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A m.N S-wave separable model is developed by implementing most of-,the field theoretically re-

quired analytic properties of the scattering amplitude. In order to improve the low energy behavior

of the solution, the S-wave interaction model of Drell et al. is incorporated. The resultant disper-

sion relation is solved using a technique of singular integral equations. Also proposed is an iterative

procedure for solving singular integral equations.

NUCLEAR REACTIONS mN S-wave separable model. Field theoretical prop-

erties with Drell et al. interaction model. Singular equations by Omnes s

method.

I. INTRODUCTION

Recently a new technique was developed for calculating
form factors for a n.N P wave sep-arable model (Ref. 1,
hereafter called I). This approach utilizes many of the
basic properties of the underlying field theory. We now
extend the same technique to calculate form factors for a
~N S-wave separable model.

Although the general procedure is the same for both S
and I' waves, there exists one characteristic difference in
the properties of the S wave amplitude, the absence of the
nucleon pole term and the accompanying coupling con-
stant at zero energy. In dispersion theoretic approaches, a
coupling constant at zero energy is not necessary in the
derivation, and hence one arrives at a simpler form of the
dispersion relations in the case of S waves. However, one
feels less confident in form factors so obtained (in com-
parison with the P wave case ), since -in writing the disper-
sion relations one less condition from the field theoretic
properties ' is used. Furthermore, dispersion relations for
S waves are not in the subtracted form, and hence low en-

ergy form factors may be unduely influenced by a varia-
tion of the high energy phase shift parametrization. A
further disadvantage exists in the case of sign changing
phase shifts; one ends up with an undetermined constant
which is introduced through a rearrangement of the
asymptotic behavior' of the energy dependent coupling
constant.

In order to reduce these ambiguities in the current 5-
wave model, we appeal to a particular field theoretical
model and borrow one of its properties to further specify
the form of the dispersion relations. We use the S-wave
interaction model proposed by Drell, Friedman, and
Zachariasen, particularly their amplitude a (to). Al-

though the exact solution of a (to} cannot be obtained
easily, its low energy behavior has the simple form

a (to)=cp+c~I co .

tor function da(co) of a separable model' and —1/a (to)
in the t matrix are similar, and since the relationship be-
tween the phase shifts and the form factor to d~(co) is the
same as the corresponding relationship to —1/a~(co), we
implement the requirement

d (0)= —1/a (0)= —1/c

in the dispersion relations. This is equivalent to the intro-
duction of a coupling constant at zero energy in the P
wave case' and thus it eliminates the aforementioned de-

fects of the simpler forms of dispersion relations. We
reevaluate co by using more recent and accurate data than
were available previously.

In Sec. II the dispersion relations for the ~N S-wave in-

teraction will be given. These equations are regarded as
integral equations and solved in Sec. III by Omnes's

method and by an iterative procedure based on Omnes's

method. Numerical results and discussions are presented
in the final section.

II. DISPERSION RELATIONS

2

d, (z) =1——f dx p(x)
7T P g)(x —z) X +Z

(la)

z —b 1 OO 2 2d3(z) = 1+ dx p (x )( v 3
—u 3 )

z —top 1T(z —top) u

1 00 X —6)0f dxp(x) v3
m (z —cop) t' g, (x —z }

X +COp+ W3x+z (lb)

Using the same notation as in I, the denominator func-
tions for the m.N S-wave interaction can be written for
each channel,

It has been shown that this low energy approximation is
quite accurate. ' Since the roles played by the denomina-

where b is a complex constant yet to be determined and l
has dimensions of pc . The indices 1 and 3 refer to the
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isospin T= —, and —, states, respectively. The T= —,
' state

phase shifts change sign at cop ——1275 MeV. The on-shell
t-matrix element is parametrized by

i5
sin5 e

a (co)=-
kU

(4a)

T (o))=—m++)U, +k . i5
1l sin5 e

nmk+)M2+k2

m+&p'+k' va(~)'

~mk&p'+k' d (~)
' (2)

We note that the momentum dependence of the t matrix
is slightly different from the P-wave case. Equation (1) is
the simpler form of the dispersion relation to which we re-
ferred in the Introduction. This equation can be further
modified by a subtraction at some point where the value
of d(z) is known. In I this was done at z=0, since d (z)
was required ' to have a nucleon pole for the P wave at
z =0, i.e., d (0)=0. For the S wave a nucleon pole does
not exist; however, we can also choose z =0 as a subtrac-
tion point. This is because we can find a simple low-
energy parametrization of the S-wave scattering amplitude
which easily suggests the value of d (0). Specifically, we
turn to the S-wave interaction model proposed by Drell
et al. According to this model a low energy scattering
amplitude can be accurately approximated by

a (co)=cp+c) I co,

where cp and c) are constants to be determined from ex-
perimental data and

I = —1 for a=1

[Eq. (43) of Ref. 3] and

—i5
kv e

d (co)=
1l sin5~

(4b)

which can be easily derived from Eq. (2), we are able to
equate at low energies

d (co)=-
cp +c) I ct)

