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Relativistic calculations for NN-Nh scattering with pion and p exchange
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The NN scattering Bethe-Salpeter equation is solved for T= 1 partial wave amplitudes up to 1

GeV lab energy. Coupling to Nb intermediate states is included by ~ and p exchange, while
NN+ NN interactions are due to combined m.„p, g, e, 5, and co mesons. Inclusion of p exchange im-
proves agreement with phase shift analysis in a systematic way.

NUCLEAR REACTIONS Bethe-Salpeter equation, coupled NN-Nh scattering,

p exchange, NN T =1 phase shifts.

I. INTRODUCTION

Polarized beam pp scattering data' show rich energy
and spin dependence at intermediate energies, accom-
panied by a sharp rise in the pion production cross section.
Subsequent phase shift analyses ' show counterclockwise
looping in the Argand diagrams of the 'D2 and F3 phase
parameters and suggest an interpretation in terms of exot-
ic dibaryon resonances. However, evidence has been
presented that the resonance structures found in these
channels can as well be reproduced by more conventional
mechanisms like the coupling to the inelastic NNm chan-
nel. This has been studied in detail by various groups
within the framework of relativistic three-body models.

In view of the successful description of nucleon-nucleon
scattering at energies up to the one pion production
threshold by the one-boson-exchange (OBE) model, " it
is natural to investigate whether such a two-particle model
can provide a good description of the dynamics at higher
energies as well. Since pion production in the intermediate
energy region up to T~,b ——1 GeV proceeds predominantly
through the production of the 6 isobar, it is reasonable to
extend the OBE model by including the coupling to 6 de-
grees of freedom.

In a series of papers we want to investigate such an iso-
bar model choosing the relativistic Bethe-Salpeter equa-
tion (BSE) as the dynamical equation. One of the princi-
pal reasons for this choice is the fact that the BSE can
readily be extended to satisfy three particle unitarity. ' In
so doing we hope to learn up to what extend three-particle
effects are essential for NN scattering. In particular this
may be the case for a correct description of pion produc-
tion processes. Moreover, in this way we avoid the con-
ceptual difficulties encountered in the Faddeev type of
equations, such as satisfying the Pauli exclusion principle
for intermediate nucleons and including correctly the re-
tardation effects of the one meson exchange diagrams.

In this paper we consider the T=1 channels of NN
scattering and include only coupling to the NA states.
The 5 isobar is treated as an unstable particle with an en-
ergy dependent width. In this way the location of the pion
production threshold is properly accounted for. As driv-
ing force for NN~NN is taken the sum of one boson ex-
changes as given in Ref. 13 (to be referred to as I). If we
assume that the transition interaction NN~NA is

described by one pion exchange, the resonance structures
in 'D2 and F3 are well reproduced for reasonable values
of the Nmh coupling constant, but some state dependent
components in the force are missing. ' Our main objective
here is to study the effects of including the rho meson ex-
change in the transition interaction. Furthermore, our cal-
culation may serve as guidance on the values of the inelas-
ticity parameters, which are not well determined for some
partial waves.

The organization of the paper is as follows. Section II
describes the choice of the 6 propagator in terms of the
Rarita-Schwinger spinors. Section III deals with the par-
tial wave reduction of the coupled Bethe-Salpeter equa-
tions neglecting the negative energy spinor state correla-
tions. The form of the couplings used in the calculations
is given in Sec. IV together with the algebraic procedures
of obtaining the various partial waves. Section V contains
some details of the method of solution of the BSE, while
in Sec. VI the obtained results are discussed. Some con-
cluding remarks are made in the last section. Three ap-
pendices finally give details of the helicity formalism, the
isospin algebra, and Jacobi polynomials needed in the ac-
tual analysis.

II. THE Nh GREEN'S FUNCTION

Our starting point is the BSE for NN scattering within
a one-boson-exchange model. This model has been
shown" to give a reasonable description of the phase pa-
rameters in the low energy region TI &280 MeV. At
higher energies pion production processes have to be taken
into account. The dominant production mechanism is ex-
pected to involve the 5 isobar. A possible way of incor-
porating the b, degrees of freedom is to include coupling
to NA and AA channels.

In this paper we will present results for isospin T=1
only. The AA channels are then expected to play a minor
role since they open up at higher energies than NA chan-
nels (thresholds at 1400 MeV and 640 MeV, respectively).
The hA states are therefore excluded at this stage. Their
effects will be discussed in a subsequent paper. This leads
to a BSE which is represented diagrammatically in Fig. 1.
The original BSE for elastic NN scattering is recovered if
all diagrams containing 6 lines are omitted.

