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Pion single charge-exchange reactions exciting giant electric isovector resonances are studied for a
series of nuclei. The reaction mechanism is treated in the distorted-wave impulse approximation.
Emphasis is put on the nuclear structure aspects probed in these reactions. Transition densities for
charge-exchange excitations are calculated using the sum-rule method and microscopically, in the
Hartree-Pock —random-phase-approximation framework. The resulting cross sections are sensitive
to the nuclear structure input. Double differential cross sections as functions of the nuclear excita-
tion energy are calculated.

NUCLEAR REACTIONS Pion single charge exchange exciting giant isovector
resonances.

I. INTRODUCTION

Considerable experimental and theoretical' effort has
been devoted in the past to the study of pion single charge
exchange reactions. However, almost all of the studies
were concerned with the excitation of the isobaric analog
states.

In recent years, new experimental developments have
opened the possibility to study, in addition to the isobaric
analog, other excited states. In particular, an experimen-
tal program was undertaken in order to study giant isovec-
tor resonances excited in (m ,n ) reactions—. The observa-
tion of the charge-exchange components of the isovector
dipole and monopole, for a series of nuclei, using incom-
ing pions with T + = 165 MeV, has been reported. '

The (n +,sr ) reactions—, performed under the same
kinematic conditions, promise to contribute significantly
to our understanding of the differing roles played by the
proton and neutron degrees of freedom in the charge ex-
change process. Information on the Coulomb polarization
of the protons can be inferred from the cross sections in
N =Z nuclei, as shown in Ref. 6. In N ~Z nuclei, the
pion charge exchange cross sections are expected to reflect
the influence of the excess neutrons. The excess neutrons
increase the number of configurations excited in the
(m.+,sr ) process. Also, due to the Pauli principle, they ex-
clude configurations which, otherwise, would have been
excited in the (m, sr ) process.

The aim of this work is to present the results of a sys-
ternatic study of the (sr—,n. ) reactions in which giant elec-
tric resonances of multipolarity 0+, 1, and 2+ are excit-
ed. We will describe the reaction mechanism in terms of
the distorted-wave impulse approximation (DWIA). In

this work, we will mainly deal with the aspects of nuclear
structure of the problem. The relevant nuclear structure
information will be derived in terms of the charge ex-
change Hartree-Fock —random phase approximation
(HF-RPA) framework. The cross sections will be calcu-
lated using transition densities derived both in the sum-
rule method and, directly, from the RPA Careen's func-
tion. The latter is equivalent to a calculation of the cross
section in which the response of the nucleus to the pionic
probe, namely the product of the incoming and outgoing
pions distorted wave functions and the pion-nucleon t ma-
trix, is evaluated. This method will enable us to obtain
the double differential cross section as a function of the
nuclear excitation energy. The calculated double differen-
tial cross sections can be directly compared with the type
of data obtained in experiment.

We should stress here the general nature of the methods
mentioned above. These can be applied to charge ex-
change reactions involving nucleons, light ions, and other
kinds of mesons, such as kaons.

II. THE PION DWIA

The most commonly used approach to describe pion
single charge-exchange reactions is the DWIA. In this
approximation, one assumes that the charge-exchange pro-
cess between the initial and final nuclear states occurs
only once during the multiple scattering sequence. The
pion initial and final wave functions are distorted by the
elastic pion nucleus optical potential, derived from the ele-
mentary pion-nucleon t matrix.

Let
i
0) denote the nuclear ground state, and

i n& ) the
state excited in a charge-exchange reaction involving
ATz ——p =+1. The DWIA transition amplitude between
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the states
I
0&,

I n„& is proportional to

T —&n I
d rd r'X' '*(E', r')n O

—np

X gt(r, r ', r;)X'+'(E, r)
I

O& (p=+1),

V~, (Fr ) —(0'gt(r, r', r;) 0) .
i=1

(2.2)

The pion-nucleon t matrix can be generally written as the
following:

(2.3)

(2.1)

where X'+'(E, r) and X' '(E', r ') are the incoming and
outgoing pion distorted waves, respectively, and t ( r, r, r; )

is the pion-nucleon tt matrix. The distorted waves are cal-
culated by solving the Klein-Gordon equation with an op-
tical potential, V,~, . In the lowest order DWIA, this opti-
cal potential is determined as follows:

In Eq. (2.3) r is the nucleon Pauli isospin and I is the
pion isospin. Both quantities t„t„enter in the calculation
of V,„„but, for charge-exchange reactions, only t, enters
into the transition amplitude. General arguments lead to
the following expressions for t„t, in the momentum
space:

St, (k, k ')=ai+a2k k ' —u3(k —k ')

+o.'k +o.'k

t„(k,k')=ui+a2k k' —a3(k —k')

+a'k +u"k

(2.4)

