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Faddeev equations including three-body forces in first order perturbation theory
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We propose a modification of the standard Faddeev equations which takes into account the ef-
fects of a three-body force in first order perturbation theory on the triton wave function and its
binding energy. Furthermore, we report our results for the energy expectation value caused by the
two-pion-exchange three-nucleon force.

NUCLEAR STRUCTURE Faddeev equations, energy expectation value of the
two-pion-exchange three-nucleon force.

Since it is well known that the energetic effects of
three-body forces in the triton (handled up to now) are
small compared to the expectation value of realistic two-
body forces, it seems justified to take into account only
first order corrections. To that aim, we shall study the
low order perturbation theory for the bound state Faddeev
equations with respect to the three-body force. Though
the results for the energy shift and the wave function are
highly standard, the formulation within the Faddeev
scheme, in which the actual calculations are carried
through, seems to be new. We shall also present numeri-
cal results extending the ones found in Ref. 1.

The starting point is the Schrodinger equation in in-
tegral form:

3

e=G, g v„e+G,we,

which includes the three-body force W. We decompose
the wave function as

with

Expanding Go(E) and t (E) in bE' to first order,

Go(Eo+bE') =Go(Eo) G—o(Eo)bE'Go(Eo)+0(bE' ),

t (Eo+bE') = t (Eo ) b,E't (Eo—)Go(Eo )Go(Eo )t(Eo )

+O(bE' ),
and inserting the first order expression for (4b) into (4a),
we find the basic equation

P= go+ f'= GotPpo+ GotPQ' bE'GotGofo—

bE Gonzo+ —GotGo W(1+P)fo . (9)

Here, and in the following, Go and t are evaluated at the
unperturbed energy Eo. Equation (9) determines 1Y and
b,E'. Evaluating the matrix element (1/ro

I
PtP

I lbo) and us-
ing (6), one gets the following expression for the energy
shift hE':

AE'= &q, I
w(1+P)

I q, )
&tto I

1+P
I @o)

This is identical to the standard form

Q~ ——Go V„e,
q4=Go We .

&e,
I wIe, )

&e.
I
e.)

(10b)

Then, for identical particles, these components obey the
following Faddeev equations:

which follows from the connection of Po to the wave func-
tion 4'0.

0i =Got i(P4) +44»
04= Got4(1+ PS'1

where the permutation operator P is given by

(4a)

(4b)

e,=(1+p)y, .

So, we end up with the following integral equation for the
perturbed part of the Faddeev component:

0 =0+GotP(t'
P =Pi2» 3+Pi3P23 . (5)

where
We denote the unperturbed solution ( W=O) by 1(ro, which
obeys

fo GotPfo . ——
Then we introduce the first order corrections with respect
to W for the Faddeev component g:—g&, and the energy:

4=Co+0'
E =Eo+AE' .

y =GotGo Weo bE'(Go+ Go«o 5'o—
Comparing this with the unperturbed Faddeev equation
(6), we recognize the same kernel, but now an inhomo-
geneous term is present. The driving term P is orthogonal
to the left-hand side eigenfunction of the kernel:

Co= PoGotP (14)

which obviously is given as
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gp Po——PtP .

Using (6) and (10a), one immediately verifies

Therefore, the solution of (12) with the property

& Po I
0'& =0

exists. One can construct P' via the Neumann series:

(16) and

(17)

(1 G—orP) 'A = [Eo—Ho —V(1+P)]

~ (Eo Hp——V)A

(Eo —Ho —V)A = [1—VP
I

1t'o & & go I
( 1+P) ]

X (Ep —Hp —V)

=A(Eo —Ho —V) .

(22)

P' =/+K/+ K'P+

with K =GotP. Clearly each term has the property of be-
ing orthogonal to Pp. This construction is very convenient
from a practical point of view, since it parallels exactly
what is being done in solving the unperturbed problem (6).
The only difference is that in the latter case an arbitrary
driving term (with a nonzero component in the direction
otto) is used to create the Neumann series, whereas here a
specific one is required. If it were not that for realistic
two-nucleon forces (which include repulsive parts) a nega-
tive eigenvalue of K exists, which lies outside the unit cir-
cle, then that series (18) would even converge. Converging
or not, one can sum it up by standard Pade methods.