Following VerWest' and Green et al. ' the propagation
of the b particle is described in terms of a one particle

2354 1983 The American Physical Society



28 RELATIVISTIC CALCULATIONS FOR NN-Nh SCATTERING. . . 2355

Pl

P
2

PI

P P P P P

~ 0 ~ ~

~ ~ ~ ~ ~ ~ ~Y\

Pl

l

I

I
k

I

P

Pl

~ ~
~ ~ ~ ~~ ~ ~ \

~ \

~ ~ ~ ~~ ~ ~ ~
~ ~ ~

~ ~ ~ ~ ~ ~ J
~ ~ 4

Pl
I

P) q

I

k

l

I

~ ~

~ ~ ~

~ ~ ~
I ~ ~ ~ 'IV~ ~O ~ ~

~ ~ ~
~ ~ ~

I
~ ~ ~ ~ ~ ~
~ ~ ~

q P,

l

I
k

l
I

P2 P2 P2 P2 P2 q P P2

FIG. 1. Diagrammatic representation of the BS equation for coupled channel NN-Nb, scattering. The dashed line ind'c +p
exchange, and the wiggly line stands for combined m, p, g, e, 5, and ~ exchange.

Pa'(qoq) = g b,"(q,cr)b,"(q,cr)

qo —Eq+ ~'9

g W&( q, cr—) W"( —q, cr),
—q —Eq+ig

model with an energy dependent complex mass. The free
propagator of a spin —,

' particle of four-momentum (qo, q)
can be written in terms of projection operators as

dependence of I is not unique: modifications have been
proposed taking into account spectator recoil effects. '

Moreover, it should be noted that the imaginary part I
is introduced in the denominator of Eq. (1) only. The 6
spinors LP are left unchanged. Although implicitly
dependent on Eq and p& the latter are computed with

pa ——mo andEq ——(mo+q ) /.
The single nucleon propagator analogously is truncated

to

where o.= + —,', + —,', Eq =q +p~, and 5",8'" are the posi-
tive and negative energy Rarita-Schwinger vector spinors,
respectively (for explicit expressions see Appendix A).
Note that 6 and W depend on the three-momentum only.
The effect of negative energy states has been studied in the
original NN model and the corrections have been found to
be small. ' In view of this we exclude negative energy
states in order to reduce the number of channels involved
in the BSE. The pion production process is incorporated
by giving the 6 mass a negative imaginary part:

l
pa=mo ——I (q),

2
(2)

where mo ——1236 MeV. We used the Bransden-Moorhouse
parametrization of I which reproduces the correct thresh-
old behavior of the P33 resonance:

r(q)=0, q'&0,
I (q) =2y(qR) /[1+ (qR) ], q & 0,

with y=71 MeV, R =0.81, and q =q/m . As in Refs. 15
and 16 q is identified with the maximum momentum in
the ~N subsystem, i.e.,

q =[s N —(m —m) ][s N —(m +m) ]/4s N,

s ~N = (~s —m )

where vs is the total invariant energy of the NN system.
For s N

——1236 MeV Eq. (3) correctly reproduces the ex-
perimental b, width I =120 MeV. From Eqs. (3) and (4)
it is seen that I vanishes below pion production thresholds
s &(2m+m ) and that the NA channels remain closed
until pion production starts. It should be noted, however,
that, apart from this basic property, the choice of energy

qi=(E+qo, q), Pi=«+PO, P»
P =(E+Po P ) q2=(E —qo —q)

p2 (E iso —p) p2 (E po p

k =p —qi k=p& —q2 E =~~42

(6)

and we adopt the convention that the 4 is always identi-
fied with particle 1. Moreover, a label 1 or 2 will be used
to characterize NN and NA states, respectively.

The NA propagator S~2 is

S~p P~g'(1)PN(2)——

=D2(qoq) g iP(qA~)b, "(qA. , ) V(qk2) V(qk2)

D2('qoq) g I qoq&~i4&2 2&qoq&~i4
l

"
k IX2

D2(qoq) '=(E+qo Ez+iri)(E —qo Ez+i2)), — (8)—
where A, ~

——+ —,, + —,, and A2 ——+ —,. 6" is the particle
number 1 6 spinor, and V the particle number 2 nucleon
spinor. For definiteness we have explicitly written down
the superscript p, v for the vector component of A.

PN(qoq) = — g U(q, o) U(q, o )
qo —Eq+i g —+-2

with Eq ——m +q . The nucleon pole always remains on
the real qo axis, reflecting its stability against decay.

