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Anhassstonicities in K =0+ and K =0 coupled vibrational spectra of deformed nuclei
discussed in a simple model
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The multiphonon method —i.e., exact diagonalization in the restricted space of collective phonons
of different types —is tested in a simple model allowing an exact solution for a many body system of
fermions interacting via pairing plus quadrupole and octupole forces. It appears satisfactory for the
description of the anharmonicities of the lowest-lying vibrational states with E =0+ and 0 in de-
formed nuclei. In particular, it allows electromagnetic transitions between the different one phonon
states which cannot be described in any harmonic treatments such as the Tamm-Dancoff or
random-phase approximations.

NUCLEAR STRUCTURE Multiphonons X =0+ and EC =0 states of
deformed nuclei discussed in a simple modd.

I. INTRODUCTION

The spectroscopic properties of the lowest lying vibra-
tional states in deformed even-even nuclei can, in general,
be described with the use of quasibosons, i.e., coherent
mixtures of two nucleonic quasiparticle states. The higher
excited states of vibrational nature, which may exhibit
strong anharmonicities, need more elaborate techniques
taking the Pauli principle properly into account.

The multiphonon method (MPM) has been developed to
achieve this requirement. The first version of the MPM
(Refs. 1 and 2) was built for one type of phonon. It was
applied to the study of vibrations built on quadrupole
E =0+ phonons in rare earth nuclei and on octupole
E =0 phonons in the heavy nuclei. It has also been
compared to boson expansion techniques and checked in
a simple model. ' A generalization of the MPM to
several phonons of different types has recently been ob-
tained.

The aim of the present work is to check the validity of
this second version of the MPM in a simple model allow-
ing an exact solution and to study the importance of the
coupling of phonons of different types. In Sec. II we
present this model. In Secs. III—V we describe, respec-
tively, the standard treatments of the pairing (BCS), the
random phase approximation (RPA), and the Tamm-
Dancoff calculation (TDA). The generalized version of
the MPM (Ref. 7) is sketched in Sec. VI. The results of
our calculation using these different approaches are dis-
cussed in Sec. VII. Finally, conclusions are drawn in the
last section.

Consequently, each state is characterized by p, the index
of the shell (p= 1 for the lower shell, and p=2 for the
upper one), r, the label of the multiplet (1 & r & 0), and the
parity m.. %'e allow an even number X of identical nu-
cleons (0 & N & 80) to move in this system.

The model Hamiltonian is written as

H =H,p+Hp+Hg+H (2.1)

where H,„ is the single particle part, Hp the usual mono-
pole pairing contribution, and H~ and H~, the quadru-
pole and octupole parts of a long range two-body force.
Explicitly,

IIsp=gep(rrp ~rtp ~+&-
PT'0'

(2.2)

(2.4)

and

Hg ————,Xpg (2.5)

energy

where a~ and a~ are the creation and annihilation
operators for nucleons in the state p~m. , and pr is the time
reversed state of p~:

Hp ———GI' I', (2.3)

where

II. THE MODEL AND ITS EXACT SOLUTION
m

— 1/2 m: 1/2 m: -1/2
~nertty e,

Our model is a natural generalization of that used in
Refs. 5 and 6. It consists of two j= —, multiplets with dif-
ferent parities, located at the same energy. Both of them
are split by a prolate deformation into two doubly degen-
erate levels. These multiplets are repeated 0 times (Fig.
1). The total number of states is thus 8Q.

J = 3/2 :3/2

0 times

FIG. 1. Individual levels considered in this paper. The refer-
ence energy is chosen in the middle of the degenerate shells.
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(2 6} where according to (2.8) we can set

Qp, p~ =ep&pp5. ~R,~~ ——r 5~.5~ .
(2.7)

In relation (2.7), as well as in all of what follows, the in-
dices m and F- in the same formula refer to different pari-
ties (m.E= —1).

Furthermore, if we take care of the property

TrQ =TrR =0 (2.8)

only one parameter is needed for the quadrupole or octu-
pole operator. Consequently, one gets

In order to make the model soluble, we have supposed
that the quadrupole operator Q and the octupole operator
R have matrix elements only between states of the same
shell, and these are assumed to be equal for different mul-
tiplets. This ansatz is written

qi = —qp=q r] =—rp=r . (2.11)

of positive parity, and

L+(p}=pa~ a'
7)1P

(p) =[L+(p)]

Lo(p) = , g(a~—a +a a-),—

To obtain the exact solution it is convenient to intro-
duce the following operators,

K+ (p}=pa~ a—
7 7P

(p) =[&+(p)] (2.12)

Ko(p) =
2 y(aptw apfw+a~

Q =pep(a ptw apri+a~ appfp)
7TPf

R =y rr (a~ ap +a~.a~),
1TPT

(2.9)

(2.10)

of negative parity.
With these operators the model Hamiltonian attains the

simple expression

H =(eg —e~)[Ko(2)—Ko(1)]—6[K+(1)+K+(2)][K (1)+K (2)]
—2X~q [Ko(2)—Ko( 1 )] —2X3r [Lo(2) Lo( 1 )] (2.13)

where ez —e& measures the separation in energy of the two
shells; the reference energy has been chosen to have
—,
' (e&+ez) =0. It is easy to see that the combinations

I;(p)= —,
' [K~(p)+L;(p)],

J;(p)= —,[K;(p)—L;(p)], where i =0, +
(2.14)

introduce quasispin operators which form together the
algebra of the

SU2g (i) XSU2g(p) XSU2J( i) XSU2J(p)

group. We note that these operators mix parities.
No closed expressions can be given for the eigenenergies

and eigenstates of (2.13). But numerical solutions can
easily be found by diagonalizing H in the basis of the
states

I(p) =J(p) =—,p=1,2 .Q
2' (2.17)

The space spanned by these states will be referred to as
the "collective" space 8', . We emphasize that, in our
model, this space is completely decoupled by H from the
other parts of the total Fock space 8'.

Since we are interested in a definite nucleus, the total
number N of particles is fixed. It is easy to write the
number operator N in terms of (2.14),

As can be seen from (2.13) and (2.14), H commutes with
I (p) and J (p) so that I(p) and J(p) are good quantum
numbers.

In the following, and for reasons which will become
clear later on, we restrict ourselves to the states where

I(1),I (1)o;I(2),Io(2);J(1),Jo(1);J(2),Jo(2)

(2.15)

N =40+2+ fIo(p)+ Jo(p)] (2.18)

where I(p) [I(p)+1] and J(p) [J(p)+1] are the eigen-
values of total quasispins I~(p) and J~(p) whereas Io(p)
and Jo(p) are the eigenvalues of Io(p) and Jo(p).

