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We propose here a new method, called a term-by-term bosonization method, to be used to con-
struct the boson expansion theory. It is trivial to justify it mathematically. Its use makes the whole
procedure of the bosonization very easy and transparent.

NUCLEAR STRUCTURE Boson expansion theories, Marumori- Yamamura-
Tokunaga method, term-by-term bosonization method, fermion system, norm

matrix, reduction to irreducible tensors, truncation to collective space.

I. INTRODUCTION

%'e have shown in a series of papers' that the boson ex-
pansion theory (BET), which is a microscopic theory, is
capable of explaining a variety of nuclear collective
motions. The formalism we used for our calculations was
given some time ago by Kishimoto and Tamura in Refs. 2
and 3 (to be referred to as KT-1 and KT-2, respectively)
by extending the work of Belyaev and Zelevinsky and of
Sorensen.

During the past three years or so, we undertook
renewed formal investigations, with the purpose of putting
our earlier formalism on a firmer basis. The first results
of these renewed investigations were reported by Tamura,
Weeks, and Pedrocchi (TWP). Based on the ideas dis-
cussed in TWP, Kishimoto and Tamura (KT-3) (Ref. 7)
very recently worked out a new formalism of the BET
which we believe has given a convincing justification of
our previous formalism, and in turn of our numerical
analyses. ' In developing the formalism of KT-3, we com-
bined the ideas of TWP with the techniques of Marumori,
Yamamura, and Tokunaga (MYT).

The algebra in KT-3 was rather involved, and this was
thought unavoidable, because quite general fermion sys-
tems were treated rigorously. However, very recently, we
found that a new method, which may be called a term-
by-term bosonization (TTB) method, could be introduced
so as to simplify (at least part ofl the KT-3 algebra signifi-
cantly. The purpose of the present paper is to present and
discuss this TTB method. We used the MYT method in
KT-3, because it was found to be easier to use than the
commutator method, which we had used earlier. ' In the
present paper, it will be seen that the TTB method is even
easier to use.

In KT-3, we also discussed the case in which the start-
ing fermion system was simplified. More specifically, we
considered the case in which the fermion space was trun-
cated to the one that was spanned by (products of) one
kind of collective fermion pair of a quadrupole nature
We showed that the boson images of the fermion pair
operators were then given in very simple (Taylor series)
forms. In the present paper, we also discuss this truncated
case, and show that the same results as were obtained in
KT-3 are derived in a very simple and transparent
manner, once the TTB method is employed.

In Sec. II, we first brieAy recapitulate the essence of the

KT-3 formalism, and then explain the TTB method by
applying it to the bosonization of very general fermion
systems. In doing this, we use the notation of KT-3
without redefining it, and thus the reader is recommended
to go through Sec. IIA of KT-3 for notation before
proceeding to Sec. II of the present paper. The use of the
TTB method for the case with truncated fermion systems
is explained in Sec. III. We try to make this section as
self-contained as possible, so as to allow the reader to get
the whole picture of the BET with the TTB method at a
glance. We can attempt this, because the algebra needed
to complete the entire derivation of the formalism is rath-
er short. Finally, in Sec. IV, we summarize and discuss
what had been achieved in Secs. II and III.

II. INTRODUCTION OF THE TTB METHOD

The starting point of KT-3 was to introduce the Usui
operator U defined in the TDR (Tamm-Dancoff represen-
tation) as

U= g g ) n;a)(n;a ~,
n =0(a)

where

(a)—= Iai, a2, . . . , a„j,
a; denoting a TD component. Further,

~
n;a) =(1/~n|)(A, )"

~

0)

—:(1/v n!)A, A,
~
0),

which is a normalized ideal-boson state, A, . being a boson
creation operator, and ~0) denoting the boson vacuum.

