by introducing the density matrix p(r, r ')
as follows:

+5n 2 +5n——
3 +5n &

——0, ——
2 3 4 p{r,r )=yn, q, (r )q*,(r ) . (2.18)

indicating that there are likely cancellation effects in the
last three terms of Eq. (2.10) which tend to make them
small compared to the first term. Thus, we assume that
we can neglect the last three terms in Eq. (2.10) and that a
reasonable approximation is given by

(2.16)

The change of the occupation numbers is the most dras-
tic for those states for which 6n~ is large. For states hav-

ing a small deviation from equilibrium, the values of ~& do
not affect much the time rate of change of occupation
numbers. Therefore, it is convenient to make the further
approximation for Eq. (2.16)

(e)
n~ —n~Bng

c}t
(2.17)

where r is a constant. Equation (2.17) is probably a
reasonable approximation for a large system in which the
dynamics will not depend critically on the values of 1/~~
for one or two states, but only on the average of 1/~~ for a
large number of states.

It is important to distinguish the physical meanings of
the sets of occupation numbers [nxI and [n~" ]. The
time-dependent occupation numbers [nx(t) I and wave
functions [1(x(t) J describe the dynamics of the sys-
tem. However, [nx'(t) I is also time dependent and is the
set of occupation numbers towards which the true occupa-
tion numbers [nx(t) J tend to approach at time t. When

Then, Eqs. (2.1) and (2.17) can be rewritten as

(2.19)

Here, [h,p] is the usual TDHF commutator. For the case
of velocity-independent two-body interactions, the com-
mutator, after averaging over spin and isospin, becomes

[h p]= — (~, &, )+ ~HF[p(r—)]2'
—~HF[p(r')] p(r, r» (2.20)

In Eq. (2.19), the quantity p" is the equilibrium density
matrix given by

(2.21)

f(5nx)
(2.22)

"(r,r )=gn,"1(,(r )q*„(r) .

The approximate equation (2.17) is explicitly linear in
n~ (but is implicitly nonlinear since n~' depends on the set
of [nx I through the conservation laws). However, we
note that the original master equation (2.3) for Bn~/Bt is
cubical in the occupation numbers. Thus, it is of interest
to write down approximate equations which are explicitly
nonlinear in 6n~. As a matter of fact, we show in the next
section that a general equation satisfying the H theorem
and the conservation laws is of the form
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where f(6nq) is a function of 5n~ which has the same sign
as 5n~ and vanishes if and only if 6n~ ——0.

The collision model presented here consists of Eqs. (2.1)
and (2.17) [or (2.19)]. It is analogous to the BKG (Bhat-
nagar, Krook, and Gross) collision model ' ' (which first
introduced the relaxation ansatz), the model proposed by
Kohler, ' and the model proposed by Norenberg. How-
ever, our treatment differs from Refs. 15, 20, 21, and 22 in
the following ways. Here, the mean-field, single-particle
states and their associated occupation numbers are all
basic dynamical variables. Then, the approach to equili-
brium is described in terms of the relaxation of [n~I to-
wards [nq")I. In contrast, in both the BKG model~o'~'

and the model of Kohler, ' the basic variable f(R, p ) is a
function of the space coordinate p, with the equilibrium
distribution f' '(R, p ) defined in terms of local parameters

p(R ), j (R ), and kT(R). Specifically, in the model of
Kohler, f' '(R, p ) is assumed to be of a Fermi-Dirac dis-
tribution whose parameters depend on the space coordi-
nate R. In terms of the density matrix, the equation pro-
posed by Kohler is

p"'(r, r )=
~ ~ (~ ~p)