We remind the reader of the usual conditions, Io(1)+Io(2)+Jo(1)+Jo(2) =——2Q
N
2

(2.19)

We then have the additional condition for the basis
states (2.15),

I(p) &Io(p) &I(p), —
—J(p) &Jo(p) &J(p)

0&I(p) & —,Q

0&J(p) & —.0
2

(2.16)
which allows a further restriction to a subspace 8'~c of
the collective space 8'~.

A final restriction to a subspace S~gp of 8'~c of a
given parity can be achieved. To this purpose a new and
simple transformation of the basis (2.15) (which does not
preserve parity) is required. One can show that the states
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~
Io(1),Io(2),Jo(1),Jo(2), + ) =I'I

I
Io(1),Io(2»Jo(1)»o(2) &+

l
Jo(1),Jo(2),Io(1),Io(2) ) I,

where III. THE TREATMENT O'F THE PAIRING'

when Io(p) =Jo(p) p= 1 2
F —.

otherwise,
2

e2 —e ) 2+2/ 2+3l'2 2

G
'

G
' 6 (2.20)

In what follows, all energies will be expressed in G
units. For the definition of the system we have two other
parameters: the degeneracy A and the number of particles
X, which we shall also replace, when more convenient, by

1Vv= —1
4Q

(2.21)

which measures the deviation from a half-filled system
( —1(v(+1).

Once one has the eigenstates, one easily calculates the
E2 (and E3) transitions, i.e., matrix elements of the quad-
rupole operator (2.9) [octupole operator (2.10)] expressed
in terms of the quasispins generators (2.14).

%'e would like to point out the order of the matrices
which we need to diagonalize. Despite the successive re-
strictions leading to space 8'~&z, the matrices may have,
for some sets of parameters, (N, Q), very large orders. As
an illustration we give, in Table I, some values of the en-
countered dimensions, for different sets (N, A). These
values should be compared to

4Q
lV/2

restore parity.
We have computed the solutions in several cases, corre-

sponding to different values of the parameters. For the
dynamical ones, one can introduce the three dimensionless
quantities

U+~»+~2Q+ (3.1)

Our "improved" BCS treatment considers the pairing,
quadrupole, and octupole parts of the Hamiltonian (2.1)
on an equal footing. Furthermore, since only matrix ele-
ments of the form (2.7) are taken into account, our treat-
ment is completely equivalent to a Hartree-Fock-
Bogolyubov (HF8) procedure. It leads to a state-
dependent energy gap, which has the form

X
Qp'y~'Vp'ym'+ ~ Qp~mUprn + ll .pV

p'em'
PT7T' PT'Il

(3.2)

where m' stands for one of the two opposite parities m. and
F. The pairing coefficients follow from the condition

2Q =0, which, according to the Thouless theorem, is
equivalent to minimizing the constant term U in (3.1).
They are

1

2

e
1+ (3.3)

where

To study the pairing in our model, we generalize the im-
proved BCS treatment of Ref. 5. First we introduce a par-
ity dependent special Bogolyubov-Valatin transformation
with coefficients up and U~ leading to quasiparticles
a~.

Then we consider the Hamiltonian A =H —A,2V which
we w'rite in the familiar form

the dimension of the total space 8'z collective and noncol-
lective. For the parameter set (N =28, 0=8) we used as
a standard case, this total dimension is 471 435 600. is the quasiparticle energy, and

(3.4)

TABLE I. Values of the dimension of the energy matrix one has to diagonalize in the exact calcula-
tion for different sets of parameters (N, Q}.

3 4 5 6 7 8 10 11 12 13 14

0+
0

10
10

19
16

26
26

36
32

40
40

45
40

40
40

36
32

26
26

19
16

10
10

0+
0

10
10

19
16

28
28

44
40

77
72

90
90

106
100

112
112

119
112

112
112

106
100

0+
0

10
10

19
16

28
28

44
40

60
60

85
80

108
108

138
132

162
162

191
184

210
210

232
224

10 0+
0

10
10

19
16

28
28

44
40

60
60

85
80

110
110

146
140

180
180

223
216

260
260

304
296

0+
0

10
10

19
16

28
28

60
60

85
80

110
110

146
140

182
182

231
224

278
278

336
328
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Q
eprrr=ep ~ &2

G gp upr 4—(~~ —upr )

("p — up -} (3.5)

consequently, only one index p will be needed. We then
solve the BCS equations, i.e., the gap equation (3.7) and
the equation for the number of particles,

is the self-consistent energy, while
N =20+ 1—

Ep
(3.8)

Q =2+ Qpuprrr (3.6) We use the same procedure as in Ref. 5, and introduce
two quantities,

denotes the expectation value of the quadrupole moment.
The gap equation is

p'r'e' X prjr y prrr

4Ep 4E— (3.7)

One can easily prove that all BCS quantities are in fact
independent of the quantum number ~. We further make
the ansatz that they are also independent of the parity m,

I

zp(a —z, ) I [2Kz)z~ —(z)+zg)]~—[2z,z~d +2vzl(1 —Kzp)] I

Z1 ——a —,Z2 ——a—

satisfying the relation

(a —zl)(a —zq)=1, with a =1+ X +g
4Q

The BCS equations may then be reduced to

(3.9)

(3.10)

=zl(a —zq) I [2Kzlzz —(z~+zq)] —[2z~zqd —2vzz(1 Kz~ )]—I, (3.11)

where

and

(80—1)x —y+2
40(a —1)

IV. RANDOM PHASE APPROXIMATION

To get a rather compact form of the quasiparticle in-
teraction term

20(a —1) ~int ~40+~31+~22+~22 (4.1)

e1 ——

82=

zp

0(a —1)
—20v(a —1)(Kzg —1)+

ezra

2Kzlzz —(z~ +zq )

—20v(a —1 }(Kz( —1)—ezl

2Kzlzz —(zI +zq )

(3.12)

(3.13)
A, = —,[(K'z~ —1)e I + (K'zq —1)ez—1],

To solve the system of equations (3.10) and (3.11) we
use the numerical method of Ref. 5.

The treatment of the pairing for a given system (i.e., for
a definite N and 0}and a given force (x and y fixed) con-
sists in solving this system. Once z1 and z2 are obtained,
one calculates Ep 'Fp LaLp up, and vp, and finally one
determines the chemical potential A, , the expectation value

Q of the quadrupole moment, and the energy Uses of the
ground state. For this purpose, one needs Eqs. (3.3) and
(3.6) and the following relations:

I p=grp &p=X~p
f)5 T)0

~p=g (a~a~+a a ),
7r 8

(4.2)

These operators obey the following algebra:

we introduce the following "elementary" operators:

'Vpr~=&p ~o'p-~ ~

——a~ a

and, since every BCS quantity depends only on the shell
index p, we have the following "collective" operators:

where

K'= 2 —x —p
40(a —1}

and

xpQ
Uscs =—

2
—20(&+y)g&pup —40 gu u

p . p

[I,I p ]=[Ap, Ap. ] =5pp (20 ~p),
[~,I ]=[M,Ap ]=25 I

[W,,r,'.]=[~„A,', ]=25 .A,',
[Ap, I p]=[I'p, Ap]= 5ppWp, —

[~p,~p ]=[~p, Wp ]= [Wp, Wp ]=0 .

