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The magnetic dipole moments of states in mirror pairs of the sd-shell nuclei and the strengths of
the Gamow-Teller beta decays which connect them are compared with predictions based on mixed-
configuration shell-model wave functions. From this analysis we extract the average effective
values of the single-particle matrix elements of the /, s, and [ Y?®s]" components of the M1 and
Gamow-Teller operators acting on nucleons in the 0ds/,, 1s,,,, and 0d3,, orbits. These results are
compared with the recent calculations by Towner and Khanna of the corrections to the free-nucleon
values of these matrix elements which arise from the effects of isobar currents, mesonic-exchange
currents, and mixing with configurations outside the sd shell.
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I. INTRODUCTION

Our goal in this study is to extract empirical values of
the single-particle matrix elements of the Gamow-Teller
(GT) and magnetic dipole (M1) operators from a set of in-
terrelated nuclear data. We concentrate on sd-shell nuclei
which are removed by two or more nucleons from the
A=16 and 40 major shell closures and on states for which
the isovector and/or isoscalar magnetic dipole moments
are available. We are particularly concerned with those
examples for which both isovector M1 and GT data can
be obtained for the same (in the sense of isospin symme-
try) nuclear state.

We interpret our chosen data in the context of shell-
model wave functions whose dimensions span all 0ds,-
1s,,,-0d; /, configurations. From these wave functions we
calculate for each nuclear state A7J in our data set the
five isovector and/or five isoscalar matrix elements of the
AJ7=1% one-body operators of the model space. The ap-
propriate sums of the products of these N-body matrix
elements with the single-particle matrix elements of the
M1 and GT operators yield total matrix elements which
should correspond to experimental values. We extract the
empirically best values of the single-particle matrix ele-
ments from least-squares fits of the linear combinations of
the N-body shell-model matrix elements to the experimen-
tal values.

This analysis should produce information about these
single-particle matrix elements which is analogous to what
can be obtained from the simpler analyses which are pos-
sible for the data of the “single-particle” and “‘single-hole”
(in the context of the usual shell-model assumptions)
states of 4=17 and 39, respectively. In the conventional
assumption of shell closures at 4=16 and 40 (which we
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also utilize in the present work) each relevant experimen-
tal value from 4A=17 and 39 can be related to only one
single-particle matrix element of the appropriate operator,
rather than five.

At the least, the results of our present analysis of data
from A=18 to 38 will provide independent alternative
values against which to compare the values obtained from
A=17 and 39 and, as well, provide new information about
terms which cannot be measured in these systems. At
best, this analysis of multiparticle data may provide re-
sults which are less subject to nuclear-model uncertainties
than are those obtained from the single-particle systems.
Idiosyncrasies in either the data or the theory will be aver-
aged out to some degree by virtue of the larger sampling
of states available from the “interior” of the shell. More-
over, the descriptions of these multiparticle states appear
to be relatively free from the uncertainties associated with
the “intruder state” contaminations which arise from
many-particle, many-hole excitations across the nominal
shell boundaries.

The empirical values for the single-particle matrix ele-
ments of the M1 and GT operators which we deduce from
the present analysis are to be viewed in comparison with
the values which are obtained by assuming that the “nu-
cleons” of the model description have the observed mag-
netic moments of the free neutron and proton and
Gamow-Teller properties consistent with the half-life of
the free neutron. Deviations of our empirically-based
values from these “free-nucleon” numbers should reflect
inadequacies in the theoretical model which we utilize in
the analysis of the data. We distinguish three levels of
inadequacy in the shell-model predictions. The lowest
corresponds to the failure of our specific version of sd-
shell model wave functions to match the “best-in-
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principle” results possible with the same general model as-
sumptions. The next level of inadequacy corresponds to
the basic limitations arising from the restriction of the
model space to a single major oscillator shell. On the
most fundamental level, the inadequacies of the model we
use include its assumptions of the impulse approximation
and the omission of coordinates other than neutron and
proton.

We necessarily assume for our present purposes that the
shell-model wave functions we employ are close approxi-
mations to the best results obtainable within our model
constraints. The differences between the empirical values
for the single-particle matrix elements which we deduce
from least-squares fits to data and the free-nucleon values
then must be attributed to the necessity of making
higher-order corrections to the conventional shell-model
representation in order to compensate for the second and
third levels of inadequacies in the conventional model.
These estimates of higher-order corrections are of current
interest relative to several theoretical programs aimed at
calculating the effects which the restriction of the basis
space to a single major oscillator shell and the presence in
nature of mesonic-exchange current and isobar-excitation
contributions have upon the relationship between “simple”
model predictions and experimental values. We will com-
pare our results in detail with the recent calculations of
Towner and Khanna.! The results and conclusions of the
Towner-Khanna calculations are in good agreement with
those previously carried out by Arima, Hyuga, Ichimura,
and Shimizu,>~* and we refer the reader to these refer-
ences for further details.

The essence of our approach is the assumption that
“good” configuration-mixing shell-model calculations for
M1 and GT phenomena, when combined with the free-
nucleon parametrizations of these operators, should ac-
count for much of the detail observed in the variation
from state to state of the relative sizes of the magnetic
moments and Gamow-Teller strengths and, more qualita-
tively, for their average absolute magnitudes. This as-
sumption has been validated in a series of extensive stud-
ies.>® We then follow this initial assumption with the as-
sumption that the residual discrepancies between these
shell model predictions and the experimental values are
properly removed by the introduction of essentially state-
independent perturbative corrections to the specifications
of the M1 and GT operators or, equivalently, to their
single-particle matrix elements.

It should be noted that these perturbative corrections
also can give rise to effective many-body M1 and GT
operators within the model space. We ignore such effects
to the extent that they cannot be encompassed within a
smooth mass dependence of the parameters. The sizes
and importance of these explicit many-body effects which
are inferred from our analysis and from calculations will
be discussed in Sec. VI.

The antecedents of the present study are the pioneering
papers of Wilkinson”® and their subsequent elaborations
by Brown, Chung, and Wildenthal.>® Several different
sets of data on GT beta decay and magnetic dipole mo-
ments were used in these previous investigations, in con-
junction with progressively evolving shell-model wave
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functions for sd-shell nuclei. We utilize here the latest
generation of wave functions in this theoretical evolution'®
together with a set of data which we have shown to op-
timize experimental precision, model reliability, and the
possibility of internally cross validating the results of the
analyses.

In Sec. II we define generalized expressions for the M1
and GT operators in which parameters corresponding to
higher-order corrections to the free-nucleon values occur
explicitly. In Sec. III we present the results of the shell-
model calculations for the M1 and GT observables and the
values obtained for the corrections to the free-nucleon
values which we obtain from the least-squares fits to the
experimental observables. In Sec. IV we discuss in detail
the relationships between the experimental and calculated
observables. In Sec. V we compare our empirically ob-
tained higher-order corrections with recent calculations of
these quantities. Conclusions and a discussion of future
prospects are given in Sec. VI.

II. DEFINITION OF THE OPERATORS
AND CORRECTION PARAMETERS

The data we consider in the present study are the mag-
netic dipole moments () of 7=0 states and of pairs of
Tz==T states of 4=18—38 nuclei and the strengths of
the GT beta decays which connect the Ty= + &
members of mirror pairs to their T, =— 1 reflections.
We separately consider the analogous data from 4=17
and 39. We analyze these experimental data by construct-
ing sets of least-squares-fit equations in which the shell-
model expressions for M1 and GT matrix elements are
matched to the corresponding measured values. In the
present cases, for which the data can be projected into
purely isoscalar and purely isovector combinations, these
equations relate an observable (&) to a linear combination
of 5he products of reduced single-particle matrix elements
(Sjjlp ) for the relevant operator (Op) and the one-body
transition densities (D;;:) calculated from the N-particle

J
shell-model wave function

&=C(&,i,f) S S;D,(AT,Adif) . (1)
i

In Eq. (1) Op indicates either the isoscalar (AT=0) M1
operator (ISM1), the isovector (AT=1) M1 operator
(IVM1), or the isovector Gamow-Teller (GT) operator, all
of which have AJ=1. These operators will be specified in
detail below. The complete sets of quantum numbers
ATJv which label the initial and final shell-model states
are indicated by the letters i and f (i =f in the cases con-
sidered here), and j and j' identify the orbits p(nlj) of the
shell-model space. C(&,i,f) is a fixed numerical coeffi-
cient which connects the theoretical value of a particular
observable to the reduced matrix element of the associated
operator.