Thus this assumption gives the value

2

d.(0)= —"'. .
Cp

This result is not as precise as in the P-wave case, but it is
accurate to the same degree as Eq. (3a) is able to repro-
duce the phase shifts. In order to determine the value of
cp, we equate Eqs. (3a) with (4a) after expanding the latter
in the low energy limit. Thus we have [v(0)= 1]

5 (to)= — (cp+c) I co), co~0.
pc

(7)

By using a recent parametrization of the S-wave phase
shifts of Rowe et al. , we obtain

cp ———0.255 for a= 1

=0. 157 for a = 3 .
—, for a=3 .1

Because of the relationship

(3b)
By using this result in Eq. (1), we obtain improved disper-
sion relations

1
Cp

d)(z)—:g)(z) = 1+
pc

1 2zcp ~ dx U) Wi
p „+

+pc & x g& x —z x+z
z - dx Img (x)=1+-
7T P X

Img)( —x )

X+2 (9a)

3 3Z —COp Cp Cp

z d3(z)—:g1(z) =1+ z-
pc

3 2
Z Cp 00 X X —COp U3 X +COp

W3
COp ~pC P X X —Z q3 X+Z

3
Cp=1+
COp
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7T P X X —Z X+Z (9b)

g)(co)sin5)(rg) ))Li, ;S,(~)
v)(co) = e ' g)(a)),

kcp
(10a)

cop 7]3(co)sln53(cil)p
vs(co) =- e ' gs(co) .

~p —p) kcp
(lob)

Equation (9) and the corresponding crossed channel equa-
tion constitute a set of coupled singular integral equations.
In the next section we solve these equations by Omnes's
method.

Once solutions for g are obtained, the form factors can
be calculated from either Eq. (2) or the imaginary part of
Eq. (9). For the direct channel we have

III. SINGULAR INTECxRAL EQUATIQNS

(1 la)

d~( —p))= ~d ( —co) ~e . (lib)
Since the phases of d and g~ are the same, Eq. (9) can be
written in the following way:

llPi
z dx sing)e

g)(z) =1+- g)( —x )
7T P X X +Z

i5
z ~ dx SIn5ie

g)(x) .
1T P X X —Z

(12)

In order to solve Eq. (9), we introduce'7 the
phas~ across the unitanty cut 5 and crossing cut t:

d (p) ) =
~

d (co)
~

e
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We have explicitly written the results only for the a=1
channel; the extension to the a=3 case is obvious. Equa-
tion (12) is in the same form as the previous P33 wave in-
teraction and can be solved by Omnes's method, which
converts the singular integral into a Hilbert problem. '

I

The final solution is not unique, as any entire function
may be added to it. However, we follow the usual custom
and neglect this possibility. The coupled channel integral
equation (12) and its crossed counterpart can be converted
into Fredholm-type integral equations ':

g)(co)=—e ' f)(co),

~ dX
sing, (x)f1 ( —x )

dx sin5, (x)
f, (co) =cos51(co)— P p(x)

P X X —CO

cos5t(co) e
—p(~)

P
sin51(y)e~' '

(y+x )(y —co)
(13a)

where

p(x) =—I dy (13b)

A~p

d ( —co) &, dp(co)
'

specifically,

B1(co)
tang((co) =

D )(co)

(14a)

3
CO —COp C pB1(co)= sln51(co) —

1
s11153(co),

f1(co) coo co f3(co)
(14b)3A]] CO —COp C pD](co)= cos5&(co) —

1
cos53(co),ft (co) coo c,' f3(co)

where the crossing matrix 3 is given by"

1

3 (14c)

and P indicates that the Cauchy principal value is to be
used. Equations (13) are nonsingular, coupled integral
equations and can be easily solved by standard techniques.

Equation (12) and its crossed counterpart are almost
symmetric with respect to each other in their energy
dependence, the only difference being in the phases. The
crossing phases are assumed to be determined by the static
crossing relation'

I

tion from the crossed channel. The solution for this ap-
proximate equation can be obtained from Eq. (13) by set-
ting f( —co)=0. Then the crossed part of the iterative
solution can be obtained by substituting the approximate
direct channel solution so obtained into the crossed coun-
terpart of Eq. (13), the angle qr being calculated through
Eq. (14b) using the approximate direct channel solution.
The next step of the iteration procedure begins with the
substitution of the approximate crossed channel solution

f( —co) into Eq. (13). Thus one is not required to solve
any integral equations. After each iteration the solution is
explicitly given. We found that three iterations were suf-
ficient. (b) The second set of iterative solutions can be ob-
tained by a similar procedure, except that each time

f( —co) is to be calculated from Eq. (14a) by

D(co)cosy1(co) +B(co)sing((co)
f1(—~) ——

B(co) +D(co)
(14d)

Here we also found that three iterations were sufficient.
This second type of iterative procedure has been extensive-

ly used by Ernst et a/. ' in solving the Chew-Low equa-
tion.