(4 3)

+40+epup —20+u
p p

{3.14)
'With these notations the different parts of A are
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Mi i
——g Ep~p,

p

A ~)——g u v +—( —1)i'+~+'g
gp I pI'p —g( —1Y'+~ gp—gpApAp+H. c. ,

pp

—,
'

i)~g~ +—
( —1)c+c'+'gpgp I ~~p —g( —1)i'+~ /pe—)p ApWp +H.c. ,

pp pp

(4.4)

PP PP

I

~pp ——g —,[g~+ (x +y)i)p]~~ —g + ( —1 Y+c'
qpgp

—~p~p g —( —1)—c'+c'
i1pgp W W

P pp pp

with qz u~ ———Uz and gz
——2u&U&. Here H.c. denotes the

Hermitian conjugate operators.
The RPA introduces new operators,

(4.5)

where

e=g E~+ (E~ —k~ ),
P

for positive parity, and

BJ' g(X~~——A.~ I"~ A,p—, )

pT77

for negative parity. It requires the equations of motion

[A,BJ ]=coiBJ,

[A,BJ' J =coJ.BJ'
(4.6)

co' —co' [E,+Ei +Ez+Ez —2Qy(giEi++gzE2 )]

+Ei E2 [Ei E2 2~Iy(glE2 +02E1 )] o (4'7)

The index j labels the solutions we look for. In writing ex-
plicitly these expressions we assume, as is usual in RPA,
that operators I and A, obey boson commutation relations.
To be consistent with the HFB character of the pairing
treatment, our linearization procedure of (4.6) consists in
retaining in the commutators all terms in y~, y, A,~, and A, .

We remind the reader that this method differs from the
usual RPA in respect to the fact that the contribution of
A zz is not neglec:ed.

In the case of negative parity, by solving the RPA equa-
tions, we find a number of degenerate solutions the X' and
F' amplitudes of which are ~ dependent and which corre-
spond to states of noncollective nature (pure two quasipar-
ticle excitations). Besides them, there exist, in general, two

collective solutions for which the amplitudes Xp and

Y~ depend only on the sheH index p. Explicitly, one can
show, after a straightforward but lengthy calculation, that
the collective energies obey the following equation:

kz ——v 2' gz,

D =g~+4E)+Ep k)kp .

The corresponding wave function coefficients are

I

4 p
(4.9)

1yl y'I
pT7T p P '1 — Z

p

where

M =E E —co

Z =( —I) . ', [1+(—1)"'P].
Qco

&

e'=g( —1)c'Ep+(Ep —kp) .
P

For the second collective state, one obtains, similarly,

where co&
—[ ,' (e+~D)]'— (4.10}

E+ =2E ——,(x +y},
E =2E —

g~
——,

' (x +y)(i)~ g~) . —
1

Xp ——Xp ——— COp

1
'-- Z'+ ~ p 7

P

~i =[
& (~—~&)]'" (4.8)

In general, or at least for all values of the parameters we
introduced, Ep is a positive quantity, and Eq. (4.7) admits
two real solutions, co] and coq.

Explicitly, one gets, for the lowest lying state,

I

P
1/2

1
~pe~ =~P 4

E+
zq —— [1+( —1 Y'P]

Qcop

(4.11}
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In the case of positive parity, the treatment is somewhat
similar. As previously, a number of degenerate noncollec-
tive solutions are obtained. In general, there exist also two
collective solutions. Here, however, one of the collective
roots lies at zero energy and corresponds to the spurious
solution which violates the number conservation. In order
to obtain this solution at exactly zero energy, use is made
of the gap equation (3.7). We would like to stress here
that this exact removal of the spurious state is possible
only with the help of coherent improved BCS (orbit
dependent gaps) and improved RPA (A 22 taken into ac-
count) treatment. The other collective solution, called the
physical solution, when it exists, has an energy cu given by

1/2
co = QEp+ (Ep —20 —kp)+ 2Q(k i+ kz)

P

(4.12)

where the vector kp has the two components ~2Qgp and
( —1)P+'/20x gp.

The corresponding wave function coefficients are

Z1

Z2=—

E+ 1/2
1

a)E2+

E+
Q)E 1

1/2

(4.13)

[B,B ]=[B,B ]=1 .

It follows that the electromagnetic transitions between
states,

E)+(E( —k f)+E2+ k( k2Z 1 Z1 p

COE 1

E2+(E2 —kp)+E)+ k)kp
Z2 —— Z1

coE 1

The RPA is a harmonic approximation, where the 8+
and B operators (4.5) are supposed to obey the boson

I

commutation relations:

Xp, Xp ———,(Z——p+Zp ),
~
non/np) =

~
RPA),

no!n, !nz!
(4.14)

I', = Yp
———,'(Zp —Zp)

with

where
~
RPA) is the correlated RPA ground state, are

rather simple to evaluate. In particular, all states (4.14)
have the same quadrupole moment Q given by (3.6).
Furthermore, only E2 cascade transitions take place:

(mom, m,
~
Q

~

non)n, ) =2&q g( —I)p+'gp(Xp+ I'p) 5~, , „,5~, ,„,(V no5„,,~,+&+V'mo5~. ..+i) .
P

A similar relation holds for the E3 cascade transitions,

(mom&mz
~

R
~
non~n2) =2Qr5 „g(—1)P+'gp(Xp +Fp ) 5, „,(~n~5„, , ~++Qm~5, „,+~)

P

g ( —1)p+'gp(Xp '+ 1'p~') 5, „,(~n25„, ,+)+Qm25, „,+))
P

V. TAMM-DANCOFF APPROXIMATION

The principle of this approximation is quite analogous
to the one developed in the last section. Instead of opera-
tors (4.5) we now introduce TDA —type phonons,

(5.1)
p%7T

for positive parity and
'j

Bj =g Xprn ~pvm.
p7 7T

for negative parity. We still require equations of motion
of the form (4.6), introduce the part A 2'2 of ~;„,but re-
tain in the linearization rocedure only the terms of the
commutators in y and A, . Moreover, the ground state is
the unperturbed

~
BCS) state. As in the RPA treatment,

besides a number of noncollective solutions, two collective
roots are obtained for each parity.