We express the M1 and GT observables in terms of the
isoscalar and isovector magnetic moments #(ISM1/IVM1)
and the GT beta-decay matrix elements M(GT). These are
defined by the equations
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u(ISM1/IVM) =[u(Tz=+T)xpu(T,=-T1T)]1/2,
(2)
and
M(GT)=[(2J;+1B(GT)]'/*. 3)
The u(T;) are the magnetic dipole moments in units of
nuclear magnetons, where our convention is that
Tz=++ for the proton. The B(GT) are related to the
partial half-lives for beta decay, ¢, ,,, by
oo 6170+4
27 fyB(F)+f4B(GT)

(4)

The B(F) are the Fermi beta-decay nuclear matrix ele-
ments and the terms f, and f, are the vector (V) and
axial-vector (4) beta-decay phase space factors; details of
the calculations of these quantities are given in Refs. 11,
7, and 12.

For the M1 moments, the coefficient in Eq. (1) is given
by the 3-j symbols

1 J
—-J 0 J

T AT T

C[u(ISM1/IVM1)]= -T 0 T

(5)

For the TZ=—;— to TZ=——; GT decay, the isospin
vector-coupling coefficient reduces to

C(GT)=($)1"2, (6)

The D;;(AT,AJ,i,f) are obtained from shell-model wave
functions according to

R A EAC P C0) i [119)
D (AT, AJ,i, f)=
i ek [(2AJ + 1)(2AT +1)]172

(@)

The calculations which produced these wave functions uti-
lize the full space of 0ds/,-1s,,,-0d3,, configurations and
the A-dependent empirical effective Hamiltonian of Wil-
denthal.!°

The Sg’p are the matrix elements between the single-
particle states of the model space of the three operators,
defined according to

Syt ={llop(aL,AT)|j")
=[2QAT +D]"2(j||0p(AD)]|j") - ®

We assume that the higher-order corrections to these
shell-model ex%ressions can be incorporated into the
values of the Sjj:p . In the most general formulation each
of the five (j,j’) elements of the sd-shell space can have an
independent correction for a given observable. A useful
way to express these corrections is in terms of more gen-
eral M1 and GT operators which include the term

p=8m) [ YPs]V . 9)
We choose to work with the particular formulations of

the M1 and GT single-particle operators defined by the
following general expression:
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Op =g,[S(d-d)+ S (s-s)]+g,L(d-d)+g,80p ,
(10
where
80p =6,(d-d)S(d-d)+&,(s-s)S (s-5)
+8,L(d-d)+8,(s-d)P(s-d)
+8,(d-d)P(d-d) (11)
and
§S=3s, L=31, P=3p;. (12)

The values of the coefficients g and & depend upon the ob-
servables. The g coefficients are obtained from the free-
nucleon manifestations of the operator and the & coeffi-
cients characterize the renormalizations which are needed
when working within the sd-shell model space. The
parentheses (d-d), (s-d), and (s-s) identify the respective
pairs of orbits, /=2 (0ds,, and 0d3,,) and /=0 (ls;,,)
which are acted on by the operators. The reduced single-
particle matrix elements for the individual operator com-
ponents s, /, and p are given in Table 1.

The term 80p has been multiplied by g, so that 1008,
can be regarded as the percentage renormalization of the S
matrix element or, alternatively, as the percentage renor-
malization of the spin g factor g,; these are equivalent
ways of expressing the same result. For the M1 operator,
(gs/81) 1008; can be regarded as the percentage deviation
in the L matrix element or in g;.

The coefficients 8(s-d) and 8(s-s) are uniquely propor-
tional to the differences between the free nucleon and
empirical values of the 1s,,,-0d3/, and 1s;/,-1s; , single-
particle matrix elements, respectively. The relationships
between the remaining three d-d matrix elements can be
expressed concisely in terms of the quantities

80,7 =(ill80p|1) 7<jlIs|j*) -
From Table I, we obtain the general results
8(+ +)=8,(1-1)+218,(1-1)
+[21/(214+3)18,(1-1) ,
8(— —)=8,(I-1)—2(1 + 1)8;(I-])
+[20+1)/(21 —1)18,(1-1)
8(+ —)=8,(I-)—8;(1-)—($)8,(I-I) (14)

where 8(+ 4 ) stands for 8(/ 4 4,/ + ), etc. Specifical-
ly, for the sd shell d-d matrix elements

(13)

8(5-5)=8,(d-d)+48,(d-d)+(5)8,(d-d) ,
8(3-3)=58,(d-d)—65,(d-d) +25,(d-d) ,
8(5-3)=8,(d-d)—8,(d-d)—($)8,(d-d) .

(15)

These relations can be inverted to obtain the general re-
sults
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TABLE 1. Reduced single-particle matrix elements {j||x||j’) of the operators x=s, /, and p.* The
matrix elements are obtained by taking the products of the expressions in column G with the respective

entries in the columns labeled /, s, and p.

J J G

s p
I++ I++ [2(7 +1)(21 4+3) /(21 + 1))/ I 5 1/(21+3)
-+ J (2D —1)/1 +1)]"? I+1 —5 —(+1)/(21—1)
I++ -+ [2( + 1)) /(21 +1)]'2 1 -1 1
I++ (I+2)—~+ [20 +2)1 +1) /(21 +3)]'/2 0 0 —3R/2}
aQur reduced matrix elements convention is that of Edmonds (Ref. 59) and

GUlx)1y=(=1Y 7l lx ][]

bR is the radial overlap integral. For the Os-1d shell R = —(2/5)!/2.

(21 +3)(21 +2)8(+ +)+ 21 —=1)8(— =)+ 161(1 +1)6(4 —)

8,(1-)=

’

(16)

6(21 +1)?
(1= LAt +)= 2 — DS —)—db(+ =)
2(21+1)
8, (1.0 = {2+ DIBCH )55 =) =26+ =)] |

3(21 +1)?

In particular, for the sd shell d-d matrix elements
8,(d-d)=[148(5-5)+456(3-3)+328(5-3)1/50,
6;(d-d)=[756(5-5)—36(3-3)—48(5-3)]/50,

8, (d-d)=[148(5-5)+145(3-3)—285(5-3)]/50 .

(17)

In Eq. (10) the ISM1 and IVM1 values of g; and g; are
the free-nucleon “g factors” in the isoscalar and isovector
combinations, respectively, and the GT g; value is con-
sistent with the half-life of the free neutron and the 0% to
0% pure Fermi decays’:

g,(ISM1)=0.880 ,
g;(ISM1)=0.500,
g,(IVM1)=4.706 ,

g (IVM1)=0.500 ,

g(GT)=|g /gy | =1.251£0.009 ,
£/(GT)=0.

(18)

In the textbook definitions of these three operators, the
8 coefficients vanish. We use the adjective “free-nucleon”
or “free” to refer to these limits of the operators and to
the values of single-particle matrix elements and total N-
particle shell-model matrix elements which are calculated
from them.

For the isoscalar M1 moments one can make use of the
relation

J=(i|Sz|idp—y+ i | Lz |idr=y
tl3,l4

(19)
to obtain the well-known resul
[p(ISM1)—J /2]/0.380

=(i |Sz|i)p—s+(0.880/0.380){i |8Op |i)sr—s ,
(20)

-
where the numbers in brackets are

g:(ISM1)/[g,(ISM1)—g;(ISM1)] .

We take the left-hand side of Eq. (20) as the observable for
the total (isoscalar) spin contribution (S ) with an opera-
tor of the form of Eq. (10) with

g:(IS)=1

and

g(IS)=0. 21)

Because of this trivial J dependence in the isoscalar mo-
ments, defects in the shell-model calculations show up
much more clearly in the (S') matrix elements than in the
isoscalar moments themselves. The very good percentage
agreement which appears in the usual comparisons of iso-
scalar moments with theory!> stems from this large con-
tribution of a model independent term. For this reason,
the experimental error in the isoscalar moment must be
rather small (usually at most a few percent) for a mean-
ingful comparison to nuclear-structure theory.'6

There are, historically, many definitions of these effec-
tive operators which differ by various constants. Hence,
care must be taken in making comparisons between results
given by different authors; we have not attempted to con-
form here to any particular previous convention.