The fermion state
~
n;a ) is defined by

( n;a) =g(Z„'), .b ( n;b)) .
(b)

(3)

Here, by denoting by 8, the operator creating the a; com-

ponent of the fermion pair in the TDR, and by ~0) the
fermion vacuum, we first constructed

~
n;a )) =(1/v n!)(8,)"

~
0)

=(I/~n!)8,
, 8,

~
0), (4)

just as we did
~
n;a). We then obtained (Z„'), b as the
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and thus that the following equality emerges:

(n;a
I Oz

I
m;b & =(n;a

I Oi) I
m;b) . (6)

In (6), OF is a fermion operator, and its boson image O~ is
given by

Og ——UOF U

inverse of the square root of the norm matrix

(Z» )a;b (Z» )b

defined by

((n;a
I
m;b » =(Z„),.b5 „.

Obviously, the states
I
n;a » are not orthonormal in

general, but the states
I
n;a & are. Therefore, the U opera-

tor defined by (1) transforms an orthonormal fermion
state into an orthonormal ideal-boson state.

It is easy to see that (1) results in two relations written
as

Im;b&=U
I
m;b)

and

(n;a
I
=(rt;a

I U,

g (z„'), , ((n;a'
I oz I

m;b'»(z ')b. b .
e be

Since

«rt;a'I OF I
m;b'»

is always reduced to (a constant times) a norm matrix, it
can be concluded that a fermion matrix element is always
written, somewhat schematically, as (Z ')(Z )(Z ').
This shows that the essence of the algebra manipulating
the fermion matrix elements lies in the manipulation of
the norm matrix elements.

In KT-3, we first introduced a matrix ( Y„), related to
(Z„) as

(Z„), , =&„—(Y, )... , (8)

and obtained it (with a =
I 1, . . . , n I and g '

=
I 1', . . . , n'I ) as

n
(i) (L)

( Yn)a;a' —~Pa' ~(1+1) n;(i+1)', . . . , n (i)1'. . i;1' i'
i=0

the formalism, we shall now go a little further into the
technical details of the KT-3 algebra. As seen from (3)
and (4), a fermion matrix element is always written as

=g g I
n;a)(n;a

I
OF

I
m;b &(m;b

I

n, m a, b

(7)
(9)

The significance of obtaining the equality in (6) is the
following. It means that, once Oi) is obtained, one can
replace the calculation of any fermion matrix element
(and thus of any physical quantity) by that of the corre-
sponding boson matrix element. Since it turns out that
the (numerical) evaluation of the boson matrix element is,
in general, much easier than that of the fermion matrix
element, it does make sense to bosonize the original fer-
mion calculation, in the way as described by (6). We ob-
tained O~ in the specific form given in (7) because we used
the MYT method. We shall discuss this point further
later.

After understanding in this way the basic framework of

Note that (9) is obtained from Eq. (4.8) of KT-3 by chang-
ing the summation index i there into (n i), an—d then not-
ing that Yo ——Yl ——0. In (9), (Y;)' ' is the linked-cluster
part of ( Y; ), b, is the symmetrized products of the
Kronecker deltas, and P" is the symmetrizer. See the be-
ginning of Sec. IV A of KT-3 for their precise definition.

In KT-3, we then showed that ( Y„)... with any integer
k )2, was brought into the form of (9), except that ( Y; )'

there was replaced by (Yik)' '. We further showed that
(Z„) and (Z„') were also brought into forms which were
of the same structure as is (9), and eventually that the ma-
trix element, e.g., of B„one of the basic fermion pair
operators, was obtained (with a'= I2', . . . , n'I ) as

n
~ I (i —&) (L)&n;a

I Be I
it I'tt &= + gPq' n'~(i+1) . n;(i+1) . n (Z ~zi —1)1 i;ep' i . (10)

The algebra to go from (8) to (10) is of a purely fermion
nature; bosons are yet to be introduced. In KT-3, we then
inserted (10) into (7), and obtained (B, )i), the boson image
of B„as

N
(B,'), =g g . , (z, /z, , ).".,'. (a.')'(w. )'-' .

i = la, a'

This completes the review of the essence of the KT-3
algebra, and below we will refer back to this review fre-
quently. In doing this, we may refer to the part that goes
from (8) to (10) simply as the (purely) fermion part of the
KT-3 algebra, and to the part that goes from (10) to (11)
as the bosonization part.