1+exp [ [e—p( R ) ]/k T(R ) I

(2.24)

iA p(r, r —}=[hp] iRP —' P ', (223)
Bt 7

where

becomes a delta function and the equilibrium distribution
satisfying Eq. (2.7) can be shown to be of the form

qg'=1I(1+ [[eq—p]] IkT
for equal mass collisions. For unequal masses, it is
reasonable to assume a form of the equilibrium distribu-
tion given by

n~" =1/(1+exp[[E~ —(p~ pv/m) —p] j /kT), (3.1)

where

pq= A.
/

—V
/

A,
l

and the quantities p, po, and kT are parameters to be
determined. As the neutron and proton single-particle en-
ergies are different, it is necessary to introduce pp and p„
for protons and neutrons separately. The parameters pp,
p„,po, and kT must be chosen so that the equations of
motion Eqs. (2.1) and (2.17) [or (2.19}]will satisfy the con-
servation laws. It should be noted that this condition is
distinctly different from requiring that [n~'I and [z/aqua

lead directly to spatial densities and currents which con-
serve total energy, linear momentum, and neutron and
proton numbers. . With the former condition, the system,
as described by n~ and 1(~, conserves all the relevant phys-
ical quantities at all times, which need not be true with the
latter condition.

To formulate the conservation laws, we define the total
proton number Z as

e= [ p —[m j (R )Ip(R )] )
2ppl

and

R=(r+r )/2 .

(2.25)

(2.26)

Z = g n~S(r~z ~ ),
A, =1

the total neutron number N as

(3.2)

Although Eqs. (2.19) and (2.23) are similar in form,
p"(r, r ) of our model is very different from p'o'(r, r )

used by Kohler. Also, the single-particle states used here
are completely self-consistent, in contrast to the diabatic
or adiabatic orbitals generated by a non —self-consistent
potential well and considered by Norenberg. Finally, we
mention that a collision model based on mean-field
dynamics has recently been proposed by Cusson and %'ol-
chin. 23

III. CONSERVATION LAWS AND THE H THEOREM

The H theorem is a central concept in the discussion of
nonequilibrium dynamical systems. It states that the en-
tropy of a dynamical system never decreases and becomes
stationary when thermal equilibrium is reached. The col-
lision models we propose must satisfy the FX theorem so
that the approach to equilibrium is an irreversible process.
In addition, for the total system we demand conservation
of energy, linear momentum, proton number, and neutron
number.

The gross features of the dynamics are expected to de-
pend less on the exact shape of n~' than on the speed with
which the equilibrium distribution is approached and on
other important factors to be discussed in later sections.
It is sufficient to consider approximate forms of n~'
which are simple and manageable. Accordingly, when the
single-particle widths vanish, the function D(x), Eq. (2.6),

(3.3)

and the total momentum P as
OO

P= g nape .
A. =1

(3.4)

where T(r ) is the kinetic energy density

T(r ) = g n~y~(r )
A, =1

$2
V P~(r ), (3.6)

v (12) is the effective interaction, g&0, (12, 1+2+}is the un-
correlated two-body Green's function, and the symbol 1+
denotes t~+ =t, +e (with e~O). The two-body Green's
function is the antisymmetrized product of the one-body
Green's functions

gpo(12, 1+2+)=M[g (11+)g (22+)] . (3.7)

Our present description, based on partial occupations of
single-particle states, is essentially an independent-particle
description. It is appropriate to define the total energy in
this self-consistent, independent-particle model in the usu-
al way:

~ 2
E= Jdr T(r )+—Jd I d2v(12)gzo(12, 1+2+),

2

(3.5)



CHEUK- YIN WONG AND K. T. R. DAVIES

In terms of nx and 1(jx, the one-body Green's function
g ~(1, 1+) is given by

Bnx nx= —k ln
Bt x Bt 1 —nx

(3.17)

—ig'(l, l+)= g nxA(1481+) .
A, =1

On the other hand, from Eq. (3.1) and the conservation
laws, Eqs. (3.9), (3.10), (3.12), and (3.14), one can show
that

We are now in a position to write down the conserva-
tion laws. The conservation of proton and neutron num-
bers leads to

Bnx
ln

Bt

(e)n~

1 —ng
(e) (3.18)

BZ
Bt & ] Bt

5(~„,—,')=0

BX 5(r„„——,
'

) =0. (3.10)

as an,= —k ln
Bt x Bt

ng
(e)

1 —n~

1 —ng
(e)

Combining Eqs. (3.17) and (3.18), we obtain

(3.19)

Conservation of momentum gives
We next prove that the H theorem can be satisfied by in-
troducing a general collision model

Bp ~ Bn~ Bp~
P,+g n, =0.