III. SHELL-MODEL PREDICTIONS
AND RESULTS OF THE FITS

Our results are based on the experimental data given in
Tables II (ISM1 data) and III (IVM1 and GT data). In
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TABLE II. Experimental and theoretical isoscalar moments for sd-shell nuclei.
[p(ISM1)—J/2]/0.380 Theoretical decomposition

(s)® (s) (L) (P) (P)
A J T Exp® Fit® Free? (d-d) (s-5) (d-d) (d-d) (s-d)
T =+ ground state
17 3 + 0.432(2) 0.469 0.500 0.500 0.000 2.000 0.286 0.000
19 T * 0.318(1) 0.376 0.466 0.244 0.223 0.034 —0.001 0.011
21 3 4+ 0.295 0.265 0.303 0.363 —0.059 1.197 0.070 0.007
23 3 3 0.242 0.267 0.318 —0.051 1.233 0.064 0.015
25 3 0.382(2) 0.401 0.399 0.386 0.014 2.102 0.289 —0.018
27 3 5 0.376(3) 0.391 0.373 0.332 0.041 2.128 0.286 0.006
29 T * 0.236 0.179 0.131 —0.155 0.286 0.369 0.214 —0.022
31 T T 0.189 0.204 0.161 —0.161 0.322 0.339 0.178 —0.011
33 3 5 —0.080 —0.192 —0.183 —0.009 1.691 —0.538 0.089
35 3 3 —0.061(3) —0.071 —0.180 —0.175 —0.005 1.680 —0.569 0.100
37 3+ —0.161 —0.323 —0.323 0.000 1.823 —0.536 —0.013
39 3 3 —0.114 —0.149 —0.300 —0.300 0.000 1.800 —0.600 0.000
Other states
18 50 0.921(79)° 0.937 1.000 1.000 0.000 4.000 0.571 0.000
22 10 0.105(24) 0.150 0.160 0.187 —0.027 0.841 0.089 —0.040
22 30 0.647(8) 0.631 0.752 0.821 —0.069 2.249 0.072 0.055
26 50 0.863 0.885 0.839 0.046 4.117 0.568 —0.004
30 10 0.349 0.269 —0.240 0.509 0.731 0.140 0.206
34 30 —0.209 —0.454 —0.434 —0.20 3.454 —1.133 0.138
38 30 —0.332(3) —0.344 —0.689 —0.689 0.000 3.689 —1.109 —0.001
17 T x 0.447 0.500 0.000 0.500 0.000 0.000 0.000
17 3+ —0.187 —0.300 —0.300 0.000 1.800 —0.600 0.000
19 4 0.483(16) 0.492 0.524 0.471 0.054 1.976 0.236 0.031
21 S 0.368 0.366 0.391 —0.025 2.135 0.237 —0.014
23 3 3 0.337 0.317 0.337 —0.021 2.184 0.234 —0.008
39 T =+ 0.429 0.500 0.000 0.500 0.000 0.000 0.000
39 3 0.459 0.500 0.500 0.000 2.000 0.286 0.000
20 2 1 0.609(1) 0.573 0.693 0.615 0.078 1.308 0.067 0.004
24 4 1 0.711 0.766 0.791 —0.025 3.236 0.355 0.025
24 11 0.141 0.115 0.076 0.039 0.885 0.195 —0.038
28 301 0.566 0.506 0.169 0.337 2.495 0.485 —0.099
32 11 —0.109 —0.164 —0.052 —0.112 1.164 —0.424 —0.004
36 2 1 —0.219(1) —0.191 —0.397 —0.393 —0.004 2.397 —0.747 0.075

qUx)=(i|xz|i)p=y-
YExperimental values from Refs. 60 and 61. Errors are given in parentheses when they are significant.
“Theoretical values obtained with the 8 parameters from the 4 =18—38 mass-dependent fit (see Table IV).
Theoretical values obtained with the parameters 8, =8,=58, =0.

°Not included in the least squares fits because of large experimental error.
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TABLE IV. Comparison between theoretical and empirical values of the parameters J;, §;, and §,. The theoretical values are tak-
en from the calculations of Towner and Khanna (Ref. 1), details of which are given in Table V.

) & 5 5,

s P

(d-d) (s-s) (d-d) (d-d)+(s-d) rms?
Isoscalar S®
—0.330 0.048 0 A=17 and 39, no mass dependence, 5, =0
—0.27(2) —0.06(7) 0.045(5) 0 0.0359 A=17-39, no mass dependence, §,=0
—0.30(5) —0.08(8) 0.049(9) 0.03(5) 0.0370 A=17-39, no mass dependence
—0.31(5) —0.11(9) 0.047(9) 0.06(6) 0.0371 A=17-39, (4/28)>% mass dependence
—0.30(5) —0.10(9) 0.051(10) 0.05(6) 0.0385 A=18-38, no mass dependence
—0.32(5) —0.13(9) 0.050(10) 0.08(6) 0.0381 A=18-38, (4/28)>% mass dependence
—0.293 —0.300 0.024 —0.002 Average of A=16 and 40 theory from Table V
Isovector M1
—0.068 0.012 0 A=17, and 39, no mass dependence, §,=0
—0.087(18) 0.015(32) 0.012(5) 0 0.0150 A=17-39, no mass dependence, §,=0
—0.103(25) 0.003(34) 0.014(5) 0.021(23) 0.0152 A=17-39, no mass dependence
—0.110(27) —0.006(37) 0.013(5) 0.028(24) 0.0151 A=17-39, (4/28)>% mass dependence
—0.108(30) 0.008(39) 0.013(8) 0.016(30) 0.0170 A=18-38 no mass dependence
—0.116(33) —0.001(42) 0.013(8) 0.022(30) 0.0169 A=18-38, (4/28)>% mass dependence
—0.090 —0.108 0.011 0.042 Average of A=16 and 40 theory from Table V
Isovector GT
—0.206 0.020 0 A=17 and 39, no mass dependence, §,=0
—0.234(18) —0.209(35) 0.011(4) 0 0.0156 A=17-39, no mass dependence, 5,=0
—0.243(34) —0.218(47) 0.012(6) 0.001(29) 0.0164 A=17-39, no mass dependence
—0.271(32) —0.242(43) 0.010(5) 0.028(27) 0.0140 A=17-39, (4/28)"% mass dependence
—0.246(16) —0.197(21) 0.003(3) —0.004(13) 0.0073 A=18-38, no mass dependence
—0.276(20) —0.227(26) 0.004(4) 0.018(16) 0.0083 A=18-38, (4/28)*3 mass dependence
—0.181 —0.196 0.004 0.022 Average of A=16 and 40 theory from Table V

2rms deviation for quantities tabulated in Tables II and III.
®8(ISM1) = (0.380/0.880)8(IS).

these tables the data are compared with the predictions
obtained by combining the shell-model Dj;: with the free-
nucleon values of the ij and with the values of the Sjjf’
obtained in our “final” fit. The various fits will be dis-
cussed in detail below. The 8 parameters obtained from
these fits are presented in Table IV in comparison with
the calculations of Towner and Khanna.! This compar-
ison will be discussed in Sec. V.

In Table II, as noted above, we express the isoscalar mo-
ments in terms of the isoscalar spin (IS) expectation value
|

[see Eq. (20)]. The comparison of the isovector observ-
ables is facilitated by dividing the IVM1 moments by
g,(IVM1) and by dividing the T =+ —+ GT matrix ele-
ments by the factor

2g,(GT)X[(2J +1)(J +1)/71'/%,

as has been done in Table III. The theoretical values for
these divided isovector quantities as well as the isoscalar
spin expectation values are all given by

(Sz7)+(81/8s){Lz7) +(80p7) =(Sz7)(d-d)+(Sz7)(s-s)+(g;/g;){Lz7)(d-d)
+8,(d-d){(Sz7)(d-d)+8,(s-5){Sz7)(s-5)+8/(d-d){Lz7)(d-d)
+8,(d-d){ Pz7)(d-d)+s,(s-d){ P77 )(s-d) , (22)

where 7=1 for the IS matrix elements and =7, for the
IVM1 and GT matrix elements. The quantity g;/g; is
equal to 0, 0.106, and O for IS, IVM1, and GT, respective-
ly. The five sd-shell matrix elements involving the S, L,
and P operators are listed in Tables II and III for the vari-
ous AJT states of our data set. The single-particle values
of (sz) are particularly simple: 5 for j=I+7 orbits
and (—+) + 1/(21 + 1) for j =1 — & orbits.

Within the isovector category, the M1 and GT matrix

elements both involve the same shell-model expectation
values of the S, L, and P operators. The total GT and
IVM1 shell-model matrix elements differ in zeroth order
in that the coefficients of the L term are different. This
term appears only to order §; in the GT expression. We
will emphasize here the importance of the quantitative
dissimilarities between such matrix elements which arise
because of the non-negligible contributions of the / term in
some cases and, more fundamentally, because of intrinsic



2404

differences between some of the higher-order corrections
to weak and to electromagnetic processes.