We emphasized above that, in the fermion part of the
KT-3 algebra, expressions of the form of (9) were encoun-
tered repeatedly, and we wish to explain now why they
were. To do this, we first note that (Y„),, on the left-
hand side (lhs) of (9) is regarded as a tensor of rank n, and
as such, is expected to be reduced to a sum of irreducible
tensors, whose rank I. =0-n. We then recognize that the
linked-cluster factor ( Y; )' ' on the right-hand side (rhs) of
(9) is precisely this irreducible tensor of rank i, and that it
must be multiplied by the 4 factor whose rank equals
n —i, so that each term maintains the original rank n.
The original ( Y„), , was completely symmetric with
respect to any interchange of the indices
(a') = f 1', . . . , n'J. In order to maintain this symmetry as
well, each product b,(" '( Y;)' ' must further be preceded
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[B(»z]=~(,2
—+PI', &CD *

[Cq,B(]=gP( &BE,
2

(12a)

which are nothing but those given in Eq. (2.7) of KT-3. If
the number of times with which the first term on the rhs

I

by the symmetrizer P,"(=P,'" '). [To be more general,
the rhs of (9) should have had the P,"operator, to sym-
metrize the indices (a)=[1, . . . , nJ. In KT-3, however,
we adopted the practice of avoiding this for simplicity; it
did not lead to any er ror. ] The structure of the rhs of (9)
can be we11 understood in this way. The reason why we
encountered expressions of this form repeatedly is simply
because the KT-3 type of algebra forced us to treat a
variety of reducible tensors.

It is worthwhile to go a little further into the derivation
of (9). It originated from the evaluation of (Z„)... as
seen in (8), and the evaluation of (Z„)~., means, as seen
from (4) and (5), the evaluation of the matrix element
written in full as

(0
I
B„B,B', . B„'

I
0)/nl .

The standard way of evaluating this matrix element is to
move to the right the annihilation operators B&, . . . , 8„
one by one, in the course using the commutation relations
written as

(L)X (Di )) ~ ~ ~ i (9')

We introduced the notation (D; )' to signify that it is a
dynamical factor. An example of (9') is, of course, Eq.
(9). Another example is (10), although in it there appears
a symmetrizer P" ', rather than P', because there the
index e is treated differently from the a'= [2'. n'I in-
dices.

After making these preparations, we now begin the con-
struction of the TTB method. It will be done by noting
first that the following equalities hold:

of (12a) is used equals n i—, it results in the b,(" ' factor.
It must then be multiplied by ( Y;)' ', which results from
the use of the second term on the rhs of (12a), together
with that of (12b).

We have thus seen that (Yi)' '=0, if P(~)=0. If P(~)
indeed vanishes, it follows from (12) that B) and B2
behave as if they were pure boson operators. This means
that the nonvanishing P' ', and thus the nonvanishing
( Yi )' ', describe the deviation of the fermion dynamics (or
statistics) from that of bosons, and in this sense the ( Y;)' '

factor in (9) may very well be called the dynamical factor.
%'e have thus made it clear why we encounter expres-

sions of the form
n

(i)(Dn ); ' ~Pa' ~('+));('+))'
i=0

(n;a
I , $(D;)b (—, (Ai, )(A(, ) . In;a )=8(ii —&)P, (D;)(;;( . ;~(;+)).. . n;( +)) . . . n

1 (L) f i i . ~ ~ (i) (L)
' b, b'

(n;a
I

(D;)& ,& (A&) (A& ) .
I

n —1;a )=8(n i) n—P, ~ (D;)). . . (,2 . . . i~(;+() ~ ~ ~ n;(i+()' n
1 (L) f i i —1 (i —&)

(i —1)!(, (,

(13a)

(n ) 1), (13b)

(n;a
I . (D;)e; i "(Ai, ) (A(, ') I" 2'~ )=8(& —i)«(n —1)P' (D )( i' f3'''' ~( +() "'( +()

1 (L) f ' i —2 (i —2) (L )

(i —2)! (, (,.