Explicitly, one gets, for the negative collective states,

co', =—g(Ep Oygp) —V d'—
P

where

Ep 2Ep ——,[gp+(x +——y)rjp],
i 2

d'= X~Ep &yg) +4&'yV—i4.
P

The corresponding wave function coefficients are
1/2

X' =X"'=( —I )
'+'

pwm p 4~

where

g ( —1 P(Ep+ Qy gp)
P

(5.3)

(5.4)
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The second negative collective solution has

coz ———g(Ep Qy—gp) +~d'
2

P

(5.5)

coz ———,
' (S)+Sz+v d ),

1/2

X), ——X) ——sg(S}(2) 1+p
4Q

(5.10)

(2)X~ —X
1/2

1+(—1) +'P
40 (5.6)

1/2
1 —P
4Q

(5.1 1)

Similarly, for the positive parity states, we have

co) ———,'(S)+Sz —v d ),
where

S =E~—0(1+x/+ z)'),

d =(S)—Sz) +4S
with

S =Q(xg)gz —1 —z), v]z),
1/2

X~, ——X, = —sg(S)
1 P-
4A

' 1/2
1+P

X2~~ ——X2
4Q

where

S1 —S2

The second positive solution is given by

(5.7)

(5.8)

(5.9)

We can see in Eqs. (5.3) and (5.8} that the two solutions
of each parity always exist, contrary to the RPA solutions.
Furthermore, neither of the two positive solutions is com-
pletely spurious or completely physical as in the RPA.
Nevertheless, as in Ref. 5, we shall consider the lowest
positive solution u1 as almost spurious. Several arguments
can be given to justify this choice: First, its energy is close
to the zero energy spurious solution of the RPA; second,
this lowest solution has the same symmetry of the wave
function as the spurious RPA solution; and third, for the
peculiar cases of our model e =0 and /or @=0, the root is
exactly the spurious state (X—N)

(
BCS). As well as the

RPA, the TDA is a harmonic approximation where the B
and B operators (5.1) are supposed to be pure bosons.
The multiboson states in this approximation are

)no TPl t8

(non, nz)= (BCS), (5.12)
no!n ~!nz!

where 8 stands for the physical positive parity phonon de-
fined by Eq. (5.11).

As for the RPA, all states (5.12) have the same quadru-
pole moment Q given by (3.6). Similarly, only cascade
transitions can occur. These are given by

&mom&mz (g (noninz&=2&q &( 1)~+'0Q ~m n ~~ (~no~& ~ +1+Vmo8~o "o+1)
P

for E2, and

~momimz (& (noninz) =2&&& „,. g ( —1}c'+'g~'" 8, „,(~n,g„,+~m, g „,)
P

for E3.
P

VI. MULTIPHONON METHGD

In order to explain the anharmonicities in the nuclear
vibrations one needs to treat the Pauli principle properly
in piling up phonons to build higher excited states. The
multiphonon method' has been developed to achieve
this goal.

In the model of the present study we have three basic
TDA phonons: two of negative parity, (5.4) and (5.6), and
one of positive parity, (5.11). The use of the general MPM
of Ref. 7 is then required. Two possibilities are offered:
either the application of a generalized Wick's theorem or
the use of recursion formulas. For numerical reasons it
appears that the second approach is more convenient. For
a more detailed formalation of this, the reader is referred

to Sec. III of Ref. 7. Here only a sketch of this approach
is given.

%'e start with the multiphonon states

gn fn

(n o,
nn)z= (0),

no&n, !n2!
(6.1)

where (0) = (BCS) is the quasiparticle vacuum, and
where, for brevity, we have omitted the primes of the neg-
ative phonons. Note the difference of the proportionality
factors in the nonorthogonal multiphonon basis (6.1) and
in the orthonormal states of the RPA (4.14) and TDA
(5.12). To calculate the eigenstates and eigenvalues of the
model Hamiltonian (2.1) we use the collective subspace
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spanned by the states (6.1). First we remark that these do
not form an orthonormalized basis. So we shall have to
calculate the overlap matrix elements

as well as

(mom]me I~Inoninz&. (6.3)

~(mo mi mz'no ni, nq)=(m om~ mq
I
non, nz) (6.2) To simplify a bit the notation, the total Hamiltonian A

of Eq. (4.4) is rewritten in the form

A =QEp~&+g[P~(r I +I I p)+P~(ApA +A Ap)+R (I ~ +~ I )+Rp (ApW +W A }

+s r,'r.+s' A,'A.+r m, m. +r,'.Wp~. ], (6.4)

where the coefficients E, P, R, R', S, S', T, and T' can
easily be deduced from Eq. (4 4).

The calculation of the quantities (6.3) needs the evalua-
tion of the corresponding matrix elements of the one
body operator ~ and the two body operators I"~I ~, A~A~,
r'm, A'W, I'r, A'A, ~m, and WW.

It can be shown, that all these can be deduced from the
quantities (6.2} and
~p(mo m gmp non 1nz } ( mom 1m 2 I r, I

non ln2 &

9Fp(mom &mq, non &no) = & mom imz I Ap I "on inc & ~

&~'( mmo~ m,anno&nz)= {momimz I rprp' I nonlnz &

&~ (mom ~m z, non &no) = & mom trna I rpAp' I
non 1n2 )

(mom'&me non&n'z) =&mom&mz I ApAp' I non&nz&

(6.5)
which in turn are calculated using recursion formulas de-
duced from the general procedure.

The eigenvalues and eigenstates of A are then obtained
using the canonical orthogonalization procedure of
Lodwin, and standard diagonalization codes.

Once the eigenstates
I 4x ) are obtained, we calculate

the matrix elements (fz I Q I Px) and (@z I
R

I gx ) of
the quadrupole and octupole operators (2.9) and (2.10). To
have a more physical picture, it will also be useful to ex-
press the eigenfunctions

I fx) in terms of the vectors
(6.1),

I +re & =pc(non & no) I
non in 2 ) (6.6)

In our applications, we shall call the multiphonon
method where all states (6.1) are incorporated MPM3. We
will also solve the eigensolution problem with a space re-
duced to states built on two kinds of phonons, MPM2,
[i.e., nq ——0 in (6.1)], and that built with one phonon,
MPM1 [i.e., no nz ——0 in (6——.1), or the case studied in Ref.
4].

A comparison of the results of the three calculations
will allow us to analyze the effects of switching in success-
ively the different phonons. MPM1 will simulate the ex-
perimental situation observed in nuclei of the mass region
222&2 (226 while MPM2 is expected to be used for
heavier nuclei.