It is now interesting to establish the link with the usual
wave function correction of first order. We introduce the
projection operator

(19)

choosing the normalization

&pp I go& = &t('o
I
PrP

I fo& =
& t('o

I
PVP+PtGo VP

I &o&

= ( @o I
(1+P) VP

I fo &
= 1 . (20)

Then we can solve (12) formally using an inverse in a re-
stricted space

P'=kQo+(1 GotP) 'AP . — (21)

The first term, A,fo, is undetermined, but A, has to be of
first order in W. Now we shall show that this form can
be rewritten into the usual one for the first order wave
function correction. One has

Furthermore, it is easy to see that

(Ep Hp —V)P =—VGp W(1+P)Pp hE'Q—p .

Therefore, we get the intermediate result

f'=A, Qo+ [E Hp ——V(1+P)] 'A

X [ VGo W(1+P)go ~E'Col .

(24)

(25)

(1+P)[E Hp —V—(1+P)] ' =[E—Ho —(1+P)V]

X(I+P) .

Further,

(1+P)A = (1—(1+P)VP
I yo & (yo I

)(1+P)
—=A(1+P),

and we get

(1+P)f'=ACo+[E, H, (1+P)V—] 'A—

g VpGo W+o —AE'%'o

(26)

(27)

Since the resolvent operator acts on a totally antisym-
metric wave function, we can replace it by

—1=
A.G Eo Hp g V„

The projection operator A excludes the ground state Vo, as
is explicitly seen as follows:

(29)

Since we aim to build up the wave function, we apply
(1 + P) from the left and use

(&+o
I

—&'41(1+P)vP
I @o&&0o1)

1

'po +o %p 0'p

1
(&Po

I

—3&&o l(1+P)VP
I @o&&fo I

)= -(&'Po
I

—3(Co I
) .1

0 0 +o 'po
(30)

Obviously the application onto a totally antisymmetric
state yields zero. So, we find

(1+P)g'=AÃo+ 6' g VpGo W+o, (31)

where 6' acts in a space orthogonal to the unperturbed
ground state IIO. Finally, we use

form (4b):

(1+P)g'+Pg ——6'W+p+k%'p

yo& & Pp
I

Gp W
I

Pp&
1

'po +o

(33)

6'g V„Go——6' — 1 —I+p& (%'o
I

Gp,(e,
I
e, &

On the other hand, the standard result for the first order
wave function correction is, of course,

(32) O'=6'8%, , (34)

and add the additional first order Faddeev component where one excludes by definition an admixture of the un-
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(E —Ho —IV)$4 ——IV(1+P)g,
or in first order in 8'

(35)

(Eo+&E' —Hp —V)(go+ 1P') = VP(yp+ 1(t')+ V/4
(36a)

(36b)(Eo Ho)q4 =—W(1+P)qo .

The zeroth order parts drop out and one has

[Eo Ho —V(1—+P)]P'= V/4 bE'Po . — (37)

Again the shift b,E' can be deduced together with the
prescription to calculate g'. Let us now apply (1+P)
from the left:

[Eo—Hp —(1+P)V ](1+P)f'=(1+P)V/4 bE'4o . —

(38)

Because of the antisymmetry of (1 + P)g' and f4, this can
be rewritten into

Eo —Ho —g V~ (1+P)P'= g V~Pg hE'0'o, —
P P (39)

perturbed state. Using an obvious choice of A, , the admix-
ture of 4o in %F can be eliminated. We shall comment
below that this is unnecessary.

The presented link of the Faddeev scheme to the result
gained directly from the Schrodinger equation is more
transparent and simpler to achieve using the Faddeev
equations in differential form. Then the set (4) reads

(E Hp ——V)1t = VPP+ V/4,

The solution is

( 1+P)Q'+ g4
——G'8"Po+ X"kp, (42)

where A.
' is of the order 8'and is usually set to zero.

Altogether, we find the wave function up to first order
in 8':

0'= +p( I +A, ) +4' . (43)
The indeterminacy in A, disappears into an unobservable
overall phase after normalization. One has up to first or-
der (now we assume (4'o

~

%'p) = 1):

(1+A, )% o+ Il'

v'(0
~
+) 1+2ReA,

= (1—Rek, )( I+ i, )%'o+% '

=(1+i Imk, )'kp+W=e' ('Ilp+W)+O(A, ) .

(44)

As a consequence, the nonorthogonality of %F with
respect to 0 o, which shows up using the simple algorithm
of the Faddeev scheme as given in (18), does not need to

which has the solution

(1+P)f'=A%'o+G'g Vqgq,

identical to (31).
We get back to the standard procedure if instead of

solving (39), we first add (36b) to (39). Then one finds the
Schrodinger equation for the first order corrections:

Eo —Ho —y V„[(1+P)1P'+1(j4]= 8"Po—AE'eo . (41)

TABLE I. Components of the triton wave function in the j-j coupling scheme. The quantities p
give the percentages.