(n )2) . (13c)

Clearly the rhs of (13a) is the ith term of (9') [or of (9)],
while that of (13b) is encountered in the ith term of (10).
Had we considered, e.g., a direct bosonization (which we
do not do normally) of the B,Bf term in the Hamiltonian,
we might have encountered terms such as that appearing
on the rhs of (13c).

Since we have explained in detail the structure and the
origin of the terms that appear on the rhs of (13), the
reader will see clearly that they more or less exhaust the
types of terms that are to be encountered in the KT-3 type
of fermion algebra. Thus, what is shown in (13) is that
each of such terms can be replaced by an appropriate bo-
son matrix element, and this is what we mean by the
term-by-term bosonization (TTB). As will be seen soon
below, the essence of the TTB method is to take advantage
of knowing (13).

It is easy to prove (13). Let us take first (13a), and note
that its lhs can be rewritten, if use is made of (2), as

, g(D;)i, .(, (0
I

(A )"(Ai, )'(Ai, )'(A, )"
I 0)

tn e b bi

%'e then note that

min(i, n)
(A )i(A t)g y k ([P(k)P(k)]g(k) (A t)n —k(A )i —k

a;b a bk=0

where a = [1, . . . , k I, a = [k + 1, . . . , n I, and similarly
for b and b. If (15) is used in (14), we see that only the
k =i term survives, and that (14) is reduced to the expres-
sion on the rhs of (13a). Thus (13a) has been proved. The
proof of (13b) and (13c) is done similarly. We merely note
that the v n factor in (13b) emerged there when we
rewrote the factor 1/&n!(n —1)!,originating from the use
of (2), as v n /n!. Similarly the factor v'n (n —1) in (13c)
appeared when we replaced 1/v n!(n —2)! by
v'n (n —1)In!.

Since the equalities in (13) have been proved, we now
begin to present examples of their application, thus hope-
fully demonstrating how useful the TTB method can be.
We first note that, if we set D; =Z;/Zi ), the rhs of (13b)
equals the ith term on the rhs of (10). Therefore, the use
of (13b) in (10) (after the above replacement of D; is made)
is seen to give rise immediately to the following equality:
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n

(n;a ~B,
~

n —1;a') = n;a g g . (Z;IZ; &)I, ,'q(Aq)'(Aq )' ' n —1;a'8

n, a m, a'

In (17) we denoted, for simplicity, the operand of (16), i.e.,
the rhs of (11), by I j. Also, when (16) was inserted into
(7), there appeared a factor

~

n —1;a')(n —1;a'~, but it
was replaced in (17) by the last [ ] factor there; only the
m =n —1 term survives the m sum in it. As seen from its
explicit form in (16), the I I factor in (17) is independent
of the summation indices n, m, a, and a', and thus the two
[ ] factors in (17) can be replaced by one, due to the com-
pleteness relation. Therefore, (17) simply reduces to (11),
showing indeed that the use of (7) does not make the bo-
sonization procedure lengthy, if its use is made in com-
bination with (16). We needed the TTB method, however,
in obtaining (16).

As is well known, the MYT method uses two tech-
mques importantly. One is the introduction of the Usui
operator, which was instrumental in deriving (7), as was
explained above. The second of the MYT techniques is
the so-called boson expansion of the vacuum projector

~
0)(0~, which is written as [cf., e.g., Eq. (5.9b) of KT-3]

~

o)(o
~
=/[( —)'yk!]g(a.')"(a.)". (17')

k 0

The bosonization in KT-3 was done by inserting (10) and
(17') into (7), and became a lengthy procedure. We could

The operator part in the boson matrix element on the rhs
of (16) is, however, exactly equal to what was given as
(8, )z in (11).

We have thus shown that, once the fermion part of the
algebra is completed, so that Eq. (10) has been derived, the
bosonization part of the algebra can be completed with
trivial ease. In fact, all we need to do is to take a glance at
the equalities in (13). This is certainly a dramatic simpli-
fication of the bosonization procedure. Qne sees this
clearly by comparing the above presentation with the rath-
er lengthy algebra which we had to go through in KT-3 in
obtaining (11) from (10).