Using these forms of single particle propagators we con-
struct the propagator for two-particle NN or NA helicity
states as defined in Appendix A. We choose the center of
mass (c.m. ) kinematics to be (see Fig. 1)
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III. PARTIAL %'AVE DECOMPOSITION

The equations corresponding to Fig. 1 constitute a coupled set of linear integral equations. If we assume that the in-
coming nucleons are on shell, they can be written in the c.m. system as

~ 2

@ i(pop(0p)= V i(pop I0p}—,d'q g V;, (pop lqoq)S, (qoq)+', i(qoq lop}
4m

(10)

where p =(E —m )'~ is the on-shell momentum. Furthermore, SJ denotes the two particle Green's function for an in-
termediate state j, and the four-momenta of the particles were defined in Eq. (6).

The helicity formalism of Jacob and Wick' is particularly well suited to make a partial wave decomposition of Eq. (9).
We therefore introduce the following states of definite angular momentum J and spatial parity ( —):

LS J Si S2
~
popJ~LS &; = g 0 g g ~

popJMXik2&;2J+1,, S,V,
1 2

where i =1,2 again labels the type of state (NN or NA) and S, ,S2 are the corresponding spins of particles 1 and 2 in
these states. Furthermore, p =A,

~
—k2, and

' 1/2

I
pox'JM~i~z &i = f df) Devi (f) )

~
pop & ~i~ &2t

2J+1
4~

where the rotation matrices D satisfy the orthonormality property

f dQD~, , (Q)D~, ~, (Q) = (12)

The
~ pop AA, ~A2 &; are the two-particle helicity states defined in Appendix A.

In terms of these we can write the two-particle propagators as

S (qoq)=D (qoq) g ~
qoqQA~A2& &qoqQA~A2

~

Ar ]Ar2

(13)

with

D ~ (qoq) =(E +qo Eq +i r})(E——qo Eq +i r}}, D2
' (qoq—) = (E +qo E» +ir})(E—qo E—&+irl)—

Using the states (10) and defining

(14)

C, (J opJL'S') = p~, &I opJL'S—'
~

&
~

0J"JLS&, ,2~'

'&popJL'S'
I

Vl qoqJLS&J —= i &popL'S'
I

V I popJLS&J277

(15)

the BSE reduces to

@ (popJL S )= '&popJL'S
l

Vl OpJLS&i

~ 2

g g f dqo f dq;&popJL'S'~ V~qoqJLS&, DJ(qoq)4~(qoqJLS) .
j=l gs

(16}

Here L S run over all orbital angular momenta and total
spins compatible with nonzero Clebsch-Gordan coeffi-
cients in Eq. (10). Since the 6 isobar carries spin —,, Nb,
states have S = 1,2. The

~

JLS &; states for a given value
of J can be classified as in Table I.

The Lagrangians will be chosen invariant under space
reflection. Therefore, we have two nonmixing groups of
six channels each. Moreover, as discussed in I, one of the
uncoupled NN states has odd parity in the relative energy
variable and as a result its contribution will vanish in the
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nonrelativistic limit. The effect of this state is expected to
be small. This is confirmed by actual calculation' and we
therefore neglect this state along with the negative energy
states. This results in a total of five channels for uncou-
pled NN waves, and six channels for the coupled case.

The solution of the BSE is complicated by the location
of propagator singularities near the line of qo integration.
A Wick rotation over an angle ~/2 is carried out for all
relative energy variables, which changes the integration
path to along the imaginary qo axis. In the scattering re-
gion the rotated equations have additional terms due to
the crossing of the imaginary qo axis by the nucleon poles
in the two particle Green's functions. For the energy re-
gion we consider, i.e., T~,b ~1 GeV, the 6 pole in the
propagator D2 (located at ro=E» E iq—) —always stays in
the fourth quadrant of the qo plane. It therefore does not
give rise to additional terms. The resulting Wick-rotated
equations become

Odd J

J
J
J

J—2
J

J+2
)I+ I

NN
NN
Nh
NA
Nh
Nb

J —1

J+1
J —1

J+1
J—1

J+1

TABLE I. Quantum numbers for the various channels.

Spatial S I. T
parity Even J
( —)'

NN 0 1

NN 1 0
NA 1 1

NA 2 1

NA 2 1

Nh 2 1

@;(ipop JL 'S') =;{ipop JL 'S'
l

V
l

OpJLS ) )

g g f dqo f dq;(ipopJL'S'
l

VliqoqJL S)~ DJ(iqoq)4J(iqoqJLS)2' j

+ —y f dq[;(ipopJL'S'l Vl a(q)qJLS—), +;(ipopJL'S'l V la(q)qJLS)~]R~(q)C&, [a(q)qJLS]
LS

+ —g f dq;(ipopJL'S'l V la(q)qJL5)2R2(q)C2(a(q)qJLS),
LS

(17)

where

a(q) =E —E + jg

is the nucleon number 2 pole position, and

1
Ri(q) =

2(E» E i g)——
~N~= —i ' 4r'r "T4'(a„q „a„rp„}-

mp

(20)

R2(q) =
Eq +Eq 2E i

4~(qoqJLS) =4&&( qeqJLS) . — (19)

To solve Eq. (17) we need the auxiliary equation for
4&(a(p)pJLS) which has precisely the same form as Eq.
(17) with the argument ipo replaced by a(p).