The comparison between experiment and theory for the

=1 states is presented graphically in Fig. 1. In the top
panels of Fig. 1 we plot the absolute values of the results
as given in Tables II and III. In the middle panels the
same points are plotted in a representation in which only
the S portions of the theoretical values are shown and in
which the theoretical values (fitted parameters) of L and P
have been subtracted from the corresponding experimental
values. In the bottom panels, the ratios of experiment to
theory for these points are shown, with the L and P con-
tributions subtracted as in the middle panels.

The experimental data we consider are generally known
to much greater precision than can be calculated, and
hence, they were given equal weight in the fits. The un-
certainties we assign to our extracted correction parame-
ters are determined in the usual way, by assigning a ficti-
tious error to the experimental data such as to give a re-
duced chi-square of unity.
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We initially made fits to the data in which all five of
the & parameters in Eq. (11) were allowed to vary. By an
order of magnitude, the least well determined parameter
was §,(s-d). This could be expected from the small con-
tribution that the operator P(s-d) makes to the total ma-
trix elements in Tables II and III. In the calculations of
Towner and Khanna,' the values of 8,(d-d) and 8,(s-d)
are nearly equal (see Table V). With these motivations, we
reduced the fits to ones in which only four, rather than
five, parameters are varied by combining the P(d-d) and
P (s-d) terms into a single “P” term:

8,P =5,(d-d)P(d-d)+8,(s-d)P(s-d) . (23)

The rms deviations obtained in the four-parameter fits
(see Table IV) are nearly the same as those obtained in
three-parameter fits in which the values of §, are con-
strained to be zero. This is not because the matrix ele-
ments of the operator P are small but because the values
of the parameters §, are in fact determined by the data to
be nearly zero. Even though the uncertainties in the
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FIG. 1. Comparisons of normalized experimental values of the isoscalar and isovector magnetic dipole moments (ISM1 and IVM1,

respectively) and Gamow-Teller beta-decay matrix elements (GT) for the mirror ground states of 4=17—39 nuclei with predictions
of mixed-configuration sd-shell model wave functions. The solid lines are obtained with single-particle matrix elements set to the
free-nucleon values, while the dashed lines are obtained with single-particle matrix elements set to the “final fit” values of the present
study. The normalization functions are defined in Tables II and III. The top three panels show the renormalized experimental and
both free-nucleon and final fit theoretical values. The middle three panels show only the spin components of these matrix elements.
The “experimental” values are obtained by subtracting the final fit L and P theoretical values from the experimental values shown in
the top panels. The bottom three panels show the ratios of experimental to theoretical values for the spin components of these matrix
elements as they are defined for the middle three panels.
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TABLE V. Details of the theoretical calculations for the § parameters.

8 8 & 5y 8,
(d-d) (s-s) (d-d) (d-d) (s-d)
Isoscalar S
—0.229 —0.247 0.026 —0.004 —0.005 A=16 theory from Towner and Khanna (Ref. 1)
—0.358 —0.352 0.021 —0.001 0.000 A=40 theory from Towner and Khanna
Details of A =40 theory from Towner and Khanna
(1) —0.121 —0.105 0.011 —0.004 —0.004 2%w configuration mixing
(2) —0.287 —0.287 0.013 0.001 —0.001 > 2%w configuration mixing
3) 0 0 0 0 0 Isobar currents, RPA direct
4) 0 0 0 ) 0 0 Isobar currents, RPA exchange
(5) 0.000 —0.003 0.000 —0.003 —0.001 Isobar currents, higher order
(6) 0.021 0.016 0 0.006 0.008 Mesonic exchange currents, zeroth order
(7) 0.000 0.003 0.000 0.003 0.004 Mesonic exchange currents, RPA
(8) 0.029 0.026 0.000 —0.004 —0.006 Mesonic exchange currents, CP
Isovector M1
—0.079 —0.103 0.0115 0.0455 0.0464 A=16 theory from Towner and Khanna (Ref. 1)
—0.101 —0.112 0.0104 0.0384 0.0377 A=40 theory from Towner and Khanna
Details of 4 =40 theory from ToWner and Khanna
(1) —0.065 —0.058 —0.0225 0.0104 0.0094 2#iw configuration mixing
(2) —0.115 —0.125 —0.0261 0.0018 —0.0078 > 2#w configuration mixing
(3) —0.081 —0.085 0.0002 0.0155 0.0221 Isobar currents, RPA direct
4) 0.042 0.045 0.0000 0.0001 0.0031 Isobar currents, RPA exchange
(5) 0.001 —0.002 —0.0002 0.0094 0.0122 Isobar currents, higher order
(6) 0.053 0.051 0.0363 —0.0161 —0.0214 Mesonic exchange currents, zeroth order
(7 0.002 0.003 —0.0004 —0.0003 0.0011 Mesonic exchange currents, RPA
(8) 0.061 0.059 0.0232 0.0176 0.0190 Mesonic exchange currents, CP
Isovector GT
—0.151 —0.167 0.005 0.0164 0.0276 A=16 theory from Towner and Khanna (Ref. 1)
—0.212 —0.224 0.004 0.0162 0.0259 A=40 theory from Towner and Khanna
Details of 4 =40 theory from Towner and Khanna
(1) —0.063 —0.055 0.002 0.0065 0.0076 2%w configuration mixing
(2) —0.113 —0.119 0.001 0.0010 0.0028 > 2fiw configuration mixing
(3) —0.081 —0.085 0.000 0.0156 0.0221 Isobar currents, RPA direct
4) 0.042 0.045 0.000 0.0002 0.0031 Isobar currents, RPA exchange
(5) 0.002 —0.001 0.000 0.0102 0.0146 Isobar currents, higher order
6) —0.010 —0.010 0 —0.0114 —0.0167 Mesonic exchange currents, zeroth order
7) 0.002 0.003 0 —0.0013 —0.0015 Mesonic exchange currents, RPA
(8) 0.026 0.017 0.000 0.0049 0.0071 Mesonic exchange currents, CP
9 —0.019 —0.019 0 —0.0092 —0.0131 Relativistic

varied parameters are smaller in the fits in which §, is
constrained to be zero, there is no theoretical reason why
8, should be exactly zero. The remaining discussion will
be concerned with the results of the four-parameter fits.

The final results were obtained by fitting the 4 =18—38
data with mass-dependent & parameters of the form

8(A)=58y(4/28)% . (24)

Even though the fitted parameter values depend somewhat
on the power X, the rms deviation changes little over the
range X=0 to 1 due to a correlation between X and the &
parameters. Thus, we have chosen a value of X=0.35
based on the calculations of Towner and Khanna.! This is
based on their results for §; given in Table V for 4A=16
and 40 which give for the d orbit X=0.49, 0.28, and 0.37
for ISM1, IVM1, and GT, respectively, and for the s orbit
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X=0.39, 0.09, and 0.32, respectively. Comparisons of the
parameter values obtained with X=0 and 0.35 are made in
Table IV.

The rationale for omitting 4=17 and 39 from the final
fit was to determine the extent to which the observables
for the single-particle states in these nuclei are consistent
with what can be extracted from the 4=18—-38 “mul-
tiparticle” states. The parameter values extracted from
both 4=17—39 and 4= 18-—38 fits are compared in Table
IV. Based on a comparison of the rms deviations, we con-
clude that for M1 observables, the 4=17 and 39 data are
quite consistent with 4=18—38. However, for GT ob-
servables they are less consistent, with the rms deviation
becoming a factor of 2 larger when the A=17 and 39 data
are added to the 4 =18—38 data.

IV. DISCUSSION OF CALCULATED AND
MEASURED VALUES OF OBSERVABLES

A. Isoscalar magnetic dipole moments

The experimental isoscalar magnetic moment data are
compared with both the free-nucleon and empirically
corrected shell-model predictions in Table II. The free-
nucleon predictions have magnitudes larger than the ex-
perimental values at both the beginning (ds/,-like) and
end (d3/,-like) of the 4=17—39 region and magnitudes
smaller than experiment in the 4=30 (s, /,-like) region.
The empirically corrected predictions reproduce experi-
ment much better than do the free-nucleon values. How-
ever, the level of disagreement between the fitted and ex-
perimental values is still considerably higher than that
which we find for the IVM1 and GT phenomena.