As we remarked above, the MYT type of procedure fol-
lowed in KT-3 was to insert (10) into (7), and then obtain
(11); and this procedure involved lengthy algebra. In the
bosonization procedure with the TTB method shown
above, however, we had no recourse to (7). As soon as (10)
was obtained, we replaced each term on its rhs by a boson
matrix element, and then summed the operands so as to
obtain (11).

%'e presented the above discussion by taking the point
of view that the use of (7) was characteristic of the MYT
method. Actually, however, (7) is a relation which is
much more general. It is simply equivalent to (6), as seen
from the fact that the (n;a

~
~m;b) element of (7) is noth-

ing but (6). We can also show that the use of (7) is not, by
itself, responsible for making the bosonization procedure
lengthy.

Let us set OF ——8, in (7), and insert (16) into it We.
then have

(8, )~ ——g )
n;a)(n;a

[ I I g [
m;a')(m;a'

[
. (l7)

t

not avoid doing this, because we were not aware of the
possibility of using (16).

In the fermion part of the KT-3 algebra, we encoun-
tered a variety of reducible tensors, and then had to deal
with their products, i.e., with expressions that may be
written as

g(D) (E)-

In KT-3, we introduced a theorem called theorem I, so
that the algebra involved in (18) could be handled sys-
tematically. This theorem was proved in Appendix B of
KT-3, and it may be interesting to ask whether the use of
the TTB method simplifies its proof. In Appendix B of
KT-3, we first expressed (D„) and (E„) as in (9'), and
then performed the sum over a" in (18).

To use the TTB method in (18) means to replace first,
by using (13a), the terms on the rhs of (9'), and in a simi-
lar expression for (E„), by boson matrix elements, and
then insert the resultant sums into (18). Since the whole
algebra is thus reduced to that of purely boson nature, one
might expect that the proof of theorem I is indeed simpli-
fied. Actually, this is not the case. The reason is that we
encounter a step where we have to use (15), which, as seen,
produces the P" and the b, '" ' type of factors, thus
bringing back the algebra very close to what we have been
calling purely fermion type alg-ebra.

It is thus seen that, even when the TTB method is used,
the fermion part of the KT-3 algebra is not so much sim-
plified, although, as we saw above, the bosonization part is
dramatically simplified. We have arrived at this con-
clusion because we have been treating the general fermion
problem rigorously. The matter changes drastically once
we begin treating the truncated fermion problem, as we
shall see in the next section.

In concluding this section, we want to make a comment
about the finiteness (or the infiniteness) of the boson ex-
pansion. We again take (B, )~ as an example, and note
first that in (11) we had a sum over i, ranging from 1 to
N. The corresponding sum in (16), on the other hand, had
n as its upper limit. The sum in (16), however, can be ex-
tended to X, or even to oo, without changing the value of
the rhs of (16). We thus see that, formally, the expansion
of (B, )z can be infinite. In its practial use, however, it is
finite, since N is finite. No one will ever think of a fer-
mion problem to start with in which X = 00. [See Eq. (1)
and Ref. 9; see also Ref. 6 for a related discussion. ]

III. USE OF THE TTB METHOD
FOR A TRUNCATED FERMION SYSTEM

In Sec. II, we developed the TTB method for very gen-
eral fermion systems. In practice, however, we work
under a much more restrictive framework, by considering,
e.g., a space spanned by products of only one kind of pair
of a collective nature. ' In the present section, we will
discuss the use of the TTB method under such a restric-
tion.
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(z2 )12;1'2' & o
I ~»1&1» I

0 & /2'

=~12 1'2' —TQP 1";1'P2',2 .
P

(19a)

That (19a) is true is easily confirmed by using (12).
Somewhat more generally, however, we can write

(Z2)12.12 also as2

(Z2)12;1'2' ~12;1'2' ( Y2)12;1'2' ~

2 (19b)

