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Generalization of Kramers's formula: Fission over a multidimensional
potential barrier
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We generalize Kramers s rate expression for diffusion over a potential barrier to the case of a diffusion

problem for n degrees of freedom. These can be thought of as the shape degrees of freedom of a fission-

ing nucleus. We present our formula for the fission width and discuss its dependence on the parameters-
the mass tensor, the friction tensor, and the shape of the potential landscape.

[NUCLEAR REACTIONS, FISSION Diffusion, transition state method. ]

MX +PA. + V=0

where M is the mass associated with the fission variab1e and

p & 0 the friction constant [in units (mass) (time) ']. The
value of X decreases monotonically with increasing P and
has the range

0~3.—(fVf/M)'~' for & p~0 (3)

The result (I) is valid for all but very small values of p,
where I p should depend linearly on P. Equations (I)—(3)
are interpreted as follows. The fission rate is mainly deter-
mined by the exponential which reflects the Boltzmann fac-
tor, and thus the diffusive character of the process. The
factor ( IV/~ V

~ ) 'r2 X can also be written in the form
( IV/IMI, )' 'n where n +(p/M) V)) nl with n= I for
p=0. The factor (IV/M)'2 is the frequency in the first
well, or the frequency of attempts to cross the barrier. For
p A 0, the factor n ( 1, and this frequency is reduced be-
cause of friction. The friction is expressed in terms of the
dimensionless quantity p/M ~

V ~.

Kramers's result can be generalized to a diffusion prob-
lem in n dimensions. This is desirable as several degrees of
freedom are necessary to describe the shape deformations
occurring during the fission process. We accordingly model
induced nuclear fission in terms of a Fokker-Planck equa-
tion for n degrees of freedom. This equation contains' the
real, symmetric, and positive definite mass tensor M, the
real, symmetric, and positive friction tensor P, and the po-
tential energy & a function of the n position variables.

Kramers' modeled the induced nuclear fission process as
a one-dimensional diffusion process over the fission barrier.
He solved the Fokker-Planck equation for one degree of
freedom in the quasistationary approximation. For the fis-
sion width I"y, he obtained the formula

(I)2m, T

Equation (1) is obtained by calculating the quasistationary
probability current over the saddle point. In Eq. (1), Vs is
the height of the fission barrier, T is the nuclear tempera-
ture (in units of energy), and IV & 0 and V ( 0 are the fre-
quencies of the parabolic potentials osculating the fission
potential around the ground state and at the top of the bar-
rier, respectively. The constant X is the positive root of the
quadratic equation

Solving this equation in the quasistationary approximation,
we find for the fission width the expression

I f= exp-
27r

Va det 8'
T ldetVI

1/2

0 ~ A ~ ~@ti"' (6)

Here, rtrt is the only negative eigenvalue of the n by n ma-
trix (M 'r VM 'r ). The validity of Eqs. (4) to (6) is again
restricted to a domain excluding very small values of p.

Because of possible applications in several areas of statisti-
cal mechanics, the proof of Eqs. (4) to (6) will be published
elsewhere. In this Rapid Communication, we discuss in
which way the fission width for an n-dimensional fission
problem differs from Kramers's original expression (I).

The presentation just given emphasizes the very close for-
mal analogy between the one-dimensional and the n-
dimensional cases. The determining factor for both is the
exponential, which is identical in both cases. Modifications
of the value of I y arise, however, because the last two fac-
tors on the right-hand side (rhs) of Eqs. (1) and (4) are dif-
ferent. We now discuss these factors.

Denoting the n eigenvalues of W„" by W; & 0,
i =1, . . . , n, those of V~ by V;, i =1, . . . , n with V~ (0,
Vt & 0 for I » 2, we write the ratio of determinants as

r /2 r i 1/2 ' 1/2
det IV (7)

2

To facilitate the comparison between Eqs. (I) and (4) we
assume that the major axes have been chosen in such a way

Here, the real, symmetric, and positive definite n by n ma-
trix IV& (i,j = I, . . . , n) defines the quadratic form which
osculates the fission potential F'at the ground-state defor-
mation of the fissioning nucleus, a local minimum of the
potential landscape. The real, symmetric n by n matrix VJ
affords the same approximation at the saddle point. The
existence of a saddle is ascertained by the fact that V has
(n —I ) positive and one negative eigenvalues. The symbols
Vs and T have the same meaning as in Eq. (I), and A is
the only positive root of the equation

det(MA'+ pA+ V) =0

The value of A decreases monotonically with increasing
strength po of the friction tensor, and A has the range
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Without loss of generality we can assume y to be diagonal.
Our problem contains the five parameters y ~ & 0, y2 & 0
(the eigenvalues of y), @~ ( 0, @2)0 (the eigenvalues of
@), and the angle 8 of the real orthogonal 2 by 2 matrix
which diagonalizes @. We define A = A/~@~'~2 and are then
left with four parameters. These are conveniently chosen as
the dimensionless quantities

&=y, /~y, ('~'«0, R, =~,/y, «0,
R~= @2/~@~~ «0, (= sc'o8+R~si 8n

(9)

[Equation (g) can be seen to depend on 8 only via the func-
tion sin 0. Therefore we consider only the interval
0 ~ 8 ~ 7r/2. In this interval, the correspondence between g
and 8 is one to one. ]

These parameters can be interpreted as follows. The
quantity @t is the curvature of V at the fission saddle in the
direction of steepest descent, modified by the geometry im-
posed by M. The angle 9 is the angle of rotation that takes
the major axes of the friction tensor into those of the poten-
tial at the saddle, again in the "deformed" geometry im-
plied by the mass tensor M. The parameters R~, R~, and q
defined in Eqs. (9) have an obvious interpretation, while g
measures the strength of friction (in units of y~) in the
direction of steepest descent.