Bt & &
Bt & &

Bt
(3.11)

Bnx f (5nx)
Bt

(3.20)

The second term of the above equation is, however, zero
because of the translational invariance of the two-body ef-
fective interaction v (12). Therefore, we find that

where ~ & 0 and 5n~ ——n~ —n~", n ~' is given by Eq. (3.1)
and satisfies the conservation laws of Eq. (3.15). Further-
more, we demand that the function f (5nx) have the same
sign as 5n~, i.e.,

p Bn
P, =o.

Bt &, ] Bt

Conservation of energy is expressed as

BE " anx BE
~~+

Bt
& &

Bt Bt

(3 ~ 12)

(3.13)

The second term in (3.13) is evaluated by fixing the occu-
pation numbers and is identically zero, since the single-
particle states satisfy the TI3HF equation (2.1), so that

f (5nq ) ~ 0 for 5nx ~ 0,

f (5ng) &0 for 5ng &0,
and also

f (5nx) =0 for 5nx =0 .

It then follows from Eq. (3.19) that

(3.21)

(3.22)

BE
Bt & ] Bt

(3.14)

The equation of motion Bn/Bt must satisfy the conserva-
tion laws as given by Eqs. (3.9), (3.10), (3.12), and (3.14).
Then, from Eq. (2.17) [or (2.22)] the equation for the con-
servation laws can be written as

f (5nx) =nx ng'— (3.23)

OI

i.e., the H theorem is satisfied. The equal sign in (3.22)
holds only for n~ ——n~'.

Equation (3.21) implies that f (5n~) be an odd function
of 5ng, e.g. ,

5(~~, —,
'

)

00 5(~~, ——, )g f(5ng) '

A, =l px
=0 (3.15)

f (5nx) =(ng ng" )+—a (ng —nI„')' . (3.24)

Since the original master equation (2.3) is cubic in 5n~,
Eq. (3.24) may lead to more adequate results. However,
for the present exploratory calculations, we shall limit
ourselves to the linear approximation, Eq. (3.23).

In the above equation, the only unknown quantities for a
given form of f(5n~) are the parameters p„,p„, , and
kT which specify the equilibrium distribution n~' [Eq.
(3.1)]. These parameters can be chosen so that the conser-
vation laws are satisfied.

We are now in a position to discuss the H theorem. In
our description in terms of partial occupation of self-
consistent, single-particle states, the entropy of a system S
can be defined in the usual way,

S = kg[nxlnn—x+(1 ~)nl (1n—n~)], —

~here k is the Boltzmann constant. Therefore, we have

IV. CALCULATIONAL DETAILS

We have performed numerical calculations for head-on
collisions of 0 on ~Ca and Si on Sj at an energy of
100 MeV per nucleon. The first case was chosen in order
to compare our results with previous calculations where
particle collisions were not included. The second case
was chosen to examine whether the single-particle shell
gap is an important feature of the dynamics.

The collision model consists of the TI3HF equation
(2.1) for the single-particle states and the equation of
motion (2.17) for the occupation numbers. We performed
our calculations by modifying the axially symmetric
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300 fm/c
(E»b/Az in MeV)

(4.1)

where Az is the projectile mass number. Based on this es-
timate for E~,b/3& ——100 MeV per nucleon we have

~=3 fm/c =0.01&10 ' sec . (4.2)

As a comparison, the high-energy interaction time for re-
actions of nuclei with radii R

&
and R z is approximately

2«I+& z)
U rel

(4.3)

For the cases considered here, T-31 fm/c so that T »~.
In our exploratory investigations, we use &=3 fm/c and
also ~=0.3 fm/c. The smaller value has been chosen in
order to ensure that particle collision effects, if sufficiently
important, would manifest themselves in an obvious
manner. As it has turned out, the results from using the
two different values of r are not very different (partially
because T»r and also for reasons to be discussed later).
It is sufficient to discuss the results for one case which we
choose to be

~=0.01' 10 ' sec .