The BET under this restriction was also discussed in
KT-3, and it was in particular shown that the boson ex-
pansion then became a power series expansion, having a
smallness parameter called yk. (See Sec. VII of KT-3 for
details. ) Since this parameter yk is used importantly
throughout the present section, we shall explain its origin
explicitly. It is done by calculating the norm matrix (Z2)
as follows:

(Z2/Zl )'12,', 2 = —(I/2)( Y2)12,,2, (22)

which permitted us to obtain (B, )B [from (11)]as

(+e )B Ae (1/2) Q ( Y2)12;e2'A lA 2A2'
12;2'

(23)

0= g (Y2)A1A2A1A2
121'2'

to O(yk). Throughout the rest of the present subsection
we consider every quantity only to O(yk). In the termi-
nology of KT-I, we are thus satisfied with developing the
fourth order BET. This restriction is made only to make
our presentation easier to follow. Its extension to higher
order is straightforward.

It is convenient to introduce here an operator Q defined

as seen from (8). We thus have

( ) (p)
( Y,)„,, = —,QP1, .Pg, .

P

(20a)

=X(yk/2) 2 (12
I
q)(1'2'

I
q)A 1A2A1'A2' ~

kq 121'2'

It satisfies a commutation relation given as

(24)

This can also be written as

( Y2)12;1'2' X(pk/2)g(12 I
q)(1'2'

I q)
k q

(20b)

In particular we found that

(Zl/ZO)1 ,'=b, l e, . (21)

defining yk. In (20b), (12Iq) abbreviates the Clebsch-
Gordan coefficient (2p12p2 I

kq). Note that, throughout
this section, the indices 1,2, . . . , stand for the magnetic
quantum numbers p],p2, . . . , because we consider only a
collective component of quadrupole nature.

In Sec. VII of KT-3, we showed that

(Z;/Zl 1)' '=O(yk ') .

[II,A, ]=2/( Y2)12.„A,A2A2 .
122'

Because of (25), we can rewrite (23) as

(Be )B ——A, —
e [A,A, ] .

(25)

(26)

After these preparations, we now begin to deal with

z„')..=&ola„g,g,'„g„,Io&/„1 (27)

The straightforward way to evaluate (27) is to move the
annihilation operators 81,82, . . . , to the right one by
one, by using the commutation relations (12); see above.
Instead of doing this fully, we consider moving 81 only,
obtaining the result

&„
I
0) —2P.' g( Y2)lg. .2aga3 a„

I
0) .(1) f . . . f (2)

(28)

Then we have

n)a;a' Pa' ~l;1'(Zn —1)2 ~ n;2 ~ n
' Pa' 'g( Y2)lg;1'2'(Zn —1)2 ~ n;g3'

(1) 2 2 (2)
(29)

Equation (29) is still exact, but here we intend to introduce an approximation. This approximation replaces the
(Z„ 1 )2. . . „.g3 . . . „ factor in the second term of (29) by b,2. . . „.g3 . . . „.The justification of this replacement is that the
second term of (29) already has a factor ( Y2), which is O(yk), and thus the other factor needs to be evaluated only to
0 (yl, ). By making this replacement, and then summing over g, we arrive at

2 j (1) 2 2 (2)(Z„),, = Pa 61.1(Z„1)2—. . . „.2 . . . „—P, (Y2)12.1253—. . . n ~ 3'. ~ n' y (30)

which can be regarded as a recurrence formula [correct to O(yl, )] for (Z„). By using this recurrence formula, it is a
straightforward procedure to find that (Z„),, is finally expressed as

(Zn )a, a' ~a, a a' ( Y2 )'12; I'2'~3 . . n;3 . . ~ n' (31)

At this stage we begin to use the TTB method, and recognize that the second term of (31) is nothing but the
(n;a

I
In;a') element of 0, Q being defined in (24). [This is the same as to say that we use (13a) with i =2.] We thus

have

(32)
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where

Q, , =(n;a
(
Q

)
n;a') .