IV. COUPLINGS

The single integral contributions in Eq. (17) were ex-
pressed in terms of @~ at qo

——a(q) using the symmetry
property as discussed in I:

where g and @ denote the nucleon and pion fields, respec-
tively. g is the b. isobar Rarita-Schwinger wave function
and y stands for the p-meson vector vector field. b, h ver-
tices are disregarded in view of uncertainties with respect
to the coupling Lagrangian. The NNm and NNp vertices
are taken from the previous treatment of the NN interac-
tion:

~NN~='gA'V 'r0'~'
~

The 6 isobar carries isospin —, and it is clear that NA
interactions can be mediated by isospin 1 mesons only, the
two candidates being the pseudoscalar pion and the vector
rho meson. The pion builds up the long range part of the
interaction and can account for the resonance structure in
F3 and 'D2 channels, while the p meson is known to be

important for the higher momentum transfers. For the
transition Lagrangians we take the customary form,

where W"= —,
' [y",y"] and r; are the Pauli matrices

operating in isospin space. The effect of the isospin opera-
tors T and ~ can be reduced to an overaH factor for each
amplitude. The resulting factors for the various channels
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are collected in Appendix B. Isospin operators are omit-
ted from the remaining part of this section.

Using the above Lagrangians and Eq. (6) we get the fol-
lowing:
A. Pion exchange:

f~ag~ 1

2 k.~"(pi)«q i)' V(Ã2)y5V(q2),
4m m

(22)

f~ag~ 1

z U(pl)~"(qi)k- V(p2)YSV(q2)4m'm k2 —m

V22 =—

B. Rho exchange:

(24)

2f a
V(p2)le(q/)kp k„h"(p$) V(q2) .

4am k m 2

(25)

(26)

(27)

(28)

(30)

V;, =(V +V );, ,

T

6"(P))y"y'U(q, ) V(p2)o V(q, )(g, k„k —g k k ),4~'mp 2m (k' —m p)
T

V~q
——

2 z U( p ~)y'y"4"(q ~) V( p2)M'V(q2)(g, „k„k~ gk„—k~),4~'mp 2m (k2 —mp)
V

V12 2 ~ (P 1)y Y U(ql) V(P2)y V(q2)(g k g4~ m k2 —m P
V

4n. mp k —m

2

V(p2)y'y"&"(q~) Z~(p~)y y'V(q2)(k„k g„+k k„g„k„kg„—k„k~—„),
4~mp k —m'

P

where k and k are defined in Eq. (6).
The interactions for a given partial wave are computed from these spinor amplitudes. Using Eqs. (10) and (11) we ob-

tain

( JL'S'
l Vl JLS)

Ar]Ã2

I ' S' J S( S2 S' I. S S S) S2 S
X 0p p p p p o pp p p p

A"( ' 'l ), (31)

~ J(pI pz l
pou2)=2~ f «oso &pop(t) 0)p&pz

l
V

I qoq{0,0)p~p2)~d„„(8), (32)

where

d~p (9)=Dp„(0,0,0) .

The integrand can always be expressed in terms of Legen-
dre polynomials. (For details see Appendix C.) The angu-
lar integration then yields Legendre functions of the
second kind, the argument of which depends on the boson
propagator:

where

p +q +ma (p'o+qo)—Z-'=
2W

(34)

PI(cosO)d coso

k —mg2 2

PI(cose)d cosO

k —mg

—1
Qi(z ),w'

g, ( —z+)1

pg

( )1+1
QI(z+ ),

(33)

The analytical expressions of the spinor amplitudes A;J
have been computed using the SCHOONSCHIP program20
for algebraic manipulation. As a check we numerically
compared the pion-mediated NN-Nh amplitudes with
those of Ref. 21 for the 'D2 case. This provides a test on
the energy shell, but off mass shell. From nonrelativistic
scattering theory there exist bounds on the transition am-
plitudes near threshold,

; (popJL'S'
l

V
l qoqJLS)J =O(p~ +2 q~+2)
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Furthermore, time reversal invariance implies

; (popJL'S'
~

V
~ qoqJLS)J —J(qoqJLS

~

V
~

popJL'S'),

(36)

As explained in I, fermion statistics is now satisfied au-
tomatically.