As is clear in the above procedure, the direct channel
solution of these iterative methods does not require cross-
ing phases. Hence one need not base the initial solution
on the static solution as in the case of Omnes's solution,
Eq. (13), but need only assume that the contribution from
the crossed channel is smaller than that from the direct
channel.

Equation (14a) is a complex expression and hence provides
essentially two conditions, one for y(co) and another for
f( —co)=e'+'"'g( —co). Since Eq. (9) was derived by only
requiring it to be crossing symmetric, without specifying
its exact content as in Eq. (14a), and since Eq. (12) is
solved by using only half of the crossing relations, Eq.
(14b), the solution f( —co) obtained by solving the coupled
integral equations (12) may be different from that which
is obtained from Eq. (14). Therefore it is interesting to
compare the two sets of solutions. Since Eq. (14) does not
constitute coupled equations, we will develop an iterative
method to obtain solutions.

(a) The direct part of the first set of iterative equations
can be obtained from Eq. (9) by neglecting the contribu-

IV. RESULTS AND DISCUSSIONS

The only input for the calculation, the empirical com-
plex phase shifts, are taken from the Rowe et al.
parametrization for Tm(lab) &400 MeV, the Almehed-
Lovelace compilation' for 400 MeV & Tm & 1436 MeV,
and the Landau- Tabakin Regge tabulation' for
Tm &1440 MeV. The real part of phase shifts are uni-
formly damped at higher energy by multiplying the factor

m —1OOO MeV
9340 MeV —1000 MeV

(15)

The damping ensures an acceptable solution. Further-
more, the phase shifts are cut off above co=9340 MeV
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In Figs. 1 and 2 calculated results using Omnes's
method are dis la ed. Inisp aye . n each graph the upper and lower
parts show the phases 6 and q&, and the red f'

part of both sides of Eq. (12). Since the form factors are
etermined by the experimental phase shifts d h
ion or f co), the only test to examine the goodness of a

so ution is to see if a solution obt
'

d f
can really reproduce itself when it is substituted back

'gina equation. The imaginary part of E . (12)
gives an identity relationship. As one can see the 1

is self-consis
see, e so ution

-consistent as well as crossing symmetric for the en-
os in cresting

owever, at high energies there is a considerable
discrepancy. Particularly around 1200—1300 MeV there
is ra

' ', i c ange in the inputis rapid variation, reflecting the rap'd h
'

h

p ase 5. Also sizeable fluctuations in 6 d
able

'
1

in pro uce unavoid-

solution wo
a e wigg es in the solution. Hence it is clear th t tha e

consistenc i
would become much smooth der an self-

ency improved if the phase shifts in the high ener-

gy domain were parametrized by a smooth form as in the
low energy case.

The results of the first set of iterative solutions are al-
most identical to those of Figs. 1 and 2 E fn . xcept or small

a ig er energies, they ap-e anges in the crossing phases at hi her en
ear as in igs. 1 and 2. This fact demonstrates that the

alternative iterative procedur d d
~ ~

re lscussed ln the previous
section gives a very accurate approximation.

On the contra thery, second iterative procedure which
~ ~

uses the crossing relation only does not give a self-
consistent-solution. As Figs. 3 d 4 h'b',an ex ibit, even though

o - ' ' '
or e irect part of thegood self-consistency is obtained f th d'

wave, in general self-consistency a d hn ence crossin
symmetry are badly broken. I rt' 1n particu ar, the crossin

g

solution shows excessive variat' hion w en input phases un-
dergo sizeable changes. This i 1
~ ~

is is c ear since the second
iterative method does not includ th h'e e smoot ing process
of integration as in the first m th d Th

'
g d reale o . e integrated real

crossed solution of the se
'

n o e second iterative procedure has a

solution itsel
'

n itsel~ for a wide energy region. Since the latter is
proportional to cosy, it appears that the cha e c ange in defini-

'
n o p y qr~m. —g may solve the major part of the

discrepancy. However, it so happens that whs a w enever cosy
ges sign, the integrated crossed solution also chan es

its sign. Thus we end up withwi a simi ar discrepancy for
the crossed part, as is depicted in Figs. 3 and 4.

In summary we have developed a ~N S-e a ~ -wave separable
e which incorporates many of the field th

pro erties re u
e ie t eoretical

p
'

required for the scattering amplitude, and
demonstrated its adequacy in the low
co(500 MeV.

in e ow energy domain,
e . Also an effective iterative meth d

develo ed disp, ispensing with a subtle interchan eabili 4 f
me 0 was

ini e integrals and having to choose the initial
crossiilg pllase. This work follows the previous work f

eraction, ' and it is hoped that the tech-
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nique Of treating the singular integral equations may be
extended into other areas, since the inverse scattering
problem' does not necessarily guarantee that a solu-
tion obtained by that method will always reproduce the in-

put phase shifts.
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