With this knowledge of (Z„)... we can construct orthonormal states
~

n;a ) and ~n —1;a') as

) n;a) =g(Z„'), , ~
n;a)) =

~
n;a))+ —,'QQ, ., ~

n;a)),

(
n —1;a') =

(
n —1;a))+—,'QQ, ,—,

~

n —1;a ')),

(33)

(34)

where Q,—.=(n —1;a'
~

Q
~

n —1;a ').
By having (34), we are now ready to perform the evaluation of the matrix element (n;a

~
8,

~

n —1;a'). It is done as
follows:

(n;a [8,
~

n —1;a') =((n;a [8,
~

n —la'))+ —Q, ,-((n;a
~
8,

~

n —1;a'))+ —,Q, ,—,((n;a
~
8, [ n —1;a '))

=v n I(Z„')...+ —,
' Q. .(Z„')....+ —,

' Q. .—,(Z„')...—,I

=vn Ih. .,, ——,'Q. ..+ —,'Q. ..h. ..., + —,'E. ., ,Q. , .. I

=v n I5, .„——,
' Q, .„+—,

' (n;a
~
A,

~

n —1;a ')(n —1;a '
~

Q
~

n —1;a')/V n ]

=v n b, « ,' (n;—a
)
—QA,

[ n —1;a')+ ,' (n;—a
[ A, Q

[
n —1;a')

=(n;a
] IA, ——,

' [Q,A, ]] (
n —1;a')

=(n;a
~
(8, )~

~
n —1;a'); to order O(pk) .

(35)

(35)

In (35), summation over dummy indices a and a ' was assumed. Otherwise, every step of the algebra is very elementary,
and the reader will be able to follow it without any further elaboration. We thus have reproduced (26).

We may also consider here the bosonization of Cz, and find first that

(n;a
~ C~ )

n;a') = ((n;a )
Ct

[ n;a'))+ —,
' g[Q,-, ((n;a"

(
C~~

~
n, a'))+ ((n;a

~ C~ ~

n;a"))Q, -., ], (36a)

where (34) was used again. We can rewrite the first term, by going through algebra which is now familiar to us, as

((n;a
~
C

~

n;a')) =(I /n)Q P,"'P,"'[ 5.15, . P'&' 5, ., ]—,' [P,"'gP~p '—Q,. , , +P,".'gP' —1Q,—,] . .
g~g

(36b)

[In (36b), a=I2, . . . , n J with a =I1,2, . . . , n I.] Both
(36a) and (36b) are correct to O(yk). In evaluating the
matrix elements in the second term of (36a), we obtain
them only to O(yk), since they are multiplied with Q. We
then find that this second term cancels the second term of
(36b). Thus

(n;a
~ Cz ~

n;a') =(1/n)QP, ' 'P,' '[51 g51 &Pg&gb, ., ],. .

g~g

(36c)

to which we apply the TTB method obtaining, in agree-
ment with KT-3, that

(C~t}p =gP'p. ',A t1A, . (37)

Our program to apply the TTB method to the truncated
fermion system has thus been completed very successfully.
We nevertheless feel it desirable to go one step further, be-
cause we have used the M representation throughout, as
seen from the forms of the states given in Eqs. (2)—(4);
there the total angular momentum I was not a good quan-
tum number. For practical uses, it is desirable to have a
BET valid in the I representation.

An orthonormal boson state in the I representation may
be written as'

~
n;yuIM), where u is the seniority, M is

Qcn, a;n —1 Pcn a.n 1,P 5a, a'
P

resulting in

(n;a
~

n;a') =5

(39)

As seen in (38), each time we express an orthonormal
state with a given boson number in terms of those with
the boson number less by one, there emerges a factor
which may somewhat symbolically be written as
X(cfp)&CG), where CG stands for the Clebsch-Gordan
coefficient. Since we do not need to know this factor ex-
plicitly, in the argument that follows, we shall denote it
simply as X. It is then seen that (38) can be rewritten as

the projection of I, and y is the extra quantum number.
Below, we abbreviate

~
n;yuIM) as

~
n;a). As seen also

in Ref. 10,
~
n;a) can be constructed very explicitly, by

introducing the coefficients of fractional parentage (cfp's).
Indeed, we can write

~
n;a) as'

~

n;a)=+[1/Vn ]c„a„1p(2p„I'M' .~IM)Ap
~

n —1;P),
P

(38)

where cfp is written as c„,.„». They satisfy the rela-
tion that
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I
n;a) = [1/v n!](X)" '3„.2, I

0) . (40)

(41)

We are now ready to construct corresponding fermion
states. We shall first introduce a state

~

n;a )) defined as

~
n;a)) =[1/~n!](X)" '8 . Bi t 0} .