TDHF code. The set of single-particle wave functions
[1(xI are evolved in time according to the methods of Ref.
26. Also, the calculations are performed in the center-of-
mass system and the two-body effective interaction is the
Skyrme II force, which was the interaction used in Ref.
25.

For the ' O nucleus, we choose the Hartree-Fock states
in the s, p, and s-d shells as the basis states, and for the

Ca and Si nuclei we choose the states in the s,p, s-d,
and p fshells -as the basis. As in the conventional TDHF
calculations, all these states are boosted initially by ve-
locities appropriate to the given reaction. We emphasize
that the occupied and unoccupied states are boosted in ex-
actly the same manner. These two types of states differ
only in their initial occupancy. Thus, at t =0 for ' 0,
n~ ——1 for the 1s and 1p states, and n~ ——0 for the states in
the s-d shell. Similarly, for Ca, n~ ——1 for the s, p, and
s-d shells, and nx —0 for the p fshell, -while for the Si
nucleus, n~ ——1 for the Is and 1p states, n~ ——0.6 for the 1d
states, and nq =0 for the 2s, 2p and 1f states. We shall
refer to these sets of basis states as the conventional sets.

The quantity ~ is the time required for a nuclear system
to relax its occupation distribution to thermal equilibrium.
It depends on the collision energy and the degree of Pauli
blocking. Its value is not well determined, although there
have been various estimates of its magnitude. In a pre-
vious calculation, based on the relaxation of nucleons in
nuclear matter, we obtained

cupation numbers do not change. After the two nuclei
collide and separate, the relaxation of the two separated
fragments involves a very long relaxation time and the oc-
cupation numbers are assumed to be unchanged. Accord-
ingly, Bn~/Bt is always equal to zero when the two nuclei
do not interact. Operationally, we assume that the two
nuclei interact when the density at an appropriate mid-
point between them reaches a "clutching" value of 0.075
nucleons/fm . When the two nuclei interact by turning on
the residual nuclear interaction, the occupation numbers
can relax to the equilibrium values and the equation of
motion (2.17) is used. Since n~' is evaluated at the mid-
point t+At/2 of the time interval [t,t+b, t] and can be
taken as constant within the interval, we integrate Eq.
(2.17) to obtain explicitly the occupation number in the in-
terval t &t'&t+ht:

(4.4)
The change in occupation numbers alters the spatial densi-
ty which in turn changes the single-particle wave func-
tions [PxI, the energies [exI, and the momenta [ pxj. The
equilibrium distribution [nx I is then altered. We contin-
ue this procedure, in stepwise fashion, until the two nuclei
are well separated from each other.

V. RESULTS OF CALCULATIONS
As we show in the Appendix, we use [eqI and [px to

calculate the equilibrium occupation numbers [n x'
I .

They are characterized by four parameters: p~, p„,pp,
and kT, which are displayed in Fig. 1 for the head-on col-
lision of ' O+ Ca at an energy of 100 MeV per nucleon,
with

0 01&10—z& sec .

The behavior of pz and p„reflects the rapid rise of the
single-particle energies when the spatial density in the
overlapping region of the two nuclei is large. (See Fig. 2).

In order to interpret the parameter pp, we examine the
initial TDHF wave functions. These are obtained by
boosting the static Hartree-Fock states u~ by the function

i k. re' ', corresponding to a velocity of Ak/m in the center-
of-mass system. The single-particle energy e~ for the sim-
ple case of a velocity-independent effective two-body in-
teraction is given by

(p) R k
&x=&x +

2m

where e~
' is the static Hartree-Fock energy. In addition,

we have

At each time step, we evaluate the equilibrium occupa-
tion numbers [n ~" I at the middle of each time interval by
solving the four conservation equations in Eq. (3.15).
Then, the parameters p~, p„,pp, and kT in Eq. (3.1) can
be determined by Newton's method using values of these
parameters at the previous time step as initial guesses.
The detailed method is outlined in the Appendix.

