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In this work, we present a theory involving bound states embedded in the continuum in order to
explain the observed structures in heavy ion fusion data. As opposed to the continuum-continuum

coupling considered in the standard coupled channel calculations, we examine here the effects of in-

teraction of bound states among themselves as well as coupling of the continuum channels with
these interacting bound states. By making reasonable approximations within the context of bound
states embedded in the continuum, we show that the S matrix for each partial wave can be ex-
pressed as a sum of a smooth background term and a resonance term. For the case of a single
bound state only, the resonant part of the S matrix is shown to reduce to the Breit-Wigner form.
The background part of the S matrix is calculated by using a parabolic barrier in the presence of the
Coulomb interaction. The theory is then applied to analyze the fusion excitation functions for the
reactions ' C+ ' Si and is found to account for the structures in the data quite well.

NUCLEAR REACTIONS Heavy ion fusion; coupled channel calculation;
bound states embedded in the continua; resonant structures; application to

' C+ '29' Si systems.

I. INTRODUCTION

The fusion cross section between two nuclei exhibit in
many cases structures superimposed on a smooth back-
ground. In recent works, ' we have been able to account
for the smooth background for a wide range of data as
transmission through a barrier consisting of a parabola
joined smoothly to the Coulomb interaction and using a
formalism based on the theory of Feshbach, Peaslee, and
Weisskopf with a boundary condition which is embedded
in a Kapur-Peierls type of R-matrix theory. Whereas
other models, such as those of Glas and Mosel, Dethier
and Stancu, Avishai, and Bass can also account for the
smooth background part of the fusion cross section usual-

ly in a limited energy range, our treatment' is valid at all
energies and has been successful in explaining a wide
range of data pertinent to the smooth background. Thus,
while the smooth energy dependence of the fusion cross
section is well understood, attempts to understand the ob-
served structures in the data have just begun.

The purpose of this paper is to develop a simple
theoretical framework to incorporate resonances in the
calculation of fusion cross sections and apply it to the
fusion of ' C by ' ' Si. To this end, we adopt the cou-
pled channel approach of Mustafa and Malik' which is
connected to the theory of Feshbach' but avoids the ex-
plicit use of projection operators and is based on
Trefftz's' treatment of dielectronic recombination. From
the treatment of Ref. 14, it is evident that the key to reso-

nance in the scattering amplitude is the interaction be-
tween continuum and bound states embedded in the con-
tinuum. Within the framework of a suitable approxima-
tion emphasizing this aspect, we show that the S matrix
for each partial wave can be written as a sum of a term
depicting scattering from an average potential and terms
containing resonances. This work, therefore, also supports
the approach of Lee, Wilschut, and Ledoux, '3 and Lee,
Chu, and Kuo. ' We finally apply the theory to the
fusion of ' C by ' ' Si, using widths and energy shifts
as parameters.

II. THEORY

A. The coupled equations

Let the total Hamiltonian H of two heavy ions be ex-
pressed in terms of their relative and intrinsic coordinates
as

f2
H = — V +Ho(1, 2, . . . , A)+Ho(1', 2', . . . , A')

2p r

+H;„,(r;1,2, . . . , A;1', 2', . . . , A'),

where r represents the relative coordinate between the two
ions and the sets (1,2, . . . , A ) and (1',2', . . . , A') are the
intrinsic coordinates of each ion with respect to their indi-
vidual centers of mass. p is the reduced mass of the sys-
tem. The total wave function %' of the system in a given
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state can be expanded in terms of a function f„(r) and a
product of the individual intrinsic function P s forming a
complete set,

4= g f„(r)@„,

where

V„„.(r)= &e„,H,„,C „.&,

and K„„ is a nonlocal potential of the type

with

n, n'
K„„f„(r)= f dr'K„„(r, r')f„(r'),

4„'—P~(1,2, . . . , A)gp(1', 2', . . . , A') . (3)

(E —e„)+—V„„(r ) +K„„ f„(r )
2p

= —g [V„„(r)+K„„]f„(r),
n'&n

(4)

We can then obtain a set of equations of the following
type using the resonating group approach, '

originating from the Pauli exclusion principle. E is the
total center of mass energy of the system and e„ is the
sum of the two eigenenergies of intrinsic states given by
(3).