In principle, within our model, it can be shown that the
space 8'c spanned by all the multiphonon states (6.1)
compatible with the Pauli principle, including the re-
moved spurious 0+ phonon, is the direct sum of the exact
collective spaces O'N~ for all different number of parti-
cles 8'c~ ——QS 8'~c . Thus, the diagonalization of A in

N

the whole MPM collective space would give rise to all col-
lective states of all nuclei. However, this is not the aim of
the MPM, which we want to apply later to more realistic
situations; the procedure used is to choose the best pho-
nons (through a TDA treatment, for example) for a given
nucleus and to diagonalize the Hamiltonian in a truncated
space [i.e., restriction in the number of states (6.1)], which
is expected to overlap rather well with 5'Nc .

Thus, we start with a trial basis including all states
I
n no, nz) up to n =no+n~+nq ——4, and we enlarge pro-

gressively n by one unit and stop this procedure at nc
when a numerical stability is obtained for the 10 lowest
states of each parity. This number 10 corresponds to the
number of basis states (6.1) up to n =3. In practical situa-
tions nc-8.

VII. RESULTS AND DISCUSSION

The different approaches discussed in the previous sec-
tions are now compared. For this purpose several observ-
ables have been calculated. We paid special attention to
the ground state energy, to the energy spectrum, to the
quadrupole moments, and to the off'-diagonal matrix ele-
ments of the quadrupole and octupole operators (2.9) and
(2.10). (Strictly speaking, only the squares of these last
quantities are observables, but for numerical convenience
we shall give their absolute values and consider these as
observables. ) In order to reduce the presentation of the
tremendously large number of results somewhat, we only
considered the ten lowest lying states of each parity.
Despite this restriction we still have to compare for each
set of parameters: 20 energies, 20 quadrupole moments,
90 off-diagonal quadrupole matrix elements, and 100 octu-
pole transitions, leading to 230 data calculated in RPA,
TDA, the three versions MPM1, MPM2, and MPM3 of
the multiphonon method, and the exact solution.

As mentioned in the previous sections our problem has
five parameters: two of them, Q and v=N/40 —1, define
the system under consideration and the three others are of
dynamical nature: e, x, and y.

We first study the 230 observables in the different ap-
proaches for a rather typical set of parameters:

A=8 v= ——1

8&

e =2.5, x =y =0.25.

(These values correspond to a natural extension of those
used as a standard parameter set in Refs. 5 and 6.) We are
immediately faced with the delicate problem of the
correspondence of the states obtained in each approach.
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TABLE II. Absolute energy of the ground state, relative energies of the lowest positive parity 0+ ex-
cited state, and diagonal matrix elements of the deviation of the particle number (last column). All en-
ergies are given in G units. The standard parameter set (7.1) is used.

i
ooo)

i
100)

i
2OO&

i
020)

i
011)

i
OO2)

i
300)

i
120)

i111)
i1O2)

TDA

—264. 1

27.70
55.40
55.62
59.63
63.64
83.11
83.22
87.33
91~ 34

27.36
54.73
55.01
59.32
63.64
82.09
82.37
86.68
91.00

53.21

RPA MPM1

—264.3

MPM2

—264.5
26.98
52.38
53.01

76.04
77.42

MPM3

—264.5
27.33
52.72
53.35
57.50
61.66
76.40
77.74
81.37
85.39

Exact

—272.4
27.79
53.64
54.33
58.62
62.75
77.85
79.38
83.42
87.22

(iN Ni)—
0.003
0.257
0.497
0.393
0.443
0.582
0.769
0.576
0.685
0.809

However, a careful analysis of all energy and transition
properties removes practically all ambiguities. Further-
more, it is possible to label the different states with the
quantum numbers (no, n i, n2) which characterize the state
in the harmonic approaches TDA or RPA. We note that
in the MPM, these labels correspond generally to the larg-
est component in the expansion (6.6). This labeling is
somewhat similar to the use of asymptotic quantum num-
bers used to identify Nilsson states. We remind the reader
that, because of the nonorthogonality of the MPM basis
(6.1), this main component can be greater than 1, and it is
not simply related to the occupation probability of the
state.

In Tables II and III we give, respectively, the energies of
the 0+ and 0 states obtained in the different approaches,
TDA, RPA, MPM1, MPM2, and MPM3 compared to the
exact values in the seventh column. The first line of Table
II refers to the absolute ground state energy while the oth-
er values deal with the relative energy spectrum. The BCS
or TDA ground state energy reproduces the exact value
within 4%. The multiphonon treatment slightly improves
the description. One knows from Ref. 6 that the remain-
ing difference can be removed by a better treatment of the
nonconservation of the particle number. It is also evident
from Tables II and III that the MPM3 approach leads to
an overall better agreement than the harmonic approxirna-
tions. The MPM systematically underestimates the ener-
gies but stays within a precision of less than 2.Sgo for the

20 states considered. The TDA (or RPA) adjusts very
nicely the "one phonon" states but all other energies are
overestimated: Some "three phonon" states show a devia-
tion of the order of 7%%uo. We also note that for the states
where the three MPM can be compared, no large differ-
ence concerning the energies are seen.

In Tables IV and V we present the values, in q units, of
the quadrupole moments, respectively, for the 0+ and 0
states for the MPM*s and exact solution. The results are
also compared with 3.33, the unique value given by the
TDA or RPA [see Eq. (3.6)]. The MPM3 approach repro-
duces very nicely the variations from state to state of the
quadrupole moments, though a slight overestimation can
be noticed: The quantitative description is fine for "zero,
one, and two phonon" states; for the three phonon states,
however, some deviations are observed but they stay
within 10%. When it is possible to compare the different
MPM calculations, it appears that MPM2 and MPM3
give similar results whereas MPM1 leads to very poor
agreement. This is due to the fact that the parameter set
(7.1) corresponds to a case where the second 0 phonon is
far away from the two other phonons and consequently
has only a small effect on the electromagnetic properties
of the states built on 0+ and 0& phonons.

Among the 90 pieces of information contained in the
off-diagonal E2 transitions we have selected some
noteworthy data. In Table VI we give the ten E2 transi-
tions allowed in the harmonic approximations. These are

TABLE III. Relative energies (in 6 units) of the ten lowest negative parity excited states 0 and di-
agonal matrix elements of the deviation of the particle number (last column) for the standard set (7.1).

i
010)

i
001)

i
110)

i1O1)
i
210)

i
201)

i
030)

i
021)

i
012)

i
003&

TDA

27.R1

31.82
55.51
59.52
83.21
87.22

83.43
87.44
91.45
95.46

RPA

27.50
31.82
54.87
59.18
82.23
86.54
82.51
86.82
91.14
95.45

MPM1

27.48

77.17

MPM2

27.50

53.36

77.75

76.85

MPM3

27.49
31.82
53.35
57.37
77.72
81.06
76.85
81.44
85.50
89.51

Exact

27.95
32.36
54.34
58.47
79.34
82.63
78.26
83.38
87.34
91.20

(iN Ni)—
0.197
0.286
0.432
0.534
0.577
0.766
0.627
0.597
0.695
0.896
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TABLE IV. Quadrupole moments in q units for the ten
lowest positive parity states 0+, obtained for the standard pa-
rameter set (7.1). The given values are also to be compared to
3.33, the result of the harmonic approximations TDA and RPA.