From the S, L, and P matrix elements given in Table II
the essential features of the predicted structures of the
states can be inferred. The generic similarities between
the Hamiltonian-independent, single-hole 0d;,, wave
function for the 5 ground state of A=39 and those of
the 0d3,,-dominated 3 ground states of 4=33, 35, and
37 are evident from these decompositions, as are the
analogous similarities between the single-particle 0ds,,
wave function of the =~ ground state of A=17 and those
of the 37 states in 4=19, 21, 23, 25, and 27. The dom-
inant role of the 0ds,, orbit in the wave functions of the
-;—* ground states of 4=21 and 23 is revealed by the very
different relationship of (L) to (S) they evidence com-
pared to that of the < ' states of 4=33, 35, 37, and 39.

The %+ ground states of 4=29 and 31 are predicted to
have similar structures. In both wave functions there is a
significant contribution from (L) and the /=2 and 0
compenents of (S) have opposite signs. These wave
functions have the signature of a dominant 1s,,, charac-
ter, with the most important admixtures being of 0d;,,
origin. The 4A=19 % ground state, on the other hand,
shows a completely different structure, in which the con-
tribution of (L) is negligible and the /=2 and O com-
ponents of {S) have the same sign.

Several of the doubly-odd T=O0 states are seen to be
simply related to even-odd T =5 states. The 3% states of
A=38 and 34 can be grouped with the %+ states of
A=33, 35, 37, and 39. The 11 state of 4=30 can be
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grouped with the -+ states of 4=29 and 31 and the 5+
states of 4=18 and 26 can be grouped with the %+ states
of A=17-27.

The values of 8,(ISM1,s-s) and 8,(ISM1) are not well
determined by the available data. The value obtained for
8,(ISM1,s-s) has the same sign but only one-third the
magnitude of the value of §;(ISM1,d-d) and the uncer-
tainty associated with this value of §,(ISM1,s-s) is as large
as the value itself. The value obtained for 8,(ISM1) is
small and positive and, with its uncertainty, is consistent
with zero.

The lack of precision with which the correction term
8,(ISM1,s-s) is determined by the present analysis reflects
the relationships of the free-nucleon shell-model predic-
tions for the %’L states of A=19, 29, and 31 to the experi-
mental values. The 4=19 prediction is too large and the
A=29 and 31 predictions too small. Hence, to the degree
that the shell-model predictions are dominated by their
(S )(s-s) components, a correction which improves agree-
ment for A=19 tends to cause a deterioration of the
agreement for A=29 and 31, and vice versa. These three
are the only cases in which the 1s,,, orbit is predicted to
be important and for which measured values exist. Other
states in which this orbit is predicted to play a dominant
role are the 31, T=1 state of 4 =28, the 1+, T=0 state of
A=30 and, to a lesser degree, the 1+, T=1 state of 4=32.
Experimental measurements in these three additional cases
should significantly improve the precision with which the
correction term §;(ISM1,s-s) is determined.

The fundamental problem in determining this correc-
tion, however, is associated with the reliability of the
shell-model expectation values. All of the available and
potentially available data which bear on this term come
from states which are predicted to have richly complicat-
ed structures. This can be inferred from a comparison of
predicted expectation values for the 3 states to those of
the pure ls,,, single-particle state (see the entry for
A=17,J = % in Tables II and III). Hence, relative to the
determination of the 0d;,, and Ods,, corrections, for
which there are data from pure (in the model context)
single-particle states as well as from a succession of fair
approximations to single-particle structure, the determina-
tion of the 1s,,, correction depends completely upon the
details of the specific shell-model wave functions used in
the analysis. While additional experimental data will help
in allowing the analysis to average over isolated defects in
these wave functions, the fact that all the feasible exam-
ples except that for A=19 are clustered in the 4=28-—32
region means that a systematic defect in the predicted
structures of this region will propagate into the extracted
value of §,(ISM1,s-s).

B. Isovector magnetic dipole moments

The experimental isovector magnetic-moment values
are compared with both the free-nucleon and empirically
corrected shell-model predictions in Table III. The free-
nucleon predictions are close to the measured values of the
A=17, 19, 25, and 27 J":%+ states, even though the
magnitudes of these moments decrease progressively as 4
increases (see Fig. 1). This experimentally observed
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quenching with increasing 4 (see also Fig. 1) emerges
from the shell-model predictions as a consequence of the
A-dependent configuration mixing induced by the Hamil-
tonian. ‘Hence, it does not constitute evidence of the need
for A-dependent, higher-order corrections to the descrip-
tion of the isovector M1 process. From the decomposi-
tions of the isovector shell-model expectation values
presented in Table III we see that the quenching can be as-
sociated principally with a diminution of (L ) in the mul-
tiparticle systems relative to the single-particle value. The
2%, T=1 state of 4=20 and the > ', T==1 state of
A=21 are dominated by the ds,, orbit and the relation-
ships between the observed and calculated values of their
isovector moments are consistent with those of the &
states.

The small negative values of (IVM1) observed for the
%+ states of 4=35 and 39 are less negative than the small
values calculated for them with the free-nucleon assump-
tion, the overall smallness of the magnitudes stemming
from the cancellation of the (L) and (S) contributions
to the d;,, moment. The decompositions for the %+
states show that the expectation values obtained from the
multiparticle wave functions deviate markedly from the
single-particle values of both (S) and (L ). In addition,
these deviations are seen to vary significantly with 4. The
A=35 values, both observed and calculated, are at least
three times smaller than their 4=39 counterparts. The
only other experimental value for a d3/,-dominated state
is that of the 2%+, T=1 state in 4=36. However, the
small value of the isovector moment for this state stems
from the dominance of the ds,, orbit in its wave function
and particle-hole symmetry, which requires that the iso-
vector moment for the (half-shell) (d;,,)* configuration
equal zero. The best chances to obtain the needed aug-
mentation of experimental information on the behavior of
the d;,, orbit in the context of isovector M1 phenomena
lie in measurements of the 4 =33 and 37 ground-state mo-
ments.

Of the %+ states with measured isovector moments,
which occur in 4=19, 29, and 31, the values for 4=19,
both experimental and calculated, are close to the single-
particle value for the s;,, orbit. The magnitudes of the
A=29 and 31 values are more than a factor of 2 smaller.
The shell-model decompositions suggest that these values
of the moments are misleading insofar as the structures of
the states are concerned, however. The predicted 4=19
value is seen to be dominated by /=2 contributions and
the contributions of the /=0 orbit are larger in the 4=29
and 31 cases than in A=19. In none of these wave func-
tions is the /=0 contribution strongly dominant, however,
and this makes the extraction of the correction term
8;(IVM1,s-5s) difficult. In each of these three examples,
the /=2 contributions are both very important and, more-
over, very different in each state. The only other state for
which the /=0 contribution is significant and for which
experimental data exist is the 2+, T=1 state of 4=20.

The free-nucleon shell-model predictions for these four
cases do not appear to have any systematic relationship
with the experimental values. The free-nucleon value is
10% too large for A=19 and 5—10% too small for
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A=20, 29, and 31. These results for the isovector values
of 1s;,-dominated states are reminiscent of those ob-
tained for the isoscalar values of these states. Unlike the
results for the isoscalar moments, however, the correction
terms 8(IVMI1) yield values of the isovector moments
which are in significantly better agreement with experi-
ment than are the free-nucleon values. The shell-model
decompositions suggest that experimental measurements
of the 3%, T=1 state of 4=28 and the 11, T=1 state of
A =32, respectively, would provide further information on
the behavior of the ls;,, orbit, but, as with the presently
available data, the contributions to their moments of the
I=2 orbits are of comparable importance to that of the
=0 orbit. Again, we add the cautionary note that the
multiparticle shell-model predictions are more important
to the analysis of the ls;,, orbit than of the Ods,, and
0d 5/, orbits. Defects in the shell-model results for the re-
gion A=28-32 will correspondingly vitiate conclusions
drawn from the present method of analysis.

C. Gamow-Teller beta decay matrix elements

The remaining area of experimental information we
consider in this study is comPrised of the Gamow-Teller
beta decays between the T'= - mirror ground states. The
shell-model expectation values presented in Table III for
these states are the basis for our theoretical predictions for
the Gamow-Teller matrix elements just as they were for
the IVM1 matrix elements. The critical change intro-
duced in calculating the GT rather than the IVM1 matrix
elements from these expectation values is that the (L)
term contributes only through the higher-order correction
term &;(GT,d-d) rather than in first order via the coeffi-
cient g;. Hence, to lowest order, the GT matrix elements
are functions only of the spin expectation values.