V. METHOD OF SOLUTION

Both relations have been tested for all amplitudes.
It should be noted that the expressions (22)—(30) for Vlq

and V2I lead to diagrams where the 4 particle is always
coupled to the number 1 nucleon. However, the diagrams
should be included where intermediate N and 6 particles
are interchanged. These exchanged diagrams can readily
be included by proper antisymmetrization in the NN
channels. Under the particle exchange operator PI2 the
NN helicity states transform as

Pi2 I popJLS & i ={—)'+'+'I popJL—S & i,
where T is the isospin of the state. L +S+T being odd
for the NN states included, the antisymmetrization
amounts to

1
V&2(pop I qoq} [ V&2(pop l qoq)'V2

+ VI2( —pop l qoq}],

The set of coupled integral equations (17) together with
the auxiliary equations are solved by first determining the
Born series solution and then applying Pade approximants
on this series. The calculation of the Born terms proceeds
in the same way as in I, except that we now iterate for the
T matrix instead of the K matrix. As in I the nucleon pole
singularities in the NN channels are dealt with by a sub-
traction. The NA channels do not need a subtraction since
the 6 pole does not lie on the path of integrations.

A complication absent at lower energies is the fact that
above pion production threshold the driving forces in the
single integral of the auxiliary equation may become com-
plex on some part of the integration interval [O,p]. This
reflects the possibility of the exchanged pion being pro-
duced energetically. It occurs when the argument of the
g~ functions in the one pion exchange amplitudes lies on
the cut [—1,1], i.e., for

[u(p)+u(q)] =p +q —2pqA, +p, A, H[ —1,1]
1

V2i(pop I qoq} [ V»{pop
I qoq}v'2

+ V»{pop I

—qoq)l

(38)
(39)

with u(p}=E E~. In vi—ew of this the single integral of
the auxiliary equation can be written as

2

I;(p) = —g g f dq Re(KJ(p, q))RJ@J(u(q), q, JL S)
J= IS

2 min(q (p),p)
+ 8(D}g g f — Im(K~~(p, q)}RJ4J(u(q), q, JL S},

J= I. S
(40)

where

KJ(p, q)=;(u(p)pJL'S'
~

V
~

u(q)qJL S )& 5,J-
+;(u{p)pJL'S'

~

V
~

u(q)qJL S )J (41)

and q+ are the values for q satisfying Eq. (39) with

~

I,
~

= 1. They are given by

q (p)=
2( 2 y2)

pW ~D'"
q+(p) =

2(X' —p')

(42)

g =2E —Ep,
A=+ +m —m —p

2 2 2 2

D=X[A +4m (p —X)].
{43)

The imaginary part of the integral Eq. (40) only contri-
butes for D & 0, which can be satisfied if 2E & 2m +m
For a given iteration, P is known on a fixed set S of mesh
points between 0 and p. To calculate the contribution

A
(44)

A~g —k

The cutoff mass for VII was kept at A&&——1.9m as be-
fore, whereas for A~~ a value between m and 1.5m was
used. From the Born series of Eq. (17) the physical transi-
tion element @I{Op) was computed from the (N/N) Pade
approximants. As in the case of NN states only the rate
of convergence is good. As an example Table II shows re-
sults in the case of f z/4m =0.35 at Tl.,b

——600 MeV. The
last column gives phase shifts computed from the Born
term only. Lacking the attractive contribution of the NA

F (k~)=

from the second term in Eq. (40) Gaussian mesh points
are used in the integration interval [q,min(q+, p)] to-
gether with cubic interpolation for P given on S. It should
be noted, that although the integrand of the first integral
in Eq. (40) contains logarithmic singularities, no special
treatment of these was necessary to get stable numerical
results.

As in the NN~NN interaction, the singular behavior of
the NA amplitudes is regularized by the introduction of
dipole form factors. The boson propagators are multiplied
by
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TABLE II. Rate of convergence of (N/N) Pade approximants for various channels at 600 MeV

(f a/4m=0. 35, f~a/4~=8. 0, g,q4
——5.9, ANa ——1.5mN). A. Phaseshift 5. Last column contains

values from Born terms only. B. Inelasticity g =cos 0.