For further analysis, we shall assume V( r ) to be spheri-
cally symmetric and avoid explicit consideration of K, al-
though it can be incorporated in our treatment. Writing
the radial part of f„as f„(r)=X„(r)/r, we obtain the fol-
lowing coupled equations for X„(r):

and

d2

dr

4(l.+1)
+k~ —W~~(r) X~(r)= g W~b(r)xb(r)+ g W~, (r)X, (r)

T b CQA,

(7)

d2

dr

lb(lb+1)
+kb —Wbb(r) Xb(r)= Wbg(r)X/(r)+ y Wbb(r)Xb (r)+ y Wb, (r)X, (r) .

r b'~b C+A,

(8)

In the above equations, we have explicitly separated the
incoming channel A, (which is also the elastic channel), the
other continuum channels c, and the bound-state —like
states (5 =1,2, . . . , N) in order to facilitate subsequent
analysis. k„and W„„(n,n'=b, c) are defined as

B. Bound state solutions

We may construct a solution of the bound state wave
function, Xb, of Eq. (8) by expanding Xb in terms of an
orthonormal set, '

Xb g anbXnb

k„=(2p/A' )(E—e„), with

x„b(r)x„b (r)dr =5„„5bb . (12)

W„„=2@V„„ /fi (10)

In the usual coupled channel calculations, the first term
on the right hand side of Eq. (7) is set equal to zero [and
hence Eq. (8) is neglected] and as discussed in many
works including Ref. 14, this does not always explain res-
onancelike structures in the continuum channels. Our aim
here is to explore the other alternative, i.e., set W~, =0 for
all c&A, and examine the ramifications of coupling the
continuum channels, in particular the elastic channel A, , to
the bound states.

The wave functions X„b are solutions of the homogeneous
part of Eq. (8), i.e., solutions of Eq. (8) with the right-
hand side equal to zero. In principle, the summation in-
cludes an integration over the continuum states (q). In
that case,

Xqb ~ q'b ~

However, the presence of such a term does not affect the
calculations and we shall not consider this explicitly any
further.

Coefficients a„b satisfy the equation

(kb —k„b)a„b——f X„b(r) g Wbb (r)Xb(r)dr+ f X„b(r)Wb~(r)X&(r)dr+ f X„b(r) g Wb, (r)X, (r)dr .
b'~b c+A,

(13)

From Eq. (13), it is clear that a„b exhibits resonant
behavior when kb is close to k„b. Near such resonances it
is reasonable to approximate Xb as

Xb(r)=a„bX„b(r), b =1,2, . . . , N, (14)

because the other amplitudes are very small compared to
the resonant ones. It is to be noted that this is not a case
of an isolated resonance but a series of successive reso-
nances.
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C. Continuum channel solutions

Following Mott and Massey, we write the elastic
channel solution X~, given by Eq. (7), and other continu-
um channel solutions P„given by a similar equation and
defined by appropriate asymptotic forms, in terms of in-
tegral equations. Such integral equations for the continu-
um wave functions are (c =A. is the elastic channel)

7,' ' and 7,'" are, respectively, the regular and irregular
solutions of the homogeneous part of Eq. (7) having the
asymptotic forms

X,' '-sin(k, r —~l, /2 —g, ln2k, r+o, +5, ),

X,'"-cos(k, r —m-l, /2 —ri, l n2k, r+0., +5, ) .

X,(r)=X,'"5„+f G, (r, r') g W, (r')X (r')«',
b

where

( 15)
Herey

ri, =-pZiZ2e /(A' k, ),

G, (r, r') = — [X,' '(r )X,"'(r )+iX,' '(, )X,' '( )] .
k,

Z&e and Zze being the charges of the two ions. o., and 5,
are, respectively, the Coulomb and non-Coulomb phase
shifts.