1

2

1

2

3
2

3
2

1

2

1

2

0.443

0.449

0.033

0.011

0.002

0.001

0.003

0.011

10

16

3
2

3
2

3
2

5
2

3
2

5
2

3
2

5
2

0.005

0.001

0.004

0.011

0.000

0.004

0.005

0.001

0.001
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p = —,
'

(kg —ks),

q = —,
' [k) ——,(kg+ kp)],

and the basis states (see Ref. 1 for notation)

le~&= I Jq(IsV(~,' i~i~(t '»&—

(45)

(46)

we gain the triton wave function %o from a five channel
solution of (6) with the Reid potential by

be removed if one needs only the first order correction in

Now, we want to present our results for the energy ex-
pectation value of the Tucson two™pion-exchange three-
body force. ' The present work is an extension of a first
study' where we computed the energy expectation value of
the 2PE-3BF, including the contributions from channels
1—5. For the sake of completeness we shall briefly
describe our procedure to calculate AE in first order per-
turbation.

Starting from the Faddeev equations for the bound state
(6) in a partial wave decomposition with the standard
Jacobi momenta

1

2
3
4
5

7
8
9

10
11
12
13
14
15
16
17
18

—0.164
+ 0.145
—0.207
—0.276
+ 0.215
+ 0.038
—0.032

0.
—0.404
—0.517

0.
0.
0.
0.

—0.099
—0.010
+ 0.170
+ 0.330

(+ 0.145)
—0.139
—1.058
+ 1.592
+ 0.003
—0.456
+ 0.338
—0.031
—0.029
+ 0.097
+ 0.009
+ 0.051
+ 0.183
—0.000
+ 0.087
+ 0.012
+ 0.002
—0.062

—0.811 + 0.643 —(0.145)=0.498

TABLE II. Main contributions to the energy shift (52) in

MeV.

e,=(l+P)g, . (47)
a'

Although the Faddeev component Po was restricted to the
'So, S~- D~ channels, the permutation operator I' intro-
duces infinitely many partial wave states. From these we
took into account the 18 states with j &2, whose quantum

numbers are given in Table I together with the computed
probabilities of the wave function.

The part of the 2PE-3BF which singles out particle 1 is
given by '

Q'+v' Q'+v'
x Ir, r, [a+&Q Q +c(Q +Q' )]+«g&«z &io i'Q&Q (ds+d4)I ~ (48)

where the pion momenta Q and Q
' read in terms of the

Jacobi momenta (45)

(49)
Q=(P —p ') —-'(q —q '»
Q'=(p —p ')+ —.'(q —q '),

and the strength parameters are given as
a =1.13 p

—',
b = —2.58 p (5O)
c =1.00 p
dp +d4 = —0.753 p

We used a form factor of the form

H(Q )=
2 2.2

A —p
A+Q

(51)

with A=17 fm
After a partial wave decomposition of the 2PE-3BF

(Refs. 3 and 5), the energy expectation value is

b.E = g AE = g 3 I dpp'dq q'dp'p'dq'q'%' (pq)+ (p'q')~~ (pqp'q') . (52)
aa' aa'

As a look at Table I reveals, the main contributions to AE
should come from combinations of channels 1 and 2 with
the other ones because channels 1 and 2 build up about 90
percent of the wave function's norm. Our results coincide
with these considerations. So, we shall present in detail
only the contributions to AE with n or a' equal to 1 or 2
(see Table II). The numbers are meant to be
b,E +hE for a+a' and hE otherwise, all in MeV

The remaining contributions sum up to +0.155 MeV
so that we end with a negligible net result of —0.158 MeV
additional attraction for the 2PE-3BF.

The conclusions we draw from our results, as presented
in Table II, are as follows: Regarding the unexpected
large contributions from combinations of channels 1 and 2
with channels which negligibly contribute to the wave
function's norm [e.g. , (1,17), (1,18), (2,6), and (2,7)], one
has to include even components of the wave function
beyond the 18 channels considered by us to come to a fi-
nal conclusion about the 2PE-3BF energy expectation
value.

The slow convergence of AE in the channel decomposi-
tion is a new feature caused by the three-body force. Ei-
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ther a very tedious summation over many partial waves
has to be performed, or better yet, by a new technique, an
exact evaluation of the permutation operator occurring in
l10a) has to be conducted. We are presently studying that

second possibility. Also, the inclusion of further three-
body forces and other models for the mN amplitude in the
2PE-3BF is Planned.
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