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The Dirac equation employing an impulse approximation optical potential based on NN phase shifts has
been shown to provide a description of the intermediate energy proton-nucleus spin-dependent elastic
scattering data not yet found in the context of a Schrodinger approach. Using analytic methods generalized
to the Dirac equation, we trace this success to the nonlinear density contributions which arise as a natural
consequence of the Dirac approach. This new understanding resurrects the hope of using intermediate en-

ergy protons as a probe of nuclear structure details.
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A principal purpose of medium energy hadron-nucleus
scattering is to exploit the short wavelength of the probe to
provide detailed knowledge of the nuclear geometry. It is
clear that in proton-nucleus scattering, for example, the os-
cillations in the cross section are diffractive and their con-
nection to the nuclear shape was already clear in the work
of Kerman, McManus, and Thaler! (KMT), who showed in
1959 that a “‘tp’’ optical potential was qualitatively similar
to phenomenological potentials in use at the time. Since
that time energy and precision have increased and spin
dependent observables have been obtained. The observed
oscillations in the spin observables are clearly related to the
diffraction structure®? but quantitative, detailed calculations
aimed at fitting the full range of cross-section and spin ob-
servables data in impulse approximation have been forced
to introduce parameters and assumptions in the nuclear
geometry that are not easily justified. These have included
unusually large values for nuclear force ranges,’ or for
neutron-proton radius differences,®’ and energy dependent
or probe dependent geometry.® Workers in the field finally
concluded that nothing less than the breakdown of the im-
pulse approximation was underlying the difficulties in
describing the spin dependence using credible parame-
ters.” 10

By contrast, the Dirac equation approach to proton-
nucleus scattering solves these problems in a simple and re-
markably straightforward way in the spirit of the KMT im-
pulse approximation zp approach. In this paper we explain
how the three dynamical geometries needed? to account for
the cross-section and spin observables arise naturally in the
Dirac formalism from a single underlying nuclear geometry.

28

We do this by exploiting insights that arise in an analytic ap-
proach to the scattering amplitudes, which approach starts
most easily from an eikonal formalism. The qualitative suc-
cess of the picture makes it clear that if realistic effects of
finite range or neutron-proton differences are to be extract-
ed, the Dirac starting point is both natural and necessary.
We show, in particular, that although the Dirac scattering
approach with but one geometry is qualitatively correct,
there remain interesting details that require just such
features and revitalize the hope of extracting them with the
precise short range probes of medium energy.

The major clue to the need for a Dirac equation approach
is that it is the spin-observables that are particularly difficult
to describe in a parameter free Schrédinger approach. It has
been shown by many!'"!? that in the limit of a spin orbit po-
tential given by (1/r)(d/dr) operating on the central poten-
tial the spin asymmetry is structureless to first order in the
spin orbit strength, and nearly structureless to all orders if
the strengths and ranges are taken from the observed
nucleon-nucleon behavior. Some structure may be intro-
duced by folding with the nucleon-nucleon force ranges or
by using different proton and neutron densities. For
phenomenological success, however, these approaches re-
quire either forces inconsistent with the free forces, or ener-
gy dependent neutron densities. It is important to stress
that parameter-free attempts to describe the asymmetry data
result in qualitative failure in reproducing the spin structure,
as is well documented and will be illustrated again below.

Phenomenological treatment of the scattering based on
analytic approximations to the eikonalized Schrodinger am-
plitude reveals that the cross section and asymmetry require
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a central and spin-orbit geometry that differ by a single
complex length.>> This length not only completely charac-
terizes the asymmetry but also provides the often sought for
connection between the oscillatory structures in the cross
section and in the asymmetry. Extending these notions to
the spin-rotation parameter Q has revealed that yet a third
geometry, or another complex length is required to account
for the observations.* Thus this purely phenomenological
approach showed the need for three distinct geometries and
the size of this difference again has no justifiable theoretical
origin.

In contrast to this, Clark eral'* showed that a
phenomenological approach based on the Dirac equation al-
lowed one to describe the spin rotation parameter Q with no
further adjustment of parameters over those obtained by fit-
ting to the cross section and asymmetry. Very recently it
has been shown that an impulse approximation ¢p approach
based on the Dirac equation allows for a parameter-free
description of the 500-MeV p-*°Ca cross-section polarization
and spin rotation parameter.!>"'” This suggests that the
geometry differences known to be required phenomenologi-
cally, and very difficult, if not impossible to include via a
Schrodinger theory, are automatically included in a Dirac

theory.
|

f(g)=

where §'= K—k"and k,=(k +Kk')/2. The z axis is chosen
along k,, & is the Pauli spin operator of the projectile, and
prime denotes differentiation with respect to r. The deriva-
tion of this equation will be presented in a separate paper.
Here we only note that the result is the same as one would
obtain by eikonalizing a la Glauber'® the ‘‘Schrodinger
equivalent’ potential discussed in Ref. 19 and elsewhere.

In Figs. 1-3 we compare this eikonal approximation to a
partial wave solution of the Dirac equation?® for the case of
p-*°Ca elastic scattering at 500 MeV. In the calculation V
and S are both taken to be of the form V{”p where V{” is
a complex strength, different for ¥ and S and p is a
Woods-Saxon form 1/(1+e“~¢7#) with radius ¢ =3.55 fm
and diffusivity parameter 8=0.64 fm. The important point
is that the same density is used for V' and S. Also shown in
Fig. 1 is the data of Refs. 9 and 21 for p-*Ca elastic scatter-
ing at 500 MeV. The strength parameters are taken from
the NN amplitudes following Ref. 16: So=(—303+:73)
MeV and Vy=(191—i86) MeV. The eikonal and partial
wave cross sections are essentially identical and both are
close to the data. We see in Fig. 1 that the equivalent single
density Schrodinger calculation also gives a reasonable
description of the cross section.