Substituting Eqs. (14)—(16) into Eq. (13), we get

(kb k,$ )5$—b —f X„b(r)WbI, (r)X„b (r)dr2 2

b'

—f f X„b(r) Wb~(r)Re 6&(r, r')Wqb (r')+ g Wb, (r)Re 6, (r, r')W~ (r') X„b (r')d«r'
C+A,

i f f—X„b(r) Wb~(r)ImG~(r, r')W~b (r')+ g Wb, (r)Im6, (r, r')W, ~(r') X„b(r')dr dr' a„&
CQA,

= f X„b(r)Wb~(r)XP'(r)dr . (19)

The second term on the left-hand side of Eq. (19) will be absent if b =b' (one bound state only). The above equation can
be written as

lX « E.~»»+~E.—be+ I bb a.b =Yb~-,
bt

where the total width is defined as

4 4I bb' Ybk, Yb'A++ ~ Y.bcYb'c
Au~ c~Z &Uc

(20)

(21)

yb, = f X„I,(r)Vb, (r)XJ"(r)dr (j=&,c. ) .

The energy shift, b E„bl;, is given by

(22)

r Pbb r g b r dr + .
b r Pbg r gg r gg r Pgb r g b r dr r

fiu p„

+ g f f X„b(r)Vb, (r)X,' '(r& )X,'"(r& )V b (r')X„b (r')dr dr' .
C~X ~~C

(23)

The first term in Eq. (23) represents the shift due to in-
teraction between bound states only and the last two terms
between a bound state and a series of continuum states.

D. S matrix

To obtain the S matrix elements, we rewrite Eq. (7) as

where we have separated W&&(r) into an appropriate
Coulomb part and a nuclear part, i.e.,

Wu. (r)=WB (r)+WE(r)
The solution of this equation, satisfying the asymptotic
condition

&&(&&+1)-+k~ —WB"'(r) X~(r)
r 2

= WPj" (r)Xg(r)+ g Wgb(r)Xb(r),
b

(24)

X,(r) I,5~, —S~,O, ,

I, =exp[ i(k, r —ml, /2 —g, ln—2k, r+cr, )],

(25)

(26)
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0, =exp[i(k, r —n l, /2 —g, ln 2k, r +o, )], (27) where

can be written in the same spirit as that of Eq. (15), and is
given by

X,(r)=u,' '5«+ f 9,(r, r')I'(r')dr', (28)

E(r') = Wqq" (r')Xq(r')+ g 8'qb(r')Xb(r')
b

(29)

f dr u,' '(r) g W,b(r)Xb(r)dr .
C b

(31)

The above equation clearly shows that in the absence of
continuum-continuum coupling, the S matrix can be writ-
ten as the sum of a term containing potential scattering
and a term having resonances. The first two terms in Eq.
(31) contain the contribution to the S matrix from the di-
agonal part of the potential in the continuum channel and
is termed the background part, SP,'. lt is responsible for
the smooth part of the S matrix originating from the
scattering potential 8'„and exhibits only resonances due
to various partial waves. The last term in Eq. (31) is re-
sponsible for other types of resonances since the bound
state solutions, Xb, are formed by solving Eq. (20) for a„b
which exhibits a resonant behavior. These resonances are
of the Breit-Wigner type originating from bound states
embedded in the continuum and are denoted by S~, '.

III. A.PPI.ICATION

9,(r, r')= — [u,' '(r()u,'"(r) )+iu,' '(r()u,' '(r) )] .
k,

(30)

u,' ' and u,'" are the regular and irregular solutions of Eq.
(24) with the right-hand side set to zero. They have the
same asymptotic forms as X,' ' and X,'" of Eqs. (17) and
(18), respectively, but with 5, =0.

Writing out explicitly the asymptotic form of solution
(28) and comparing it with Eq. (2S), we get

S«=5« — f dr u,' '(v)8;",""(r)X,(v)dr

4
Su. =—'

& ~ orb'Ybx
RUg

(33)

where the a„b's are determined from the system of linear
equations (20).