It is clear that, before the two nuclei interact, there is no
collision between nucleons in different nuclei and the oc-

&A, (eff) =~A.—pk po/m .

For the initial wave functions cx(effl becomes

(p) (pa po) I oe~(eff) =e~ '+
2fPl 2m

(5.3)

(5.4)

From Eq. (3.1), the occupation numbers nx are determined
by a combination of e~ and p~ which we call the effective
(single-particle) energy eq(effl,
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The sum of the first two terms of the above equation is
just the value of e~ for the frame in which the center of
mass is boosted by a velocity of pp/m and this value
differs from e~(effj by a constant. Thus, the frame in
which the center of mass is boosted by a velocity of pp/m
is the natural frame for describing the equilibrium distri-
bution. After the two nuclei interact with each other, the
above equations are not strictly valid. However, in order
to roughly understand the dynamics, we can interpret pp
as representing the frame in which the expectation value
of e~ directly describes the equilibrium distribution. For
the collision of ' Q on Ca at 100 MeV per nucleon, the
momentum of the ' O nucleons in the center-of-mass sys-
tem is initially -0.94 & 10 ' MeV sec/fm, while the
momentum of the Ca nucleus is initially
——0.39)&10 ' MeVsec/fm. From Fig. I, we note that
the value of pp is -0.33&(10 ' MeVsec/fm at t =0.
Thus, the best frame to describe the initial equilibrium
distribution is roughly the frame in which the speed of the
' 0 nucleons and the Ca nucleons are nearly equal.

After the two nuclei interact, the preferred frame is one in
which the average speed of the ' O nucleons is slightly
smaller than that of Ca nucleons.

In Fig. 2 the occupation numbers at t =0 and at

t =0.14X10 ' sec

E)~b=f600 MeV

4=0.00 PROTONS

30
I I I I I I t I

0+ Cg, E( b
= )00 MeV/N

v=0.01 x)0

)0

0.0
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r.o o.oo 0.07 o.~ o.o
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E

a. 0.38
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f.o
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& (&0 " sec)
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FIG. 1. The parameters p„,p„,po, and kT and the entropy
S/k, as functions of time for the head-on collision of ' O on

Ca at a laboratory bombarding energy of 100 MeV per nu-
cleon. The parameter ~ is 0.01)&10 ' sec. The arrows indicate
the times at which the residual nuclear interactions responsible
for changing the occupation numbers are turned on or off.

FIG. 2. Occupation numbers and effective energies for the
head-on collision of ' 0 on ~Ca at 100 MeV per nucleon. The
top pictures are for protons and the bottom pictures, for neu-
trons. The left and the right panels in each picture give the oc-
cupation numbers at t =0 and t =0.14&10 ' sec, respectively.
The middle panel in each picture shows the variation of the
single-particle effective energy eq(eff) as a function of time.
Solid curves are for states with degeneracy 4, while the dashed
curves are for states with degeneracy 2. The parameter z is
0.01& 10 ' sec.
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are shown on the left and the right panels, respectively. In
the middle panel, we show E~(eff) as a function of t. These
results are obtained for

&=0.01)& 10 ' sec .

It should be noted that there is a gap between the occupied
states and the unoccupied states. Because po/m is approx-
imately the velocity in the equal velocity frame, e~(eff) is
roughly the expectation value of the single-particle Hamil-
tonian in this frame. We note that the single-particle
states of ' 0 and Ca gain about the same increase in ki-
netic energy and that the Fermi levels of the two nuclei
are not top different. However, there is a shell gap which
originates from the gaps in the ' 0 and Ca static ground
states. The presence of this gap makes the results of the
calculation insensitive to the choice of ~.

In Fig. 3 we show density contours for the head-on col-
lision of ' 0+ Ca at 100 MeV per nucleon. We see that
the two nuclei interpenetrate each other and separate after

t &0.128&10 ' sec .