TABLE VI. Absolute values in q units, of the ten allowed E2
matrix elements, between states labeled by quantum numbers no

which differ by one unit, for the standard parameter set (7.1).

TDA RPA MPM2 MPM3 Exact

] ooo&

f
100)

[
2OO&

[
O2O)

i
011)

[OO2)

]
3OO&

i
120)

[
111)

1
102)

MPM1

3.33

3.03

MPM2

3.34
3.62
3.84
3.49

4.33
3.77

MPM3

3.34
3.62
3.84
3.49
3.31
3.15
4.29
3.83
3.57
3.41

Exact

3.34
3.58
3.73
3.46
3.17
3.01
4.14
3.74
3.45
3.12

(000
i
E2

i
100)

(100(E2( 200&
(010

i
E2

i
110)

(001
(
E2

)
101 )

(200 [E2 )
300)

(110
i
E2

]
210)

&101 IE2I201&
(020 ) E2

i
120)

(011
f
E2

)
111&

&oo2
I
E2

I
102&

5.58
7.89
5.58
5.58
9.66
7.89
7.89
5.58
5.58
5.58

6.03
8.53
6.03
6.03

10.4
8.53
8.53
6.03
6.03
6.03

6.04
7.57
5.80

9.43
6.16

6.04
7.57
5.79
5.85
9.43
6.18
7.78
6.09
5.59
5.65

6.09
7.46
5.83
5.87
9.36
6.35
7.04
6.20
5.56
5.63

TABLE V. Same as in Table IV but for the ten lowest nega-

tive parity states 0+.

MPM1 MPM2 MPM3 Exact

the "cascade transitions" which take place between states

~
no, n~, n2& and

~

n o+I,n~, n 2&. In the TDA or RPA the
matrix elements of these transitions are proportional to
~no leading to only three different values in the second
and third columns of Table VI. Here, too, the MPM3
demonstrates an overall improvement when compared
with the harmonic approximations. The agreement is ob-
tained within less than 2%. We notice again that MPM2
is, for this set of parameters, equivalent to the MPM3 ap-
proach.

Apart from these ten allowed transitions one observes
four other matrix elements having a value greater than q.
These transitions, strictly forbidden in TDA and RPA, are
given in Table VII. They are mainly due to the strong
mixture of the states labeled by

~

020& and
~

200& for the
two first ones,

~
030& and

~

210& for the third one, and

~

201 & and
~
021 & for the last one.

The values of these four elements are very sensitive to
the choice of the parameters of our problem. Their im-
portance is more or less "accidental, "but it remains, how-
ever, that they are reproduced rather correctly by MPM2
or MPM3.

Another interesting fact, which appears systematically
(i.e., whatever the parameters may be) is the existence of
ten other E2 transitions, an order of magnitude smaller,
completely forbidden in harmonic approximation, and
which connect states

~ non, n 2 ) with states
o,nn)+I, n +2I).

These transitions, somewhat induced by an E2 transi-
tion between the two different octupole phonons, are re-

ported in Table VIII. The MPM3 approach reproduces
these data very nicely.

In a similar way we will not give the 100 E3 matrix ele-
ments. We restrict ourst:ives to the most noteworthy data.
In Table IX (Table X) we give the "allowed" E3 cascade
transitions, which take place between states labeled by
quantum numbers n~ (n2) differing by one unit. For
reasons similar to that given for the E2 case, only three
different values appear in the TDA or RPA results. These
results confirm the evident superiority of the MPM over
the harmonic approximations. This is noticeable particu-
larly for the cases where the state

~

020) is involved; see
Table IX. We also note that the values in Tables X are an
order of magnitude smaller than those of Table IX,
demonstrating that the 02 phonon is of a less collective
nature than the 0I phonon. In Table IX the MPM1 is
seen to be insufficient, whereas the MPM2 and MPM3
may be considered again as equally good. The agreement
obtained with MPM3 is satisfactory. The MPM3 is very
good for the large values of Table IX and a little less good
performing for the small values of Table X. In Table XI,
we give the values of five strong E 3 forbidden transitions
which were obtained with the use of the standard parame-
ter set (7.1). Conclusions similar to those given for Table
VII and E2 transitions can be drawn here. Other rather
important E3 transitions may be observed. They imply
states where one of the negative phonon 0& or 02 is
transformed in the positive phonon 0+. As for the
equivalent E2 transition shown in Table VIII, the MPM
gives a satisfactory description of these data.

In order to estimate the effects of the nonconservation
of the number of particles induced by the BCS treatment
and present in the MPM we have also calculated the ma-

trix elements of the "deviation" operator X—
¹ The ab-

solute values of its diagonal matrix elements are given in

i
010)

)
001)

i
110)

] IOI&
i210)
i201)
)
030)

]
021)

i
012)

/
003)

3.18

2.87

3.36

3.66

3.78

3.62

3.36
3.26
3.67
3.53
3.83
3.82
3.62
3.39
3.22
2.98

3.33
3.21
3.62
3.41
3.77
3.45
3.53
3.26
2.96
2.72

( 100
i
E 2

i
020)

(020
i
E2

i
300)

( 110
[
E2

~

030 &

(101
i
E2

i
021)

3.69
2.70
5.22

MPM3

3.68
2.71
5.17
2.40

Exact

4.02
3.01
5.03
4.11

TABLE VII. Absolute values, in q units, of four strong for-
bidden E2 matrix elements obtained with the standard parame-
ter set (7.1).
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TABLE VIII. Absolute values, in q units, of the ten forbid-
den E2 matrix elements occurring between states labeled by

I no, nt, n2) and
I
no, n~T1, n2+1) with the use of the standard

parameter set (7.1).

TABLE X. Absolute values, in r units, of the ten allowed E3
matrix elements occurring between states labeled by

I
no, n~, n2)

and
I

n c, n~, n2+1) obtained with the use of the standard param-
eter set (7.1).