The resonant structure of SPq' becomes more explicit
for the case of a single bound state, i.e., b=b'. In that
case

Xbk

E (E„b EE„—„b)+—iI bb/2
(34)

l2 28G+ Si

)200

900
E

b

Su =S~~ +S~~(&) (&)

and is defined by Eq. (31) for each l. Thus, apart from
background and resonance contributions, the cross section
will also contain contributions from interference between
the background and the resonance terms as well as in-
terference between terms involving various bound states.

In pnnciple, Sk(8~) can be calculated for a parabolic po-
tential joined smoothly to a Coulomb potential in the exte-
rior region using the method of Ref. 1. All the parame-
ters pertinent to such a model could then be varied as free
parameters again because Xz(r) in Eq. (31) is now a solu-
tion of the coupled equation, whereas in the calculations
of Ref. 1 it was not. However, we wish to use the results
of Ref. 1 for SP~'. This implies approximating X~(r) in
Eq. (31) by a solution of Eq. (7) having no coupling terms
on the right-hand side. Implicitly, it also means replacing
u,' '

by X, ' in the expressions for both Sp~' and S~~'. By
making use of Eq. (14), SP~' can then be written as

A. Parametrization

At this stage, we do not intend to calculate explicitly ei-
ther the widths or the energy shifts from the first princi-
ple, but rather use the general structure of S~, to incorpo-
rate resonances in our earlier calculation (Ref. 1). As usu-
al, the fusion cross section o.f is calculated by equating it
to the reaction cross section in the incident channel. This
is particularly suitable at energies below the barrier where
other direct channels are not expected to be dominant.
Hence, the fusion cross section is given by

of ——
2 g(2l+1)(1—~Sgg l

),
kg

o
l0 il5

I l

25 50
E (MeV)

I

35
I

45 45

FIG. 1. A comparison between the calculated (solid line) and
experimentally measured values (Ref. 20) of fusion cross sections
for the reaction ' C+ 'Si. The experimental values are denoted
by solid circles. The theoretical values are calculated by using
only one bound state (b = 1) with E,=27.0 MeV, I qq(E„) =0.95
MeV, and I ~p(E„)=1.80 MeV.
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FIG. 2. The same as that of Fig. 1 but for ' C+ Si. Two
bound states (b = 1,2) with E,= 19.6 and 26.8 MeV,
I ~~(E, ) =0.75 and 0.70 MeV, and I qp(E, ) = 1.10 and 1.55 MeV
are considered here.

FIG. 3. The same as that of Fig. 1 but for ' C+ ' Si. Two
bound states (b = 1,2) with E„=19.0 and 24.2 MeV,
I q~(E, ) =0.80 and 0.85 MeV, and I qp(E, ) =1.40 and 1.80 MeV
are considered here.

and

~bb =~by+ g I b,
c+A,

(35)

and

P'b'~(E) =Pb'q(E„)exp[(E —E„)/E„) (38)

(ybj) (j=c,A, ) .4
'Avj

Equation (33) for SP~' then becomes

(R)
—lI bA,

E E„+iI bbl2—

(36)

(37)

I"g(E)=Cg8(l„—l)I" "(E) (i~0),

where

8(l„—l)= 1 for 1&i„
0 for l&l, ,

(39)

(40)

where

E„=E„b—AE~bb .

This is the Breit-Wigner resonance for a single bound
state.

As mentioned earlier, instead of using definitions (36)
and (23) for the widths and energy shifts, we will use them
as parameters. We prescribe a simple energy and l depen-
dence for the width I b~, in analogy to the u-decay prob-
lem. ' Thus, we take

and C~ is a constant always less than one. We denote the
width in all other channels (g,&& I b, ) by I bo and assume
the same energy and l dependence as I b~ However, .from( I)

Eq. (21) it is evident that I bb is the total width and we
shall treat it as such. We have also set bE„bb ——0 for
b&b' and in order to minimize the number of parameters,
we have used C~ = Co ——0.9 and 1„=9for all the reactions
considered here. The last one is not an approximation be-
cause contributions to SP~' from higher I's become in-
creasingly smaller.

TABLE I. Contributions of the background (second column), resonance (third column), and the in-
terference between background and resonance (fourth column) parts of the S matrix to the fusion of ' C
by Si for the first few partial waves at center of mass energy of 14.0 MeV. The fifth column shows
the full contribution to the S matrix. The sixth and seventh are, respectively, the full and background
contributions to the cross section.