(2.5)

where k, k ' are the incoming and outgoing pions momen-
ta, respectively, and the coefficients a';, a," (i =1, . . . , 5)
are functions of the pion-nucleon phase shifts. It has been
shown that the above-mentioned forms for t„t, give rise
to a (lowest order) optical potential which depends on the
isoscalar and isovector nuclear ground state densities. For
the non-spin-flip pion charge-exchange transition ampli-
tude, one can derive' the following expression:

T„o-Jd'r X' '*(E', r)[y~p„(r)+y2[V' 'p„(r) j+yPp (r)&+y4&'p„(r) JX'+'(E, r) (2.6)

where the isovector transition density p„(r ) is defined as

follows:

p„(r)= n„+5(r —F, )r„(i) 0)i=1
(2.7)

and

1+ (r„+iy) p=+1 .3'

In Eq. (2.6), V acts to the right, 7' acts to the left. The
coefficients y;, i = 1, . . . , 4, depend on the pion-nucleon
phase shifts and on the off-shell model used for the t ma-
trix.

III. NUCLEAR STRUCTURE

A. General considerations

The basic element of the nuclear structure relevant to
any pion single charge exchange theory is the isovector
transition density. Transition densities for isoscalar and
the AT, =O component of isovector electric resonances
were calculated in the past using macroscopic models,
the sum-rule method, ' ' and the microscopic ap-
proaches. '

The transition densities for the b, T, =+1 excitations
should incorporate nuclear structure effects that play a
role in such modes: the violation of charge independence,
due to the Coulomb interaction, Pauli blocking due to the
excess neutrons (in X ~ Z nuclei), different energetics, and
different (escape and spreading) widths in the two final
nuclei reached in the charge-exchange process. We will
obtain the quantity defined in Eq. (2.7), using the HF-
RPA framework.

S~(E)=—Im Tr[QpGq(E)Qp]j, (3.1)

where G„(E) is the particle-hole Green's function at exci-
tation energy E. The precise definitions are the fo11ow-
lng:

B. The nuclear response and the HF-RPA framework

The linear response approach has proved to be a power-
ful tool in the description of giant isoscalar and isovector
electric excitations, ' ' magnetic states, ' and p cap-
ture rates. It has recently been applied in a systematic
study of the charge-exchange components of giant electric
isovector resonances.

Let Q& be a one body operator proportional to r&. The
transition strength of Q& is calculated by examining the
residues at the positive poles of the expression

&o
I @,'(xi W.(x2)

I ~+i &&n+i I
@'(x'i W,«2) IO&

G+)(x),xg, x ),x2,E)=2
E —E—iq

n +1

n ),q —+0+

&OI P'(x'i)g, «2) I
~-i &&n-i I W&(xi W.(xz)

I
o&

E„+E—i g
(3.2)
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where 1t~(x), gz(x) are the creation and annihilation operators of a proton at the point x (x includes spin), @„(x),f„(x)
are analogous operators for a neutron, g=p„—1I'j~, and E„ is the excitation energy of the state

I nz &. We work in a HF
representation. The particle-hole Green s function can be obtained by solving the ladder approximation equation, which
we write schematically as follows:

G„(E)=G„' '(E)—G„' '(&)I (E)G„(E), (3.5)

where G& '(E) is the free particle-hole Green's function and I (E) is the particle-hole interaction. In the HF-RPA self-
consistent framework, this interaction equals the second derivative of the HF energy with respect to one-body densi-
ties, ' ' and the calculations are performed in a complete 1p-Ih space. In Ref. 7 it was shown that the following sum
rules hold in the self-consistent charge-exchange framework, provided Q& is energy independent:

Q I &~-i
I
g-i Io& I' —Q I &~+i I g+i I0& I'=&do

l [Q+i Q —i] I4'o& (NEWSR» (3.6)

XZ„, I &&,
I g, lo& I'+gZ„, I &~+,

I g+, I
0& I'=&go

I [g+„[Hg, ]] I y, & (EWSR), (3.7)
n n+&

where H is the total Hamiltonian and
I Po & is the HF ground state wave function. These Thouless-type sum rules can be

straightforwardly generalized for any one body energy independent operators, P„, Qz, as follows:

g&oIP, In, &&~, Ig, Io& —g&olg, l~, &&~+, IP+, Io&=&%I [P+„g,] I@ (3.8)
n n+1

, &0
I P+i I

"—
& &&"—i I Q —i I

0&+ QE„,&0
I Q —& I "+i && "+|IP+i I

0&=&4'o
I [P+& [H Q —&]] I 0'o& .