In Figs. 2 and 3 the polarization and spin rotation data are
plotted along with the single density Schrodinger, partial-
wave-Dirac and eikonal-Dirac calculations. The single den-
sity Scrhodinger calculation is a standard nonrelativistic zero
range one using the same Woods-Saxon density parameters
for both the central and spin orbit optical potentials with the
strengths extracted from the same NN amplitudes used in
the relativistic case. We observe in both cases relatively
structureless Schrodinger curves compared to the data. The
exact and eikonal Dirac are again very close and both quali-
tatively duplicate the observed structures in P and Q.

ka 2p i T (,—x(b) — = — ®
= fdbeq (e X®_1) , —x(b)= Im/k,,f_wdz
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In this paper we try to understand this success from an
analytic perspective. We present an eikonalized solution to
the Dirac equation, which has not to our knowledge been
previously presented. From this, following the work of oth-
ers, we exhibit the Schrodinger equivalent potential, which
indeed has three terms with different geometries as required
by the data. These three terms arise as different functions
of a single assumed underlying density. We show that with
no force range differences and no differences in the neutron
and proton densities, structure in P and Q is obtained which
is qualitatively in agreement with the data. The Schrodinger
or single geometry approach fails utterly in this regard. The
Dirac equation leads to these sizeable differences among the
three interactions geometries in a natural way. It is clear
from these results that while a Schrodinger based analysis of
a single cross section can yield qualitatively correct informa-
tion about a single density, Schrodinger based analyses of
density differences, neutron densities, spin observables, or
energy dependence must be questioned.

To more easily understand the physics of the Dirac equa-
tion approach we have derived an eikonal form for the elas-
tic scattering amplitude for a Dirac particle of mass m, ener-
gy E interacting with both scalar (S) and vector (V) poten-
tials:

S:—v?2 . .~ ka S' =V
S+E/mV+-———0c-(rx —_—
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FIG. 1. The 500-MeV p-4°Ca elastic scattering cross section data
(Ref. 8) is compared to three equal geometry model calculations.
The solid curve is the Dirac-eikonal result [Eq. (1)], the dashed
curve is the corresponding partial wave Dirac equation calculation,
and the dotted curve is the ‘“‘equivalent” Schrédinger-eikonal result.
The potential strengths were taken from Ref. 16. The Woods-
Saxon parameters used were ¢ = 3.55 fm and 8 =0.64 fm.



RAPID COMMUNICATIONS

2182 AMADO, PIEKAREWICZ, SPARROW, AND McNEIL 28
T | | 20 T |
L p—4OC0 ELASTIC Ty=500 MeV 10 P~ Ca ELASTIC +Tp =500 Mev _|
1.0F L SRR - ' ta
0.8~ 7 06
0.6+ -
0.4 - B
0.2 _ 0.2
Ay oL _1 Q ot
-0.2¢ — -0.2+
-0.4r- . n — . ,
- 0.6} — Dirac-Eikonal . — -06 : IB(,J:‘:::Q.IE\:(?COI
——— Partial Wave L ‘ e
=~ 0.8 e Schrodinger - Eikonal . L e * Schrodinger - Eikonal .
~1.0g 1I z 3 -10 ' L
q (fm_1) i y 2 3
q (fm™)

FIG. 2. Same as Fig. 1 except for analyzing power.

The three geometries that enter the Dirac approach are
clear in Eq. (1). They are the density p in the first term
(So+ Vo)p(r), the quadratic density term of the second
term (S¢ — V¢)p(r)?, and the nonlinear density (the spin
orbit term (So— Vo)p' (r)/IE4+M+S(r)—V(r)]. That
these produce just the geometries and phases required by
the physics is most easily seen by using an analytic approach
to the evaluation of Eq. (1) in which the rapid oscillation of
the integrand is exploited to evaluate the integral by the
method of stationary phase. It is the complex singular point
of the profile integrals that then dominate the integrals and
these can be obtained from the combined effects of the
three geometries by a generalization of the methods of Refs.
22 and 23. It is then easily seen that the three
““geometries’ in Eq. (1) lead to just the three dynamic
geometries that are phenomenologically required by P and
Q.* This inspires the hope that the data-to-data approach
for spin observables and inelastic scattering will be as suc-
cessful in a parameter-free Dirac approach as it was in a
phenomenological Schrodinger approach.?»?*  Details of
these analytic analyses will be presented later.

In conclusion, we have elucidated how a Dirac equation,
impulse approximation approach to medium energy proton-

FIG. 3. Same as Fig. 1 except for spin rotation parameter (data
from Ref. 21).

nucleus scattering is able to account for the features of the
cross sections and spin observables using only a single
underlying nuclear density, although this is impossible in
the Schrodinger equation. In the Dirac equation this single
underlying nuclear density manifests itself in the equivalent
Schrodinger equation as three interaction geometries. An
analytic approach based on a Dirac-eikonal scattering for-
malism allows a connection to be made between these three
geometries, and those of previous ad hoc phenomenology.
For a quantitatively detailed description of the proton-
nucleus scattering data, force ranges, neutron-proton densi-
ty differences, and small components of the nuclear wave
function should be included. However, the hope is raised
anew that the theory is now adequate for exploiting the
amazing precision of present data to determine the detailed
structure and possible new features of nuclear densities.
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