We note that q also determines, in the case of n = 1, the
parameter dependence of

g = g/)@, ['~ = (g/V, ]'~2)M'~

Indeed, we have

7 = [1+(q/2) ']' ' —7l/2 (10)

In contradistinction, the other three parameters R ~, R ~, and
are typical for n =2 and do not occur for n =1. The

parameter g equals unity unless R ~ A 1. This makes sense
since, for R ~

= 1, the matrix y is a multiple of the unit ma-
trix, and y and @ can then be diagonalized simultaneously.

that W = W] and V = V~. The difference between the one-
dimensional and the n-dimensional cases is then given by
the product of all the ( W, / V;) '~ for i «2. This has a sim-
ple geometrical interpretation: If the n -dimensional fission
valley gets wider (narrower) as one approaches the saddle
point, the fission width in n dimensions is bigger (smaller)
than in one dimension. This is intuitively expected. Note
that actually one only compares the width of the valley at
the ground state with the width of the valley at the saddle
point, and that values at intermediate points are of no im-
portance. Note also that it does not matter whether the ma-
jor axes of W& are tilted as compared with those of V„", and
whether the fission valley winds its way up to the scission
point or runs in a straight line. These statements are, of
course, expected for a diffusion process.

The value of A is determined exclusively by the charac-
teristics of the problem near the saddle point, as is shown
by the defining Eq. (5). We study the parameter depen-
dence of A by restricting ourselves to the case of two
dimensions, n = 2. Introducing the matrices
y = M PM and @= M VM which are both
real and symmetric (y is also positive definite while P has'
one negative eigenvalue $~ & 0 and one positive eigenvalue
P2 & 0), we write Eq. (5) in the form

det(A'+yA+y) =0 .

Denoting the left-hand side (lhs) of the eigenvalue equation
(g) by D(A), we use that dD/dA & 0 for A ) 0. More-
over, the eigenvalue equation (g) can for n = 2 be written
as

(A + qA+rf))))(A +v)R~A+Pp2) = $&2

where P;q ——P;q/~$~~. For @~q& 0, the two factors on the
lhs of Eq. (11) have the same sign. This sign is positive.
Indeed, for R~=1, we have A= X, and the positivity fol-
lows from Eq. (10) and direct calculation. For R~&1 the
claim follows from the continuity of A(R~) in R~ and the
fact that the rhs of Eq. (11) is positive and independent of
R„. Using these inequalities and the eigenvalue equation
(g), it is straightforward to show that

&0 &0 &0
BR~

' BRp
' 8( (12)

The derivatives are taken by keeping the other parameters
(9) fixed. The second of these inequalities shows that mak-
ing the fission valley steeper (or the mass tensor smaller) in
a direction different from the direction of steepest descent
reduces A and thus A. To discuss the first inequality, we
consider a change of R~ in (9) by keeping y~ fixed and in-
creasing y2. To keep $ fixed, we decrease (or increase) at
the same time the angle 0 depending on whether R„& 1

(R~ & 1). (Unfortunately, this interdependence of the vari-
ables required to keep y~ and g fixed complicates the discus-
sion. ) Under this transformation, A (and thus A) is re-
duced. This is intuitively reasonable: The increase of R~
(y~ fixed) implies an increase of y2 and, hence, an overall
increase of friction which reduces A. The fact that 0 is
changed simultaneously does not affect the conclusion. The
third inequality is similarly discussed: For R ~ & 1, i.e.,
y~ & y2, the maximum of y is attained for 8=7r/2, i.e. ,
when the 1-axis of @ and the 2-axis of y are made to coin-
cide. for R~ & 1, i.e., y2& y~, we have analogously 0=0.
In both cases, the fission width is minimized by maximizing
the friction along the direction of steepest descent.

To discuss, finally, the dependence of A on g, we recall
that X also depends on q, and that we are primarily interest-
ed in changes caused by the multidimensionality of the
problem. We therefore consider the quantity A/X = A/X
and find after some algebra

&0 if1 &R, ,
A =0 if 1 =R„,

&0 if 1 &R, .

Since A= k for R~= I, this implies A ( A. ( ) A. ) for
R~ & 1 ( & 1), respectively. These results again are intui-
tively obvious: An increase of friction implies a decrease of
A.

Figure 1 shows the parameter dependence of A/X calcu-
lated for various values of the parameters. We see that A/X
can differ from unity by a factor of 2 or so in either direc-
tion.

In conclusion, we have presented a modified version of
Kramers's formula which includes the effects of several col-
lective degrees of freedom on the fission width. We have
shown that such effects may substantially modify the fission
width, although the original formula of Kramers gives a
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FIG. 1, The ratio A/A. for n = 2 plotted vs each of the four parameters q, R &, R ~, and 8, for various values of the remaining
parameters as indicated,

correct order-of-magnitude estimate. The modifications are
intuitively understandable in terms of the shape of the fis-
sion valley, the two eigenvalues of the friction tensor, and
the skewness of the direction of the fission current as com-

pared with the direction of steepest descent over the saddle.
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