Born

'So
3p
ID

'F3

H5
'I6

—55.0
—41.7

16.1

—3.76
3.96

—1.66
0.95

—41.0
—33.7

13.9
—3.87

3.92
—1.66

0.95

—40.8
—32.0

14.1

—3 ~ 89
3.92

—1.66
0.95

—41.0
—30,3

14.1

—3.89
3.92

—1.66

—41.0
—30.4

14.1

—3 ~ 89
3.92

—1.66
0.95

—41.0
—30.5

14.1

—3.89
3.92

—1.66
0.95

—77.8
—55.0
—1.19
—9.48

2.03
—2.25

0.73

lg
3p
1D
3F
16
H5
'I6

1.088
1.016
0.899
0.917
0.975
0.993
0.998

1.052
0.863
0.831
0.912
0.973
0.992
0.998

0.999
0.835
0.814
0.911
0.973
0.992
0.998

0.977
0.794
0,813
0.911
0.973
0,992
0.998

0.976
0.787
0.813
0.911
0.973
0.992
0.998

0.976
0.787
0.813
0.911
0.973
0.992
0.998

box, the latter are consistently too low and do not provide
a good approximation for J as high as 6. Below the one
pion production threshold elastic unitarity is well satisfied
(

~
tl —1

~
& 10 at 200 MeV).

A variety of parametrizations of the NN scattering ma-
trix is in use. ' Here we employ the parametrization of
Amdt and VerWest24:

2i5
SJ =cos pje

for uncoupled waves, and

2i5)
cos picos26 e

i(51 +5~)
i cosp&cosp2sin2e'e

(45)

i (51 +52)
l cosp)cosp2sir126 e

2i 52cos p2cos2e'e

for coupled triplets. The mixing parameter e'=e~+ie2 is

complex, leading to a total of six independent parameters
in the coupled case.

VI. RESULTS

In a previous paper' it was shown that coupling to iso-
bar channels using only one pion exchange in the transi-
tion interaction could account for the resonant behavior of
the 'D2 and F3 phase shifts. In order to obtain reason-
able results it was necessary, however, to resort to a low
NA cutoff value of ANg ——m . Furthermore, the calculat-
ed phase parameters of the P& and P2 waves indicated
that a state dependent part of the transition interaction
was absent. Since the p exchange is known to have strong
state dependence, its inclusion may lead to an improve-
ment.

In Figs. 2—4 are shown some results when p exchange is
also included in the transition interaction. The coupling
constants for the NN~NN interaction are the same as in
Ref. 17 except for the g, which is adjusted to improve fits
to the experimental data. Since the e meson affects the in-
termediate energy range of the nuclear force and the intro-
duction of the coupling to the N4 states leads to an addi-
tional attraction in this region, we have in general to de-

crease the value of g, to compensate stronger coupling to
isobar states. For the results in Figs. 2 and 4 the NA cou-
pling constants were taken from the quark model predic-
tions, i.e.,

2 2f~a 72 g~
4w 25 4m 2m

22 2v T m
2

(48)
4~ 25 4~ +gv 2m

This leads to the values f a/4m=0. 23 and
f&a/4m=10. 33. For reference the results for f &

—0 are
also shown in the figures.

It is often stated that p mediated NA coupling gives a
short range repulsive contribution weakening the strongly
attractive picnic interaction. This is seen, for instance, for
the channels 'D2 and F3 where the resonancelike struc-
ture is reduced by pNA coupling.

Although this is the general trend, notable exceptions
are P2 and F4. As an important consequence, inclusion
of p exchange leads to repulsion in P~ whereas the P2
and F4 channels become more attractive. For all those
channels agreement with the experimental phase shifts is
improved. This indicates that pNA coupling is an in-

dispensable feature of any realistic isobar model. A simi-
lar state dependent effect could not be the result of adjust-
ing parameters in the NN sector, e.g. , by altering the @-

coupling constant.
Most inelasticities are considerably decreased by pNA

coupling, a notable exception being again P2. For this
wave the increase in inelasticity is in accordance with the
additional attraction we already mentioned.

The second important aspect of pNA coupling is its ef-
fect on the regularization: apart from P waves, there is no
significant cutoff dependence left. This is in sharp con-
trast to the case of m exchange only, where no meaningful
fit for AN~ ——1.5m could be found. Figures 3 and 4 show
results for f a/4m=0. 35, which is suggested .by pionic
decay of the P33 resonance. This value is corrob-
orated by the Chew-Low result of 0.32. The pNA cou-
pling constant is taken to be fqa/47r=8. 0. For fitting to
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FIG. 5. Inelastic phase parameter p in degrees for 'G4.
Curves A and F are identical to those in Figs. 2 and 3. AB and
FB show the corresponding contributions from the Nh box only.
Open circles give results from Ref. 29.

tion interaction on the phase parameters of NN scattering
in the I=1 channels has been studied. Owing to the state
dependence of the p exchange force a marked improve-
ment is found for the P waves. Although the effects of
pNA coupling in general is to weaken the ~Nh interaction
at shorter distances, notable exceptions are found for the
P2 and F4 channels.

