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We discuss the pion nucleon partial wave mixing due to the Pauli projection operator in 7-*He scattering.
In a previous numerical investigation we found that this partial wave mixing generates only small correc-
tions in the cross sections. In the present study we demonstrate that the coupling between partial waves
vanishes in the limit m,/my— 0, thereby explaining these numerical findings.

[ NUCLEAR REACTIONS =-%He scattering, optical potential, Pauli principle corrections.]

The simplest nontrivial way to obtain a unitary optical po-
tential is to truncate the Hilbert space of nuclear states in
the intermediate system to the subspace of 1p-1h states.!
This is realized for the single scattering process in which the
pion scatters from one nucleon at a time if, in addition, the
nucleus is described by means of an independent particle
shell model. At this level of approximation two medium ef-
fects enter the description, viz., the binding correction and
the Pauli blocking correction. To incorporate the binding
effect one has to solve a three-body problem (pion, nu-
cleon, core) with interactions between the pion nucleon and
between the nucleon core two-body subsystems, giving a T
operator ¢ for pion bound-nucleon scattering.? Subsequent-
ly, one has to account for the ground-state exclusion and
the Pauli blocking effect to obtain the required #-N G
operator 7 and the optical potential®

Uop=A (Yol 7o) . (1

In Ref. 4 we have shown in a discussion of 7-*He scattering
that the Pauli blocking correction introduces a mixing
between different 7-N partial waves. There we have found
that this partial wave mixing is not very important numeri-
cally, although no explanation for this finding was present-
ed. The purpose of this Brief Report is to show that the
coupling between partial wave vanishes completely in the

limit m,/myx— 0, clarifying the numerical results in view of
J

T TﬂP’P/PT= trﬂPl— thll/eR T TﬂP’— E
[

Notice that in Ref. 4 the last term between the brackets,
which represents a j-state mixing, resulting from intermedi-
ate nucleon spin flips, has not been considered. This
neglect can be justified as follows. For T, < 300 MeV con-
tributions from / =2 can be ignored. Since a j-state mixing
does not arise for the w-N S waves, we only have such a
mixing between the P;; and Pj3, and between the P;; and
P, partial waves. The contributions from both the S waves
and the Pj;; partial wave are much larger than the contribu-
tions from the other P waves. Therefore one expects the /-
state mixing to be more important than the j-state mixing.
Let us consider the commutator [P/, 1/eR ] in more de-
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the smallness of the ratio m,/mn. The w-N G operator 7 is
related to the 7 operator ¢ by

r=t—tl/eR7 . 2)

Here the m-A propagator is denoted by 1/e and R is the
Pauli projection operator projecting on the space of single-
nucleon states, which are occupied in the ground-state nu-
cleus. A straightforward but very laborious way to solve Eq.
(2) is to consider its matrix representation in the space of
occupied single-nucleon states yielding a set of A4 coupled
equations.? For the case of w-*He scattering this would in-
volve an expansion of t and 7 into the (iso)spin-(non)flip
parts. To avoid such coupled equations, here we expand ¢
and 7 into partial waves:

t= 3 tyP'PIPT (3)
i

and

= S rpPPPT @
Ti

where P, PT projects on a w-N partial wave with orbital an-
gular momentum / and total isospin 7, respectively. Furth-
ermore, P} projects for a given / on the total angular
momentum state j. Substitution of Eqgs. (3) and (4) into
Eq. (2) gives

Sty P Pl VeR P!~ by, PUPL 1/eR VrmyP'(1=3 ) |PIPT . 5)

tail. Using
-5 T , 1
=% forj=I—-+ ,
TS 2
Fr= I+1+5-1 1 ©
ST forj=1+5 ,

2/ +1

we can write

v ex_ 1 y=.T
[P,,l/eR]—+21+1[a 1,1/eR ]
=T—2111{l/e[&"T,Rl+[c‘r‘-T,1/e]R} .M
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We take nonrelativistic kinematics for simplicity. Then the
inverse propagator is given by

e=E¢" +ei5—Tna—Tnc— Ve (8)

where €;; is the average single-nucleon separation energy.
Furthermore, T,4 and Tnc are the kinetic energy operators
for the relative w4 and nucleon core (NC) motions, respec-
tively, and Vnc is the NC potential. We rewrite Eq. (8) in
obvious notation as

e=E¢" +eis— Tiav,c— Tan— Vnc

P’ 2
=E¢ +eis— Tanye— |5

+—7|-V . 9
W 2t NC 9

The potential Vnc is a function of the relative NC coordi-
nate rnc. Because
mﬂ' —

Ine= TN, c————— TN,

p— (10)

an error is involved of the order m,/my if we approximate
rNc==r(sN),c- In this approximation Vnc acts on the w-N
c.m. degree of freedom, relative to the core C. Therefore,
from Eq. (9), one sees that

lim OIE-T, 1/el=0 .

/MmN

an

For *He we simply have R =|1s) (1s|, which is a unity
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operator in spin (and isospin) space. Therefore
. 1 - =
1 / =3 1 ‘T,
m"/:”r:_.o[Pl,l/eR] 5 /el T1,|1s) (1s]]
_o 1 =0T
= +21+11/err [T, 11s)(1s]1 . (12)

The [1s) state is a function of rnc. From Eq. (10) we see
therefore that
lim 0[P/, 1/eR1=0 .

(13)

m,/mN~
This shows that the j-state mixing vanishes in the limit
ma/mny— 0. In a similar way one can easily show that,
also,

lim [P\ 1/eR]1=0 ,

m,/mN—'O
resulting in a vanishing /-state mixing.

Summing up, we have shown that the #-N partial waves
in the evaluation of the Pauli blocking correction completely
decouple in the limit of a vanishing m,/my ratio. This ex-
plains the previously found small effects obtained in a nu-
merical evaluation of this mixing.
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