(2)

(3)

(4)

360+ 40C
T= 0.0& x)0 sec

E I pb /4 p
& 00 MeV/NUCLEON

TIME (10 sec)

,

P(NUCLEONS/frn )

V&~~- & 0 04 s p s 0.06
- - -I 0.08 s p s 0.& 0

vuzzzzA Q.&2 sps0, &4

0.&6 s ps0. 18
mam()Nmy Q. 2Q s ps Q.22

0.24

0.048

0.096

The dynamics is almost identical to that of previous
TDHF calculations at the same energy. At

t -0.072)& 10 ' sec,

the overlapping region has a very high density {p-0.20
nucleons/fm ), which produces a repulsive mean-field po-
tential. As a result, streaming nucleons are deflected away
from the symmetry axis. After the encounter, the ' O nu-
cleus has a very low density and is unlikely to remain
stable while the Ca nucleus has a density not very dif-
ferent from that of its ground-state configuration.

In order to provide a quantitative comparison between
the TDHF results and the present calculation, we calculate
the relative kinetic energies at t =0 and after separation of
the two nuclei at

(5)

(6)

1.64—
(7)

z (frn)

5&m

Q.1 20

0.144

t =0.176&(10 ' sec .

We list in Table I the ratio of KE (final)/KE (initial). We
find that, using the conventional set of basis states, the
presence of particle collisions in our model does not lead
to an additional damping of the relative collective motion.
In fact, compared to the TDHF results, there is even an
increase of the relative kinetic energy, a result which con-
tradicts our intuitive understanding of particle collisions.
However, one does not know whether the absence of addi-
tional damping in our calculations is due to the single-
particle shell gap or to other factors. It is therefore of in-
terest to consider reactions of nonclosed shell nuclei for
which there are no pronounced shell gaps at the top of the
Fermi level.

As an example of such a system, we study the head-on
collision pf Sj. on 8Si at 100 MeV per nuclepn. The, ini-
tial occupation pf Si is as fpllpws: the 1s and the 1p
states are fully occupied; the 1d states have an occupation
number of 0.6; and the 2s, the 1f, and the 2p states are all

empty. The unoccupied states are boosted by the same
velocity used for the occupied states. Calculations have
been performed for

7 =0.01 & 10 ' sec

and for

FIG. 3. Density contours for the head-on collision of ' 0 on
Ca at 100 MeV per nucleon. The parameter ~ is 0.01)&10

sec.

~=10 )&10 ' sec.

The latter leads to no change of the occupation numbers
with time and is essentially a TDHF calculation.

The calculation with

16O + 40Ca

Case

TDHF (Ref. 25)
Collision model:
v=0.01&(10 ' sec

7 =0.001 )& 10 ' sec

KE (final)
KE (initial)

0.816

0.823
0.823

28S1 + 28S1
TDHF

Collision model:
v.=0.01&&10 2' sec

0.793

0.821

TABLE I. Ratio of the final kinetic energy after separation,
KE (final), to the initial kinetic energy before the collision, KE
(initial), for various cases.
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v=0.01 X 10 ' sec

shows a substantial redistribution of the occupation num-
bers and represents a case with a large rearrangement of
In~}. The results for Si+ Si are presented in Figs.
4—7.

In Fig. 4 we show the parameters which characterize
the equilibrium occupation number distributions and the
entropy S/k. As before, the rapid rise and subsequent de-
crease of pp and p„are due to the high density of the
overlapping region which gives rise to a strong repulsion
that subsides after the reaction. For symmetric systems,
po is identically zero and is not exhibited. The equilibri-
um temperature kT decreases when the two nuclei begin to
interact, while the entropy always increases.

We display in Fig. S the occupation numbers and effec-
tive energies e~(eff) for the Si + Si reaction. One ob-
serves that there is a substantial rearrangement of the oc-
cupation probabilities. This rearrangement gives rise to
different final density distributions. We show in Fig. 6
and Fig. 7 the density contours for the TDHF case and for

~=0.01&10 ' sec .

t(final) =0.192)& 10 ' sec .

As one observes, the ratios are nearly the same. In fact,
just as in the ' 0+ Ca case, there is less damping of the
relative kinetic energy in the collision model than in
TDHF, in contradiction to what one intuitively expects.