We see from Table III that the free-nucleon shell-model
predictions of M(GT), which are functions of (S )(s-s)
and {S)(d-d) alone, have a quite different relationship
with the corresponding experimental values than do the
analogous predictions for £(IVM1) with the experimental
p(IVM1) values. This relationship is quite simply charac-
terized in that the theoretical predictions are too large, by
factors ranging from about 1.2 near A=17 to about 1.5
near A=39 (see Fig. 1). The A-dependent corrections
8;(GT,s-s) and 8,(GT,d-d) suffice to bring the 4=19—37
theoretical values into uniform close agreement with the
data. The same (d-d) term also brings the 4=39 single-
particle value into close agreement with experiment but
leaves a discrepancy for A=17 which, while small, still
dominates the rms deviation between the shell-model pre-
dictions with higher-order corrections and experiment.

V. COMPARISONS WITH CALCULATIONS
OF HIGHER-ORDER CORRECTIONS

We now attempt to relate our empirical values of the
correction terms § to corrections calculated to arise from
nuclear configuration mixing outside the sd shell (CM),
from isobar currents (IC’s), mesonic-exchange currents
(MEC’s), and relativistic effects (RE’s). The most recent
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and complete theoretical work in this area for the sd shell
has been carried out by Towner and Khanna.! Previous
work in this field is summarized and referenced by Town-
er and Khanna, and our general introductory remarks here
will be brief.

The limitations associated with considering the M1
operators in terms of only nucleonic degrees of freedom
have been long recognized.!”~?° The inclusion of non-
nucleonic effects has become a standard (but not unam-
biguous) part of more recent M1 and GT effective opera-
tor calculations.?! ~2>%%24 These non-nucleonic degrees of
freedom are generically referred to as “mesonic-exchange
corrections.” In recent years much attention has been
given to the particular corrections which arises from the
excitation of one or more of the nucleons into the resonant
A(1232) isobar state.”> 37 For this reason we will consider
the IC’s separately and refer to all other non-nucleonic de-
grees of freedom as MEC’s. It is important to note that,
since the IC corrections are calculated nonrelativistically,
the IC correction to the s-7 operator is the same for both
IVM1 and (IV)GT observables; in our notation

8, (IC,IVM1)=4§,(IC,GT) .

However, most of the MEC corrections must be calculated
from relativistic Feynman diagrams and, hence, these
corrections depend on whether the operator is vector (as
for the M1) or axial vector (as for the GT).?*! It turns
out that theoretically the MEC corrections are much
larger for the M1 operator than for the GT operator; in
our notation, | §;(MEC,IVM1)| >>|6,(MEC,GT)]|.

One must also consider the corrections to the M1 and
GT operators which arise from nuclear configuration mix-
ing (CM) beyond our assumed closed-shell configurations
for %0 and *°Ca. There are no first-order (AE=2%w
1p-1h) core-polarization corrections, since the [ and s
operators cannot excite particles into different orbital
states. (Of course, within the sd shell, our model wave
functions explicitly take account of the mixing between
the Ods,, and Od;,, spin-orbit partners.) Second-order
calculations (AE >2#%w 2p-2h) have been carried out for
some time,3®—*! but it has been discovered only rather re-
cently that these corrections become very large when in-
termediate states up to about 127w are included.>>! The
tensor interaction is responsible for the importance of
these highly excited intermediate states. Since these are
nonrelativistic calculations,

8,(CM,IVM1)=8,(CM,GT)

in the absence of the zeroth-order M1 L operator. Even
with the inclusion of the L operator this is still a good ap-
proximation (see Table V).

In addition to the above corrections, one could consider,
for example, local state-dependent 4p-4h CM corrections.
Indeed, many of the lowest excited states of 0 and #°Ca
are predominantly 4p-4h in nature. This type of CM has
been examined in the case of 4=39.2%423 Although we
should not ignore this type of CM, its importance is
thought to decrease away from shell closures as the for-
mation of four-particle cluster configurations across the
closed shells becomes blocked by the increasing numbers
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of particle or holes. Since our fits do not include the
A=17 and 39 data, the difference between our predictions
for these data based on the corrections from the
A=18-38 fit and the experimental values (see Tables II
and III) might be taken as an indication of the size of the
4p-4h CM effects.

Finally we mention the RE corrections to the GT opera-
tor*> =% which have been included in the Towner and
Khanna calculations. The relativistic corrections for the
M1 operator are of order (1/M)* (where M is the nucleon
mass) and, for consistency, have been ignored, since all
other MEC’s and relativistic corrections have been calcu-
lated only to order (1/M)>.!

In Table V, the individual contributions to the 8 param-
eters from all of the above effects are given from the
A=40 calculations of Towner and Khanna."*® The total
values for both the 4=16 and 40 calculations are also
given in Table V. The average of the totals for 4=16 and
40 are compared to our empirical values in Table IV.

There is considerable controversy over the relative im-
portance of the IC and CM corrections in the quenching
of the GT matrix elements.*”! Part of this controversy
centers around what should be used for the interaction be-
tween nucleons and isobars in nuclei. Values of §; and 5
obtained with the interactions used by Oset and Rho?® and
Lawson®” are compared with the results of Towner and
Khanna in Table VI.

In the following sections we will discuss some individu-
al points about the comparisons made in Tables IV—VI
and in Fig. 1.

A. Isoscalar M1 corrections

The first-order and random-phase approximation
(RPA) isobar current diagrams do not contribute to the
isoscalar moments since the operator must flip the isospin
in going between the nucleon and the delta isobar. (For
analogous reasons, the w-exchange current contributes
only to the isovector moments.) This leaves the short-
range p-m-y and @-m-y currents as the most important
isoscalar MEC contributions. There are two approaches
to these MEC calculations in the literature. In one ap-
proach they are connected with the velocity dependence of
the nuclear interaction, in particular with the spin-orbit
term. In this case the method of minimal substitution
p—p—(e/c)A can be used to deduce a two-body isoscalar
magnetic-moment operator*®*>!® which, when averaged
over the closed shells, gives an effective one-body opera-
tor. Raman et al.*® obtained with this method (using the
Hamada-Johnston potential) §;(IS,MEC)= —0.050 for the
d orbit at A=40. In the other approach, these correction
terms can be obtained from a microscopic calculation.
Towner and Khanna (who include also the two 7 ex-
change) obtain for the d orbit (see Table V)
8,(IS;MEC)=0.050 for 4=40. Hyuga et al.* in a similar
calculation obtain the value 0.034 for A=40. Our com-
parisons and conclusions will be based on the microscopic
results of Towner and Khanna. However, we note that
these conclusions will not be firm until the MEC correc-
tions are better understood.

From Table V it is seen that in the Towner-Khanna cal-
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TABLE VI. Comparisons between various isobar-current calculations.

A 1-r 8 8, Order® Interaction® Reference

16 p-p —0.143 0.021 RPA OR Oset and Rho (Ref. 28)°
—0.110 0.015 RPA(D) TK without FF Towner and Khanna (Ref. 1)
—0.027 0.019 RPA TK without FF Towner and Khanna (Ref. 1)
—0.022 0.022 RPA TK with FF Towner and Khanna (Ref. 1)
—0.018 0.029 RPA + CP TK with FF Towner and Khanna (Ref. 1)
—0.025 0.032 1st SP Lawson (Ref. 37)¢

16 d-d —0.100 0.027 RPA OR Oset and Rho (Ref. 28)°
—0.079 0.019 RPA(D) TK without FF Towner and Khanna (Ref. 1)
—0.036 0.023 RPA TK without FF Towner and Khanna (Ref. 1)
—0.028 0.025 RPA TK with FF Towner and Khanna (Ref. 1)
—0.027 0.033 RPA + CP TK with FF Towner and Khanna (Ref. 1)
—0.023 0.031 Ist SP Lawson (Ref. 37)¢

40 d-d —0.151 0.016 RPA OR Oset and Rho (Ref. 28)°
—0.136 0.014 RPA(D) TK without FF Towner and Khanna (Ref. 1)
—0.047 0.012 RPA TK without FF Towner and Khanna (Ref. 1)
—0.039 0.016 RPA TK with FF Towner and Khanna (Ref. 1)
—0.037 0.026 RPA + CP TK with FF Towner and Khanna (Ref. 1)
—0.034 0.024 1st SP Lawson (Ref. 37)¢

2The orders are denoted by: “l1st” for the 1st-order isobar-nucleon-hole calculation, “RPA” for the isobar-nucleon-hole calculation in
the random-phase approximation, and “RPA + CP” includes on top of the RPA series higher order nuclear core-polarization correc-
tions (the row labeled 5 in Table V). All calculations include both direct and exchange terms either implicitly (OR) or explicitly (TK
and SP) except the calculation labeled RPA(D) which is only the direct contribution.