(010
I
E2

I
001 )

&11OIE2I 1O1&

(020
I

E2
I
011)

&oil
I
E2I oo2)

(210
I
E2

I
201 )

(120
I
E2

I
111&

(111IE2I1O2&

(030
I
E2

I
021 )

& o21
I
E2

I
0» &

&O12IE2IOO3&

MPM3

0.416
0.442
0.527
0.630
0.219
0.589
0.667
0.546
0.870
0.824

Exact

0.437
0.521
0.542
0.682
0.199
0.680
0.818
0.360
0.807
0.928

(000
f
E 3

f
001 )

&1OO
I
E3

I
1O1 &

(010
I
E3

f
011)

( 001
I
E 3

I
002)

( 200
f
E 3

f
201 )

(110
I
E3

I
111)

(101
f
E3

I
102)

(020
I
E3

I
021 )

(011
f
E3

f
012)

(002
I
E3

I
003 )

TDA

0.608
0.608
0.608
0.859
0.608
0.608
0.859
0.608
0.859
1.05

RPA

0.607
0.607
0.607
0.858
0.607
0.607
0.858
0.607
0.858
1.05

MPM3

0.618
0.747
0.706
0.955
0.802
1.01
1.05
0.878
1.10
1.27

Exact

0.637
0.783
0.681
1.01
0.927
0.784
1.28
0.779
1.06
1.40

the last column of Tables II and III. For the ground state
it is very small; for the other states it remains smaller than
=0.3n where n =no+ni+nz. Since we are dealing with
an even number of particles, we see from these values that
the contribution from the neighboring nuclei may not be
too large, at least for the lower part of the energy spec-
trum.

It is now natural to ask the question: How is the agree-
ment obtained with the multiphonon method preserved
when one changes the different parameters of the prob-
lem? We have studied the variation of the evaluated
quantities by changing one by one each of the five in-
volved parameters. The effects of the variation of v, Q, e,
and x are the same as those obtained in our previous
study where only K =0+ phonons were considered and
are not exhibited in the present paper. We again find that
the quality of the results of the MPM improves with de-
creasing quadrupole force, decreasing splitting of the
shells, decreasing

I
v I, and higher degeneracy. We just

want to report here the effects of the variation of y, the
parameter which measures the octupole force. To illus-
trate this study we restrict ourselves to some selected ob-
servables concerning states where

0&no+n&+nz (2 .

Tables XII and XIII, devoted, respectively, to positive and
negative parity states, show a mesh. The abscissa of each
point of the mesh is given by y. Five values, 0.01, 0.25,
0.5, 0.75, and 1 are retained for this parameter. The ordi-

nate of each point of the mesh is given by the state. At
each point we give the values obtained in MPM3 (upper
line} and in the exact solution (lower line) for at most four
observables. In the lower left-hand corner we give the rel-
ative energy for the state in 6 units, and in the lower
right-hand corner the quadrupole moment in q units. In
the upper left-hand corner we report the allowed E2 ma-
trix element (in q units) decreasing from the state, and in
the upper right-hand corner one finds the allowed E3 ma-
trix element (in r units) coming from this state. There is
one exception for this presentation for the two phonon
state

I
011) where the two upper divisions are concerned

with allowed E3 transitions: the left-hand one deals with
that due to the change of n i, and the right-hand with that
involving a variation of n2. Several remarks can be made:
First, as could be expected, the variation of the strength of
the octupole force does not practically affect the spectro-
scopic properties of the state

I
100). Second, with in-

creasing y, the energy of the lowest octupole state 010)
decreases while that of the second negative state 001)
remains rather stable. The collectivity of this last state is
large for small values of y (i.e., one observes a large E3
matrix element) and decreases with y, for the benefit of the
lowest octupole state. Third, we note that the labeling of
some states (mainly of positive parity) is, in some cases,
rather difficult. When some ambiguity remains we use an
asterisk. This in particular is the case for y=0.50 where
the states

I
011) and

I
200) are practically degenerated.

Apart from this, we see that the MPM3 gives an overall

Exact

TABLE IX. Absolute values, in r units, of the ten allowed E3 matrix elements which take place be-
tween states labeled by I ns, n»n2) and

I nc, n~, + l, n2) in the case of the standard parameter set (7.1).

TDA RPA MPM1 MPM2 MPM3

&ooo
&1OO

&O1O

(001
(2OO

( 11O
(1O1
(020
&Ol 1

(OO2

E3
E3
E3
E3

O3O&

02»
O12)

E3
I
O10)

E3
I

1 lo)
E 3

I
020)

E3
I
011)

E3
I
210)

E3
f

120)

5.55
5.55
7.85
5.55
5.55
7.85
5.55
9.61
7.85
5.55

5.98
5.98
8.46
5.98
5.98
8.46
5.98

10.4
8.46
5.98

8.36

5.98
5.74
7.35

1.08
7.40

5.99
5.72
7.36
5.79
1.]0
7.36
5.53
5.68
7.59
5.57

6.04
5.75
7.23
5.80
0.954
7.35
5.44
5.64
6.74
5.53
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TABLE XI. Absolute values, in r units, of five strong forbid-
den E3 matrix elements obtained with the use of the standard
parameter set (7.1).

( 200
i
E3

i
010)

(200
i
E 3

i
030 )

(o2o
I
E31»0&

«11
I
E312ol &

(300
(
E3

(
110&

MPM2

3.95
6.69
7.34

3.01

MPM3

3.94
6.65
7.27
2.66
2.96

Exact

4.28
6.88
7.20
4.41
3.12

good agreement for values of y up to 0.75. The quadru-
pole moments are overestimated, and all other quoted ob-
servables slightly underestimated. Finally, in conclusion
we may add that the quality of the MPM increases with
decreasing octupole force, i.e., with an increasing pairing.

Another interesting point to be discussed is the possibil-
ity that MPM1 or MPM2 is sufficient to obtain a good
description of typical states for a given situation. Intui-
tively we felt that a case where the Oj state is much lower
than the 0+ and 02 states would be correctly described by
MPM1, while MPM2 would be more suited for the case
where the 0& and 0+ states are much lower than the 02
state. To distinguish between the various situations we in-
troduce the quantity

E (Op ) —E(0+ )
d =

E(O+)—E(O;)
where the energies have been calculated in the exact case;
for the major part of the parameters used in our numerous
analyses, the 0+ state lies in between the 0& and 02 states
and d is a positive number. The case for which d «1 is
called type I, and it corresponds to a 0~ state well separat-
ed from a "doublet" of 0+ and Oz states. The other ex-
treme case d &&1 corresponds to a "doublet" of 0~ and 0+
states much lower than the remaining 02 state, and is
called type II. Finally, the case d=l corresponds to a 0+
state equidistant from the 0~ and 02 states and is referred
to as type III. If we restrict ourselves to states with
pip+ n ~ +n2 & 3 the number of levels which can be
described in MPM1, MPM2, and MPM3 is, respectively,
2, 6, and 10 for positive parity and 2, 4, and 10 for nega-
tive parity. Thus, when we compare the various approxi-
mations MPMi, we mean that we compare the results for
the states which can be described in these given approxi-
mations.