Considering the 'D2 and F3 waves in the presence of
the coupling to the NA channels the resonancelike struc-
tures around T~,b ——600 MeV are reproduced. The max-
imum in the phase shift of the F3 wave is, however, not
as pronounced as compared to the experiment if the pNA
coupling is included (see Fig. 3). This indicates that a

stronger coupling to the inelastic channels is needed than
we have used here, or possibly that other inelastic effects
should be taken into account in this channel.

The question whether the resonancelike structures can
be interpreted as dynamical singularities in the second
Riemann sheet of the s variable or as threshold behavior
effects has not been studied by us in this model. However,
since the latter has the same physical ingredients as the
model in Ref. 30, we expect that a similiar conclusion also
holds in our case, i.e., the structures are a combined effect
of threshold behavior (pseudoresonance effect) and the
presence of dynamical singularities originating from the
one pion pole in the driving force. In this context it
should be remarked that the NA box diagram will in-
herently lead to pseudoresonance behavior irrespective of
the coupling type or particular channel involved. For
higher partial waves, especially those like '64, the Argand
plot indeed shows counterclockwise looping. However, for
low partial waves like P~, the effect of the NA box may
not be seen due to the contributions from the strong NN
interaction.
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APPENDIX A

The wave function of the spin —,
' 6 isobar can be found

by assuming it to be constructed from a spin 1 and a spin
particle. Choosing the z axis parallel to the three

momentum k, the spin 1 states are

E 1 —i
ej ——— 0, ~, ~,0, dz —— 0, ~,~,0

2 2 2 2

k EkP= —,o,o, (A l)

with kate,
"=0 and e,"(EJ )&

———5,J. The spin —, components
are Dirac spinors with a normalization chosen according
to Kubis, '

I
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FIG. 6. Onset of inelasticity at pion production thresholds for
'So. Curve F is identical to those in Figs. 3 and 5. Open circles
give results from Ref. 28.

satisfying UU=(m/Ek)5 ~ and U U=6
Combining these basic wave functions with the ap-

propriate Clebsch-Cxordan coefficients we immediately
find the expressions for the Rarita-Schwinger vector spi-



28 RELATIVISTIC CALCULATIONS FOR NN-Nh SCATTERING. . . 2365

NN~NN
NN~Nh
Nh~Nh

—3
0
0

1

—+8/3
3

TABLE III. Isospin factors for transition amplitudes.

T=0 T=1
0
1

0
k

EI, +m

' 1/2Ek+m

nors 6&, with spin components from ——, to + —,:3 3.

~3m= ei U+, b.",n —— e2 U++ —, ) 3 U
1 1/2

3
(A3)

1

0
—k

Ek+m
0

1/2
EI, +m

eju +( —, ) e3U+, 6" 3g2 ——e2Up 1 2 i/2
3

Similarly the 6 vector spinors of type 2 are found to be

D3r2 =e2 V+

The mass m appearing in Eq. (A2) must now of course be
taken as the real part of the b mass.

In this form the vector index has been retained, and the
spinor index suppressed. The behavior under Lorentz
transformations is found by the observation that the wave
functions transform as a four-vector on the vector indices,
and as an ordinary Dirac spinor on the (suppressed) spinor
index. The vector spinors are normalized according to

D")gal —— e2 V —( —, )' e4 V+,V3

p 1 2 1/2D" i(2 —— ei V+ ( 3 )
~ e4 V

D" 3g2 ——ei V

—E
e4 —— —,0,0,

(A9)

(& )„(& )"=—5
k

(& )„(& )"=—5

(A4) and e";, i = 1,2, 3 are defined in Eq. (Al).
The normalization M of a general two particle state is

M= (P i P 2PlP2 l
PiP2ii41P&~

The two particle wave functions P(p, A, ,A2) are defined in
the c.m. frame according to the helicity formalism of
Jacob and Wick' (take p along the z axis),

, 5 (Pi —P 'i)5 (p2 —p ~)'NiN2',
P&P~ P+p

(A10)

g(pkii2) = U(l,pii, , ) V(2,pik~)

with

V(2,pii2):—( —)
' 'e U(2,p, A2)

(A&) here N; denotes the spinor norm:

N; = U (p; ) U(p; ) = 1 for nucleons,

= —1 for b isobars (Al 1)

and where s2 is the spin of particle 2. [The phase factor
for V has been chosen in such a way that V(2,0,12)
reduces to U(2, 0, —A, 2).) States with arbitrary direction of
p are generated by rotations of it(p, A, ,A,2):

[the peculiar sign is due to the vector component normali-
zation (A4)]. In the c.m. system pi ———p2 ——(pi, 8,ip)
=(p, ,0), the normalization of NN states is:

l p, 8,q&k, iA2) —=e 'e ~e *P(p, l, il.2), (A7)
=5,5, 5 (0—0')5 (p P'), —

I'2I'z pE

where J;=J "+J '. The explicit form of particle type 2
Dirac spinors is found from the definition (A6): where P =p1+p2.