*The interactions are denoted by: “OR” for the Oset-Rho interaction with g, =0.6, “TK” for the Towner-Khanna interaction, and
“SP” for the Smith-Pandharipande interaction (Ref. 62). All calculations include the effects of short range correlations either impli-
citly (OR) or explicitly (TK and SP). In addition, Towner and Khanna included explicit nucleon form factor corrections (FF) in their

calculation. For comparison their results without the FF corrections (Ref. 46) are also given.
°The breakdown of the Oset results into 8; and 8, was given by Towner (Ref. 46).
9In order to compare with calculations of Towner and Khanna based on the quark model for the 7AN coupling constant, the results

given by Lawson are multiplied by 0.613 (Ref. 37).

culations the configuration-mixing (CM) correction is the
most important mechanism for quenching the isoscalar
spin matrix elements. The Towner-Khanna results for
CM are similar to those of Shimizu, Ichimura, and Ari-
ma.?2 The theoretical values for 8(IS,d-d) are in good
agreement with our empirical values (Table IV). The
theoretical values for &,(IS,s-s) are similar to the
8, (IS,d-d) values but our empirical values of 8,(IS,s-s) are
only one-third as large. As mentioned in Sec. IV A, the
empirical value extracted for 8,(IS,s-s) is very sensitive to
the details of the configuration mixing in the sd-shell
wave functions for 4=29 and 31. For this reason we do
not attach too much significance to a discrepancy of this
absolute magnitude.

We take the level of agreement obtained between the
empirical and theoretical values of §(IS,d-d) as an indica-
tion that the basic ingredients of the CM calculations are
correct. Less than half of the theoretical values of §(IS)
comes from the 27w CM (see Table V). It can be shown!
that, since the isoscalar M1 operator commutes with the
central interaction, only second-order CM induced by
noncentral interactions contributes to 8,(IS). These points
illustrate the importance of the tensor force.

The empirical value of —0.05+0.01 we obtain for
6;(IS,d-d) is twice as large as the value obtained in the
Towner-Khanna calculation. Our empirical value for

8,(IS) is zero within its uncertainty and is in agreement
with small Towner-Khanna values. We believe the
discrepancy for §; is significant. The value of §,; is small
but it is crucial in the understanding of the large quench-
ing near the end (d3/,-like part) of the sd shell relative to
the smaller quenching near the beginning (ds,-like part)
of the sd shell (see Table II and Fig. 1). This can be seen
by using Eq. (15) with the empirical values §; = —0.32,
8,=0.05, and 8, =0.06 to obtain the following:

8(5-5,IS)= —0.324+40.05+ (%) x0.06= —0.09 ,

8(3-3,IS)= —0.32—6X0.05+2%0.06=—0.50 ,
and

8(5-3,IS)= —0.32—1X0.05+(+)x0.06=—0.34 .

As a final comment concerning the isoscalar spin expec-
tation value we note that the configuration-mixed wave
function can be expressed in terms of the sd-shell configu-
ration |i,sd) plus all remaining configurations outside
the sd shell |i,R)

|i)=(1—a®)'"?|i,sd)+a |i,R) .

Since (i,sd |Sz|i,R)=0, the spin expectation value is
given by
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(i|Sz|i)=(1—a*(i,sd |Sz|i,sd)
+a*(i,R|S|i,R) .

If we assume that a? and (i,R | Sz |i,R) are state and
mass independent, then an 4=18—38 fit to these quanti-
ties gives a2=0.30(4) and

(i,R | Sz |i,R)=0.29(7)

with an rms of 0.053. This rms is not much larger than
the rms of 0.038 obtained in the four parameter fit. From
this we would conclude that the wave functions for
A=16—40 nuclei are only about 70% pure sd configura-
tions. However, it is not at all clear that {i,R | Sz |i,R)
should be state and mass independent, and it would be in-
teresting to investigate the microscopic CM calculations
further in this respect.

B. Isovector GT corrections

In discussing the IVM1 and GT operators it is impor-
tant to note from Table V that the configuration-mixing
and isobar-current corrections to the spin parts of these
two operators are essentially identical, whereas the
mesonic-exchange currents make larger contributions to
the effective IVM1 operator than to the effective GT
operator. Thus, in this section we discuss the GT opera-
tor, and leave the discussion for the more complicated
IVM1 operator to Secs. VD and VE.

For the GT operator we obtain the rather small empiri-
J
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cal upper limits of §,(GT)<0.008 and 8,(GT) <0.034.
These are consistent with the values of 0.008 and 0.022,
respectively, which were calculated by Towner and Khan-
na. We note, however, that more precise information on
8,(GT) has recently been obtained from an analysis of all
GT beta decal in the sd shell® and from a measurement of
the A=39 27 to 17 beta transition.! These new 8,(GT)
results will be published separately.®

For the 8;(GT) terms, our analysis unambiguously gives
quite large empirical values, as shown in Table IV. The
values in Table IV incorporate our assumed (4 /28)%%
mass dependence and are compared there with the average
of the values for A=16 and 40 which are calculated by
Towner and Khanna. In order to simplify the discussion,
the following comparisons will be made with the 4=40
calculations. The appropriately scaled empirical values
are obtained by multiplying the values in Table IV by
(40/28)*3° to obtain

6;(GT,d-d)=—0.31+0.02
and

8,(GT,s-s)=—0.26+0.03 (25)

(A=40 empirical values). The Towner-Khanna calcula-
tions for the d and s orbits are very similar. Their A =40
results for the d orbit can be decomposed into the separate
CM, IC, MEC, and RE corrections. (The total given in
Table V differs slightly due to roundoff error)

8,(GT,d-d)=—0.176(CM)—0.037(IC)+0.018(MEC) —0.019(RE)= —0.214 . (26)

It is interesting to compare this to the result obtained
with the prescription of Oset and Rho.?® The Oset-Rho
prescription is based on the observation that for the triton
beta decay the contributions from the corrections which
involve the tensor correlations (most of the contributions

from the rows labeled 2, 5, and 8 in Table V) tend to can-
|

I
cel.2=>* In the Towner-Khanna calculations this cancel-
lation also tends to occur for 4=3 (see Table 7 of Ref. 1).
It has been hypothesized that this cancellation persists in
heavier nuclei.”*?®>* Leaving out the contributions from
the rows labeled 2, 5, and 8 in Table V, one obtains

85 (GT,d-d)=—0.063(CM, 27%iw) —0.039(IC, without CP)—0.008( MEC, without CP)—0.019(RE)=—0.129 .

The disagreement between the totals of Eqgs. (26) and (27)
means that there is not much cancellation between the
omitted terms in this case.

In addition one can make the comparisons using the
Oset-Rho (OR) interaction?® for the isobaric-current cal-
culation (IC,OR) (see Table VI)
8,(GT,d-d)=—0.176(CM)—0.151(IC,OR)

+0.018(MEC)—0.019(RE)

=-—0.328, (28)

8;(GT,d-d)= —0.063(CM, 2%w)—0.151(IC,OR)
—0.008(MEC, without CP)—0.019(RE)
=—0.241. (29)

27

r
Arima et a recently investigated the reason for the

large difference between the IC contributions obtained
with the Towner-Khanna and Oset-Rho interactions.
They conclude that the isobar calculation using the Oset-
Rho (Landau-Migdal) type interaction with the value of
g reduced from 0.6 to about 0.35 is compatible with the
results obtained using the Towner-Khanna one-boson ex-
change potential (OBEP)-type interaction.

Comparison of all of the above results with our empiri-
cal value of —0.31+0.02 favors Eq. (28), in which the
core-polarization and isobaric-current contributions are
both important and about equal in magnitude. However,
since the strength of the short-ranged part of the Oset-
Rho interaction can be considered a free parameter, agree-
ment can also be obtained within the framework of the
Oset-Rho prescription [Eq. (29)] by increasing g from 0.6
to about 0.7.