VI. DISCUS SIQN

With the conventional basis states, the present particle-
model studies give no more damping than the ordinary

E)~b
——ZBOO Me V

4=0.00 PROTONS

Note that in the latter case, there is a pronounced ring
with a density of p-0.08 nucleons/fm . Although the
density distributions are different, the degree of damping
of the relative collective motion is nearly the same for the
two cases. We list in Table I the ratios of KE (final)/KE
(initial) evaluated at

L
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FIT+. 4. The parameters p~, p„,and kr, and the entropy S/k,
as functions of time, for the head-on collision of "Si on Si at a
laboratory bombarding energy of 100 MeV per nucleon. The pa-
rameter w is 0.01X10 ' sec. The arrows indicate the times at
which the residual nuclear interactions are turned on or off.

t (10 sec)

FIG. 5. Same as in Fig, 2 but for the collision of Si on Si
at 100 MeV per nucleon with ~=0.01&10 ' sec. The right
panels in each picture give the occupation numbers at
t =0.17&10 2'sec.
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TDHF calculations. How do we understand this pecu-
liar result? Clearly, it is not due to the presence of a shell
gap between occupied and unoccupied states since the
closed-shell ' 0+ Ca system and the non —closed-shell

Sj+ Si system both exhibit this behavior. In fact, in
28Si+ 28Sj reactjon theie js a substantjal rearrange-

ment of the occupation numbers {n~I, but the final rela-

tive kinetic energy is not much affected.
The results obtained here are unphysical and indicate

that some important degrees of freedom are likely missing
in the implementation of the model. We now attempt to
find these degrees of freedom. We first note that the con-

28s; 28s
T = 0.01 x 10 ~ sec

EIob/Ap 100 MeV/NUCLEON

TIME (10 sec)

2SSI+ 28SI
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FIG. 6. Density contours for the head-on collision of Si on

Si at a laboratory bombarding energy of 100 MeV per nucleon.
These results are for a TDHF calculation with no particle col-
lisions.

FIC». 7. Density contours for the head-on collision of Si on
Si at a laboratory bombarding energy of 100 MeV per nucleon.

They are obtained with the collision model and ~=0.01)&10
sec.
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ventional basis states we use give wave packets which
maintain a large longitudinal momentum in the direction
of motion. This is a well-known feature of TDHF
theory. ' Both the occupied and the unoccupied states
have roughly the same expectation values of linear
momentum, and even substantial shifts in the occupation
probabilities do not affect the momenta of the colliding
nuclei after the collision. Thus, the damping of the rela-
tive collective motion is largely insensitive to changes in
the occupation numbers.

Since we now understand the origin of the damping
behavior, we may well ask whether the present conven-
tional single-particle basis is capable of describing proper-
ly the effects of particle collisions. This set of states, in
effect, restricts the products of nucleon-nucleon collisions
to be strongly forward and backward peaked. On the oth-
er hand, for collisional energy up to a few hundred MeV
per nucleon, the angular distribution for nucleon-nucleon
collisions is almost isotropic. In a realistic time-dependent
description, the collision of two nucleons represented by
two initial wave packets should result in wave packets
moving radially outward in the center-of-mass system.
This type of spherical wave packet is obviously not includ-
ed in the present choice of basis states.

In future work, we plan to include the transverse degree
of freedom by choosing a better description of the final
states after particle collisions take place. The model cal-
culation may then proceed in the following way. As be-
fore, the occupied HF states are first evolved, without
changing their occupation numbers. When the two nuclei
begin to interact, we will include additional unoccupied
states which contain spherical waves propagating outward.
The proper choice of this additional set of states needs to
be investigated. One possible choice for this additional set
consists of modifying the phase of each single-particle
wave function P~(r, t) of the standard set such that

where Kg = pg —w v 0 v 0 is the velocity of the equal-

velocity frame, and ~i=—
~
a~

~

. The first factor e is
to ensure that this state has zero linear momentum in the
equal velocity frame and the second factor e'"' is to boost
the wave function isotropically in that frame. This set of
unoccupied states satisfies Gallilean invariance since the
phase factor depends on the difference of momenta