(A12)

APPENDIX B: ISOSPIN FACTORS

The isospin structure of NA coupling appears as an overall factor for the transition amplitude. Using the Wigner-
Eckart theorem the factor for given total isospin T can be written as a signer 6J symbol:

I1 1 I1
factor=[(2I', +1)(2I2+1)]' ( —)

' ' ', 'F(I', ,Ii)F(I2,I2) . (B1)

Here I1 (I'1) and I2 (I2) are the isospins of the incoming (outgoing) particles 1 and 2, respectively. Here I' denotes the re-
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duced matrix element from the Wigner-Eckart theorem. Customarily this element is taken as 1 for Nb, vertices and W3
for NN vertices (the latter factor leads to the Pauli spin matrices). The form given above is seen to be valid for NN~NN
and NN~NA transitions, where a number 1 particle couples to another number 1 particle. This is not the case for
NANNA amplitudes where a number I particle is coupled onto a number 2 particle. For this case

3 1 3 1 3 1 1 3T T — 1 11 2 2 2 2 2 2 2 2

m —A, m X'm —k'~m A, l m —A,
' m —X —lA, '

1= —3&Z;i .

No reduced matrix elements appear now since we have
Nb, vertices only. The isospin factors from (Bl) and (B2)
are given in Table III (T =2 is inaccessible for NN
scattering).

APPENDIX C: EVALUATION
OF TRANSITION AMPLITUDES

IN TERMS OF LEGENDRE FUNCTIONS

d» (8)-cos" (8/2)sin" (0/2)P) z" (cosg),

(C4)

+ g P Pwhere p —=p+p' and Pz z" are the Jacobi polynomials
which can be expressed in terms of Legendre polynomials.
Hence, from (C2) and (C4) it follows that the angular
structure of R is given by

Consider an arbitrary spinor matrix element in Eq. (32), R =cos" (0/2)sin& (8/2)f (cosg) . (C5)

It contains kinematical singularities through the depen-
dence on sin8/2 and cosO/2, which can be explicitly fac-
tored out. From inversion of Eq. (32), R can be written as f (cosg) = (ir —ms ) '6 (cosg), (C6)

(C1) For the spinor couplings in Sec. IV it is found by explicit
evaluation that f has the form

oo 2J+1 g
R = g /Iij (pipz I

jj, leap)d~~, (0)
1=0 4m

(C2)

d„„(0)=( —)" "d „, „(0)
=( —)" "d„„(0) (C3)

we may only consider ji, &p', p) 0. Then (cf. Ref. 32, p.
58)

with p=p& —pz and p'=p~ —pz. In view of the symme-
try relation

where a=k or k and G is a polynomial of at most third
degree.

For the coupled NN-NA problem the number of in-
dependent d&& functions is restricted by the symmetry re-
lations (C4) and by the observation that

lc I
= ls —j 'I &2

In view of Eq. (C5) we see that Eq. (32}contains the prod-
uct of a d function with the prefactor of f in Eq. (C5).
This product can be expressed in terms of Legendre poly-
nomials. In our case we have

dao(0) =P~, singd io(0) = &J(J+1)
2J+1 (PJ+1 PJ —1) ~

J J+1(1+cosg)d i +i (8)= Pz+, +Pi+ Pz2J+1

sin gdqo(0}=
1/2(J+2)(J+1)

J(J—1)
J(J—1) 2J(J —1) J(J—1)

(2J + 1)(2J+ 3) + (2J —1)(2J+3) (2J + 1)(2J—1)
1/2J+2 (J —1)(J+1) J—1 3(J—1)sing(1+cosg)dq +i(8)= — Pq z+ P~, + Pz

&z+ i+J—1 J(J—1)
] + (2J+ 1)(2J+3) +

(1+ g gdg g
J(J—1) 2J —2 (J+2)(J—1)

(2J + 1)(2J+3) + 2J +1 + (2J —1)(2J+3)
2J+4 (J+1)(J+2)
2J + 1 (2J —1)(2J+ 1)

These relations are used to express the partial wave amplitudes Eq. (32) in terms of gi functions.
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