The standard case extensively studied in this paper is of
type II (d = —28). The MPMl version is good for the en-
ergies but does not reproduce the transition probabilities
very well. On the contrary, the MPM2 version gives re-
sults which are practically as good as MPM3 for both en-
ergies as we11 as transition probabilities. This is the con-

TABLE XII. Values of the energy (in G units) in the lower left-hand corner, of the quadrupole moment (in q units) in the lower
right-hand corner, and of the allowed E2, upper left-hand corner, and E3, upper right-hand corner transitions or upper part for state

( 011) decreasing from the one and two phonon positive parity states. The lower line corresponds to the exact solution, the upper to
the MPM3. Variation with y is shown, the other parameters being fixed to v= ——,, 0=8, e=2.5, x=0.25. Asterisk denotes ambi-
guity. (See text. )

~
OO2)

y=0.01

4.86
4.95

y=0.25

0.955
1.01

y=0.50

0.480
0.501

y =0.75

0.305
0.327

y=1

0.020
0.019*

ioll)

62.1

63.2

4.32
4.26

2.64
2.47

3.69
3.61

61.7
62.7

5.79
5.80

3.15
3.01

0.706
0.681

61.9
63.0

6.43
4.03*

3.20
3.05

0.330
0.436

62.1

63.4*

7.55
7.54

3.16
2.87*

0.207
0.233

62.3
65.9'

8.71
12.1*

3.01
3.58

0.247
0.267*

i
020)

61.2
62.1

60.1

61.2

3.40
3.37

5.89
6.01

4.18
4.08

57.5
58.6

53.4
54.3

3.31
3.17

7.36
7.23

3.49
3.46

53.1

54.2*

43.8
44.6

3.13
3.50*

9.27
9.32

2.95
2.90

47.5
48.5

32.3
32.5

2.88
2.60

10.7
10.7

2.42
2.29

40.8
38.2

19.6
15.1

2.55
1.41*

12.7
14.3

2.45
2.00

~
2OO) 8.45

8.51
7.57
7.46

8.35
5.27*

8.20
8.22

7.69
7.16*

~
100)

52.5
53.5

6.06
6.11

4.01
3.93

52.7
53.6

6.03
6.09

3.84
3.73

53.3
54.2

6.01
6.05

3.91
3.27'

53.6
54.6

5.90
5.93

4.01
3.94

55.3
56.3*

5.64
5.58

3.03
2.39*

27.2
27.6

3.66
3.63

27.3
27.8

3.62
3.58

27.5
28.0

3.56
3.53

27.7
28.2

3.56
3.55

28.4
28.9

2.91
2.79
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TABLE XIII. Same as in Table XII, but for one and two phonon negative parity states.

y=0.01 y=0.25 y=0.50 y=0.75

5.87
5.88

3.48
3.51

5.85
5.87

0.747
0.783

5.83
5.85

0.364
0.380

5.75
5.71

0.214
0.186

4.68
5.46*

0.127
0.016*

57.5
58.6

5.85
5.91

3.29
3.14

4.12
4.14

57.4
58.5

5.79
5.83

3.53
3.41

5.72
5.75

57.6
38.8

5.69
5.72

3.53
3.43

6.34
6.36

57.8
59.0

5.27
5.14

3.56
3.54

7.47
7.52

58.3
58.8

4.57
3.72

2.98
1.90

9.25
8.60

~

001)

56.4
57.4

4.08
4.08

3.56
3.59

53.4
54.3

3.67
3.62

0.618
0.637

49.1

50.1

3.45
3.40

0.304
0.321

43.6
43.3

3.58
3.50

0.186
0.206

38.3
37.5

1.89
2.09

0.340
0.100

i
010)

32.0
32.6

3.03
2.98

4.35
4.39

31.8
32.4

3.26
3.21

5.99
6.04

31.9
32.5

3.25
3.18

6.64
6.68

32.0
32.7

3.17
3.08

7.78
7.83

32.3
32.0

2.47
2.27

10.8
11.8

31.1
31.6

3.75
3.73

27.5
28.0

3.36
3.33

22.7
23.1

3.14
3.11

16.4
16.7

2.83
2.70

7.33
6.93

2.30
2.08

elusion we expect for a type II case.
We have also studied a number of other situations, but

to avoid the presentation of too many results, we report
here only the qualitative features which emerge from this
analysis. Concerning a type I case (a typical example is
obtained for Q=8, v= ——,', e =2.5, x =0.25, y =0.75,
for which d=0.39), the MPM1 describes correctly the en-
ergies and the allowed transitions, but describes poorly the
forbidden transitions. The MPM2 approximation is gen-
erally as good as MPM3, and often even better for all
types of observables. This conclusion is rather consistent
with our first idea, but the improvement by passing from
MPM1 to MPM2 is even more impressive than expected.
Finally, a typical type III case (0=8, v= ——,', e=2.5,
x=0.12, y=0.25, for which d=1) was examined. The
conclusion is quite similar to the type II case. Here, too,
we find that MPM2 gives results completely equivalent to
MPM3 (and often better); this was not expected a priori

VIII. CONCLUSIONS

ties of the coupled vibrational low lying levels of the sys-
tem having definite physical situations.

The anharmonicities in the energy spectra are well
reproduced even with the simplest versions of the multi-
phonon method. Qn the other hand, the aIlowed quanti-
ties (quadrupole moments or cascade E2 and E3 transi-
tions) are systematically improved by making a proper
MPM treatment in comparison with harmonic TDA or
RPA results. But one of the most important points of our
study is that the MPM is able to explain quite nicely the
forbidden transitions (in particular, transitions between
one phonon states), some of them being of the same order
of magnitude as the allowed ones. In that case, the cou-
pling of different types of phonon is of crucial impor-
tance. Finally, it was shown that in practically all situa-
tions, MPM2, that is, the coupling of only the most collec-
tive phonon of each parity, is sufficient tc obtain a very
good overall agreement with the exact solution. This con-
clusion is a very encouraging and exciting result prompt-
ing the attempt to apply the MPM2 method in a realistic
case—for example, in the actinide region (see Ref. 4).

In the frame of our simple exactly solvable model, we We are very much indebted to Dr. Z. Szymanski for
have been able to show that the multiphonon method pro- fruitful discussions and Dr. A. Jain for a careful reading
vides a fairly good approach for the spectroscopic proper- of the manuscript.
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