p~ —m vo. The additional set of unoccupied single-
particle states needs to be initially orthonormalized with
the standard set of basis states, after which the TDHF
equation (2.1) automatically guarantees orthonormality as
a function of time. ' As time proceeds, the additional
unoccupied states begin to be occupied, as governed by the
occupation number equation (2.17). For these states, since
the kinetic energy in the equal-velocity frame is minimal,
e~(eff) is expected to be relatively small. Thus, these
unoccupied states embed themselves among the occupied
states in the e~(eff) spectrum. There can be substantial
changes of occupancy and of relative kinetic energy when
nucleons switch from occupied states to previously unoc-
cupied states propagating in the transverse direction. Fu-
ture investigations using the collision model with the new
basis states will be of great interest. We also mention that

other authors ' ' have carefully examined various prob-
lems associated with the asymptotic, final-state TDHF
wave functions.

Finally, we emphasize that the neglect of the appropri-
ate transverse degrees of freedom is not solely confined to
the intermediate-energy, heavy-ion reactions discussed
here. This problem is a general feature found at all
heavy-ion energies for all TDHF calculations, ' including
those in which pairing effects are included. Also,
results of recent TDHF calculations indicate that, for
heavy-ion reactions, pairing has little effect on the low-
energy dynamics. However, in such pairing studies the
single-particle states are all chosen in the conventional
way as discussed above. On the other hand, it seems phys-
ically reasonable that a pair of particles interacting via the
residual pairing interaction should mostly scatter isotropi-
cally. Thus, in order to properly take into account pairing
effects in low-energy reactions, it may be useful again to
include, in the basis states, those which propagate in the
transverse direction.
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D, = g ng" 5(r~, —2)—Z =0,
A, =1

(Al)

D2 ——g n~ ( 5~r, ——,') —%=0,
A, =1

(A2)

(e) At
D3 ——g n~ —nq t+ p~ r+

A, =I 2
J

=0,

(A3)

and

e~ t+ =0.

(A4)

Since p~ and e~ are evaluated at the end points of each
time interval, we take

pA, r+ = 2i lpga(r)+pa( +~ )i
2

(A5)

APPENDIX: EVALUATION OF nq'

We wish to evaluate n~' for each time interval (t, t +b.t)
within which it is assumed to be a constant. Thus, we
need to determine the parameters specifying n~' in Eq.
(3.1). For a linear form of f (5nq), the conservation equa-
tions (3.9), (3.10), (3.12), and (3.14), at t + , ht can—bewrit-
ten as
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htt+ = —,[e~(t)+~~(t+&t)] . (A6)

D3 y [nk nA(t)]px t+
A, =l 2

=0 (A7)

and

From Eq. (4.4) we find that, to lowest order in ht/2, Eqs.
(A3) and (A4) become

p
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pn
Po

AD) BD]

Bpp Bp„
BD2 BD2

Bpp Bp„
BD3 BD3

Bpp Bp„
BD4 BD4

Bpp Bp~

BD, aD,
t)pp t)P
BD2 BD2

t)po t)P
BD BD

t)pp t)P
aD, aD,
t)p o t)P

D]
D2
D3
D4)

(A9)

D4 —g [n„n,—(t)]e„t+(e) At

A. = 1
2

(A8)

In head-on collisions, p~ and po have only z components.
The four unknown parameters in the four equations of
(Al), (A2), (A7), and (A8) are p~, p„,p„and P—:1/kT.
Using Newton's method, we obtain

where P~, P„,pc, and P are the values from the previous
iteration. The derivatives in (A9) can be written out expli-
citly using Eq. (3.1) and the quantities in the last term are
evaluated with p„,p„,pc, and P. We begin the iteration
choosing trial values from the previous half time step.
The iterations in Eq. (A9) converge rapidly as long as the
trial values for p„,p„,po, and P are not too different from
the true values. This condition is usually satisfied for any
smooth dynamical process.
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