Since there is the (X)" ' factor,
~
n;a)) is totally sym-

metric with respect to any interchange of the Bt factors.
It is not orthonormal, however, and we want to construct
a corresponding orthonormal state, by obtaining, as usual,
the Z„matrix first. Its calculation can be done as follows:

(Z„') . .= «n;a
~

n;a')&

—(X) —'(y')" —'&()
~

8„. BiBi. . . B„~0)/n!

=(&)" '(&')" '[~;, —P (I'2)12;1'2'~3

=(X)" '(X')" '[(n;a
~

n;a') —, (n;a
~

0—~n;a')]

= (n;a ( n, a') —,' (n;c—t
(
0

~

n;ct') .

In obtaining the third equality of (42), relation (31) was

used, while the fourth equality of (42) resulted just as (32)
did from (31). The final equality in (42) is the conse-

quence of (40).
The result of the algebra in (42) is summarized as

2
(Zn )a;a' ~a;n' 2 +a;a (43)

which is the same as is (32), except for the difference in

the indices. Therefore, just as (32) resulted in (35), Eq.
(43) results in

& n;a
) 8, )

n —1;a') =(n;a
)
(8, )2i (

n —la') (44)

with the same (8, )ti as appeared in (26). In other words,
we found that the bosonization is the same, irrespective of
whether we work it out in the M or I representation. This
result is not totally unexpected. What we found above

has, nevertheless, the following significance.
It is our fundamental point of view that any BET, exact

or truncated, must always be traceable back to its original
fermion problem. Our realistic calculations were done in
the I representation, ' but so far we have not clarified
(even in KT-3) what the fermion system we actually start-
ed with was. We now know, however, that our very basic
starting point was the states in (41). They were of course
fermion states. Yet the boson cfp's already appeared
there.

IV. SUMMARY AND DISCUSSIONS

f

resentation), and thus states in (4) are not orthonormal in
general. Out of these states, however, new states can be
constructed as in (3), which are now orthonormal. Once
these orthonorma1 states are obtained, we can construct
matrix elements of any operator we want.

Actual calculation of these fermion matrix elements is,
however, rather cumbersome in general, and this is where
the BET comes in. It serves to establish a method to ob-
tain the boson image Oz of a fermion operator OF, so that
the equality in (6) is satisfied. Once (6) is established, the
calculation of the fermion matrix element is replaced by
that of the boson matrix element, which is much easier to
perform. Different methods differ in the procedure of ob-
taining O~, and we showed above that the TTB method
makes it very simple. The essence of this method is to use
the equalities in (13), whenever such a use simplifies the
algebra.

So far we have not derived any new formulae to be used
for practical calculations, beyond those which were given,
e.g., in KT-3. However, since we have found that the new
TTB method is so easy to use, we may now attempt to ap-
ply it to problems where the application of older methods
has been considered rather difficult. An interesting prob-
lem is to bosonize directly a fermion system whch is con-
structed, not based on Tamm-Dancoff pairs, as has been
the case in the above, as well as in KT-3, but on RPA
(random-phase approximation) pairs. We are currently
working" on this problem by extending the technique
used in Sec. III.

We shall begin the summary of what we have done

above by recalling the basic ideas that were set forth in
KT-3, as well as in TWP. As was stressed in these refer-

ences, it is our fundamental point of view that it makes
sense (to intend) to bosonize a fermion system, if (and only
if) this system is constructed by taking as the basis states
those that are given in (4). In (4), the pair creation opera-
tors Bt are those in TDR (or in some other equivalent rep-
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