0.4281
0.4453
0.4804
0.5337
0.6043

iS(R) i2

0.0296
0.0243
0.0199
0.0162
0.0132

2 Re(S'"S"'*)

0.0189
0.0367
0.0537
0.0694
0.0827

I s»
I

'

0.4766
0.5063
0.5540
0.6193
0.7002

0.5234
0.4973
0.4460
0.3807
0.2998

1 —fSP~' f'

0.5719
0.5547
0.5196
0.4663
0.3957
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TABLE II. The same as that of Table I except that the center of mass energy is 18.0 MeV.

[
s'"

~

'
0.0304
0.0318
0.0347
0.0396
0.0473

0.3041
0.2776
0.2506
0.2239
0.1978

2Re(S' 'S' '
)

0.0009
—0.0344
—0.0786
—0.1288
—0.1739

I
s„

I

'

0.3354
0.2750
0.2068
0.1347
0.0712

0.6646
0.7250
0.7932
0.8653
0.9288

0.9696
0.9682
0.9653
0.9604
0.9527

B. Results and discussion

In the following, we apply the above formalism to cal-
culate the fusion cross section for the reactions
' C+ s' 9'30Si. The data for these reactions show dips at
around 27.0 MeV for ' C + Si, at 19.6 and 26.8 MeV for
' C+ Si, and at 19.0 and 24.2 MeV for ' C+ Si. We,
therefore, use these values of energies as E, for the respec-
tive reactions. This implies that we are considering only
one bound state for ' C+ Si and two bound states for
each of the reactions ' C+ Si and ' C+ Si. At the lo-
cation of each resonance one is to specify the width due to
coupling of the elastic channel with bound states I Pz and
I 'bo which is basically total width less I bq for the s wave.
Thus, for the ' C+ Si system, there are two free parame-
ters once E„ is taken to be 27. 0 MeV from the data. For
the ' C+29Si and the ' C+ Si systems, there are four
free parameters because of the two resonances considered
for each case.

The results of our calculations together with the experi-
mental data are displayed in Figs. 1—3. The values of
the width parameters used in the calculation are given in
the figures. In order to obtain reasonably good fits to the
data, the values of I bo(E„) had to be made larger than
those of I"Pi'(E„). This is reasonable since I"bo represents
total width less I b~. In calculating the cross sections, we
have used the results of Ref. 1 for the background contri-
bution to the S-matrix elements.

As expected, away from a resonance energy, the contri-
bution of the resonant part of the S matrix to the cross
section is very small. However, as opposed to pure back-
ground calculation, ' a reduction of about 10—20 mb in the
cross section is observed in the low energy region. This
slight reduction in the magnitude of the cross section is

caused by interference between the background and the
resonance terms. To illustrate this point, we have listed in
Table I the various contributions for the first few l values
to the cross section at 14 MeV c.m. energy for the reaction
' C+ Si. In Table I, the sixth column shows the full
contribution to the cross section while the seventh column
shows only the background contribution. Near a reso-
nance energy, the main contribution to S~i comes from
SPi' even though the interference term is also significant.
The interference term competes with the resonance term
as l increases, as can be seen in the third and fourth
columns of Table II for c.m. energy of 18.0 MeV. The net
result of all these contributions is a reduction in the mag-
nitude of the cross section.

If we consider only one bound state (E„=19.0 MeV) for
the reaction ' C+ Si, no appreciable difference can be
noticed in the magnitude of the cross section except for
the disappearance of the dip around 24.0 MeV. This is
because the two states considered here are far apart (about
5.0 MeV) and do not interfere significantly with each oth-
er. However, if the states are spaced closely, the interfer-
ence effect might become appreciable.

In conclusion, we have provided here a theoretical
framework to incorporate resonances in fusion cross sec-
tion in a systematic way. We have, however, applied a
simplified or schematic version of the theory to three sys-
tems and have shown that the theory can reasonably
reproduce the data.
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