L 47
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C. Isobar-current contributions to GT as deduced
from a comparison of ISM1 and GT matrix elements

Within the framework of the Towner-Khanna—type
calculations, a method which has been used to separate the
configuration-mixing (CM) and isobar-current (IC) contri-
butions to the quenching of the GT matrix elements in-
volves arranging terms into the form®*°

8,(GT,IC) =8,(GT)exp—8,(GT,MEC),
—8,(GT,RE)y, —8,(GT,CM)y,
=8,(GT)exp—8,(GT,MEC)y,
—8;(GT,RE)y, — R8,(IS,CM)
=8,(GT)exp—85(GT,MEC)y,
—8,(GT,RE)y— R [8,(IS )y

—8,(IS,MEC) ] .
(30)

1
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The isoscalar mesonic-exchange current (MEC) and rela-
tivistic (RE) corrections in the last lines of this expression
are relatively small and can hence be estimated theoreti-
cally with fair reliability [see, however, the comments con-
cerning §,(IS,MEC) in Sec. V A]. It is expected that R,
the ratio

8,(GT,CM),;,/8,(IS,CM),, ,

is less model dependent than is either of these quantities
individually. For example, R would not depend upon the
overall strength of the two-body interactions used for the
CM calculations. Thus, Eq. (30) relates the quantity of in-
terest on the left-hand side, the IC correction to a com-
bination of experimental and relatively well understood
theoretical quantities on the right-hand side.

The numerical results for the d and s orbits are [the
numbers in parentheses ( ) indicate the experimental er-
rors]

8,(GT,IC,d-d)=[—0.31(2)] —[+0.018]— [ —0.019] —0.43{[ —0.36(5)] — [ +0.050]}

=-—0.13+0.03,

8,(GT,IC,s-5)=[ —0.26(3)]—[ +0.018]—[ —0.019] —0.44{[ —0.15(10)] — [ +0.045]}

=—0.17%£0.05,

where the order of the numbers is the same as the order of
the terms in Eq. (30). The theoretical values for the
8;(IS,MEC) and 6,(GT,RE) are taken from the 4 =40 cal-
culations in Table V, and the experimental numbers are
our empirical results from Table IV, scaled to 4=40 by
multiplying them by (40/28)%35=1.13. The results of the
Towner-Khanna calculation,

8,(GT,IC,d-d)= —0.037
and
8,(GT,IC,s-s)= —0.041

(see Table V), are at least a factor of 2 smaller than the
values given by Eq. (31). Put in another way, the agree-
ment between experiment and theory for the isoscalar mo-
ments indicates that the CM calculations are basically
correct. It follows from this that since the empirically de-
duced GT quenching is larger than that obtained in the
Towner-Khanna calculations, the calculated values of the
IC corrections are probably too small.

D. Comparisons of the isovector M1 and GT corrections

It is interesting to compare the differences in the empir-
ical corrections 8; for the GT and IVM1 cases. In the cal-
culations of Towner and Khanna these differences are
seen to arise nearly exclusively from the MEC corrections,
for the reasons discussed above. The differences in the
empirical corrections (see Table IV) are

(31

8,(GT,d-d)—8,(IVM1,d-d)=0.16+0.04 ,
8,(GT,s-5)—8;(IVM]1,5-5) =0.23+0.05 .

The constancy of this difference as a function of mass
shows up clearly in the ratios plotted at the bottom of Fig.
1. This effect has also been indicated in our previous sd-
shell comparisons with the Chung-Wildenthal interac-
tion,’ in the p-shell comparisons of Yoro,* and in a recent
study of particle-hole states near!°0.5’

The Towner-Khanna calculations give values which,
while significantly larger than previous calculated values,-
are only about half the empirical values:

6;(GT,d-d)—8,(IVM1,d-d)=0.091 ,
8,(GT,s-s)—8,(IVM1,5-5)=0.088 .

From Table V it can be seen that the first order MEC con-
tribution contributes only about half of the theoretical
values and that the higher-order MEC corrections induced
by the tensor interaction are again important. Delorme®*
recently obtained a Fermi-gas model result of 0.14 for this
difference, which agrees fairly well with the Towner-
Khanna calculation for deeply-bound orbitals.

E. Orbital isovector M1 correction

From our fits we have obtained for the correction to the
orbital IVM1 operator
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6;(IVM1)=0.013+0.008 . (32)

At present the error is large but we expect this error in the
sd shell to be reduced when we include in our analysis
data on M1 transitions.® Expressed as a percentage
correction to g;(IVM1) our result is 100X9.41X(0.013
+0.008)=12+38.

This result is very significant in comparison with the
Towner-Khanna calculations. Their (4=40) configura-
tion mixing result alone gives a value (see Table V) of

6;(CM,IVM1)=—0.049 , (33)

which is completely inconsistent with our empirical result
of 0.013+0.008. However, their mesonic-exchange-
current correction is also large and has the opposite sign,

8;(MEC,IVM1)=0.059 . (34)

It is only by this delicate cancellation between these two
contributions that agreement with the empirical value is
obtained.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

We have established in this study that GT and M1 data
from nuclear states in the 4=18-—-38 region are, at the
least, as consistent with the predictions of many-particle,
configuration-mixed wave functions as the same types of
data for the ground states of A=17 and 39 are with the
equivalent predictions of the single-particle model. The
empirical values of the higher-order corrections to the
free-nucleon values of the GT and M1 single-particle ma-
trix elements which we extract from the 4=18—38 data
are reasonably consistent with the analogous corrections
which can be extracted from the A=17 and 39 data. Our
analysis of multiparticle data yields a more complete set
of corrections than can be obtained from the single-
particle systems alone, however, and also, importantly,
yields a quantitative measure of the uncertainties in the
values of these corrections. Inspection of the overall
A=17—-39 results (see Tables II and III and Fig. 1) sug-
gests that the internal consistency of the A =18—38 data is
greater than that of the composite A=17 4 39 + 18—38
data. We hence conclude that the combination of the re-
sults of our analysis of multiparticle systems to the results
obtained for the single-particle systems significantly ex-
pands and consolidates our empirical knowledge of
higher-order corrections to the GT and M1 operators.

The empirical values we extract for the higher-order
corrections to the GT and M1 operators are generally con-
sistent overall with the theoretical values obtained by
Towner and Khanna in a comprehensive calculation of
such effects. Thus, the experimental values of GT and
M1 observables appear to be theoretically comprehensible
even in subtle details. This combination of results should
significantly advance our confidence in the basic elements
of nuclear-structure theory. This advance is principally a
consequence of carrying out the necessary shell-model and
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perturbation-theory calculations more systematically.

Some further improvements in the empirical determina-
tion of the effective M1 and GT operators are straightfor-
ward to accomplish and will be soon forthcoming.® These
improvements will involve the inclusion in our analysis of
essentially all experimental data on sd-shell GT beta-decay
transitions and M1 gamma-decay transitions. Many of
these transitions are more sensitive than are the moments
to the off-diagonal single-particle matrix elements, and
thus these analyses will be more sensitive to the §, terms
in Eq. (11). Also, as noted, the present restricted and
cross-correlated data sets can be significantly expanded by
additional experimental measurements of magnetic mo-
ments; particularly important are those of 2P, 3P, 33Cl,
3Ar, and 7K.

Further improvement in the shell-model theory will re-
quire a further refinement of the sd-shell Hamiltonian.
Such improvements should remove some of the ambiguity
existing at present, for example, in the interpretation of
the 4=29 and 31 moments. It will be equally, if not more
important, however, to consider the explicit two-body
operators which arise theoretically in the calculation of
the higher-order corrections. An indication of the impor-
tance of a two-body operator effect can be seen in the
lower panel of Fig. 1. The ratios of the experimental to
theoretical GT matrix elements show a persistent odd-
even staggering, both with the free-nucleon operators and
with the empirical operators. Such a staggering is remin-
iscent of two-body operator effects as exhibited, for exam-
ple, in nuclear binding energies. The technical aspects of
calculating the AJ=1 two-body transition densities have
recently been solved.”® However, there remains the prob-
lem of determining the form of the two-body operator
from the higher-order calculations. The operator can be
readily obtained for the zeroth-order isobar and mesonic-
exchange currents (see, for example, Refs. 20 and 37).
However, the operator for the higher-order configuration
mixing is not known.

In the comparisons with the calculations of Towner and
Khanna' we have noted the overall good agreement with
our empirical operators. The calculations still need some
improvement, and we have suggested that part of this
could involve an increase in the contribution of the isobar-
ic currents in their calculation. In many cases it has been
seen that there are rather delicate cancellations between
the configuration mixing, isobar-current, and mesonic-
exchange-current contributions. These cancellations have
been noted in previous work of Arima et al.> It would ob-
viously be a major step in simplifying the calculations if
these cancellations could be understood more fundamen-
tally along the lines outlined by Rho.>> This would facili-
tate their extension to more diverse phenomena such as
electron scattering form factors.
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