(3.9)

C. Transition densities from the sum-rule method where

The starting points of the method are Eqs. (3.8) and
(3.9). For transitions which involve no spin flip, we can
substitute the following:

(3.13)

A

Q„' '= gfL(r »I.M(r" )r~(&». (3.10)
and p'„'(r) is the radial part of the transition density, i.e.,

P„(r)=g Yl~(r)YLM(r;)r„(i) .(L)
" 5(r —r;)

rr;
(3.1 1)

Q„' ' is an operator which excites electric isovector reso-
nances of multipolarity L and P„' '(r ) is the p component
of the corresponding transition density. Assuming that
we deal with spherical nuclei, we obtain from Eq. (3.8),

gR„' ', p'„' (r) —gR„' '
p„'

' (r) =2'(r)[p„(r) —pz(r)],
n+l

(3.12)

&gp I Pq '(r )
I
0& =p„' '(r) YI~(r) . (3.14)

Also, p„(r) and p~(r) are the ground state (HF) density dis-
tributions of neutrons and protons, respectively. It is
worthwhile mentioning that (i) Eq. (3.12) holds also for
the charge-exchange TDA, (ii) the specific form of the
particle-hole interaction is not important for its validity,
and (iii) the only necessary requirement for Eq. (3.12) to
hold is that the 1 -lh space be complete.

Substituting P& ', Q„' ' of Eqs. (3.10) and (3.14) into Eq.
(3.9) we obtain the following:
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QE„R„p„(r)+QE„R„p„(r)= p(r) —— +L(L+1)(I-) (L) A' 1 dfL(1') f, (r)

n
1 n+1

d z dfL«)
)o(z)

dz r dz Z=7

+ &NO ( [~+ I [Vexch Q —1]] I NO&+2Vc(")fI (")[pc(")—pp(r)] (3.15)

V,„,h is the exchange part of the nucleon-nucleon force, V, (r) is the Coulomb potential, and p(r) denotes the HF ground
state density.

We should mention that Eq. (3.15) holds only in the self-consistent RPA framework. Adopting a Skyrme-type two
body force, we can express the second term on the rhs of Eq. (3.15) as follows:

(L ) (L) 1 dfL(~) fL (") d z dfL, (Z)
&Col[~+1 fv-ch Q 11]lko&=~(r)+rz) g(r) —— +L(L+1), — — g(z)r dr r dz r dz

(3.16)

where t), t2 are the coefficients of the velocity-dependent parts of the Skyrme force and

g (r) =4)O„(r)p&(r)+ 2 [p„(r)—pz(r)] (3.17)

Notice that if we multiply Eqs. (3.12) and (3.15) by 1'LM(r)fL(r) YL~(r) and perform an integration over the nuclear
volume, we obtain the non-energy-weighted sum rule (NEWSR) and energy-weighted sum rule (EWSR) of Ref. 7

y g(L) y g(L)

n+1

g(L) +yE S(L) dfL(r) fL(r)+L(L+1), (1+A-+g),

(3.18)

(3.19)
n —1 n+1

where

and the average excitation energy, defined as
g(L)

(L) (3.21)

is the transition strength to the RPA state
l n„& and all

other notations are identical to those of Ref. 7.
After the derivation of Eqs. (3.12), (3.15), and (3.16), the

next step is to apply the closure approximation, i.e., to re-
place the sum over

l nz & by a single term, containing the
total strength S& ', where

(3.20)
n

I

may be applied for the isovector dipole and quadrupole,
where the strengths of all three modes are fairly well con-
centrated. In the case of the monopole the b, T, = —1

component induced by

has two comparable concentrations of strength: the iso-
baric analog resonance (IAR) at the lower energy end and
the isovector monopole at the higher energy end; these are
separated by a rather large energy interval. We can take
this fact into account by explicitly introducing into Eqs.
(3.22) and (3.23) the known transition density and energy
for the IAR, p(r)" ' and E" ' leaving the transition
density for the monopole, p', '(r) to be determined. We
use

' 1/2

We obtain

R' )P','(r) R'+)P'+1(r) =2fL—(r)fP„(r) Pz(r)], —
(IAR)(r) pexcess(r) ~ (3.24)

(3.22)

E','R' 'p' '(r)+E' 'R' 'p' '(r)=rhs of Eq. (3.15),

where p,„„„(r)is the density of the excess neutrons. The
normalization is chosen so that

(3.23)
l & IAR

l g r 1(1)
l
0& l

=2(x —z) . (3.25)

where R&
' ——S& '. The quantities p'+)'(r) are obtained by

solving Eqs. (3.22) and (3.23). [The procedure described in
Eqs. (3.10)—(3.22) can be carried out also for spin-flip
transitions. ] We remark that the closure approximation

For the energy E" ' we use the experimental Coulomb
displacement energy. ' The transition densities derived
from the sum rules, with
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r 1=0
fL.(r) = r.L () ~ (3.26)

turn out to be the following:
For the charge-exchange monopole,

(M)( )
2A

3 ( )
dp(r) dg (r) 2r [p„(r)—p~(r)][ V, (r) pE'

&
—]—2r,„, ,p,„, ,ir)(E((+R)—)ME(M) )

dr g (M) (E(M) E()if)
)

where S„' ' is the transition strength of the monopole, R„' ' =S„' ', and

1
rexcess d 1 r pexcess(r) .

N —Z

For the charge exchange -dipole,

fi dp(r) —T(t(+t2) +2r[p„(r)—p~(r)][V, (r) pE „]-dg (r)
m dr dr

g(1)(E()) +E(() )p —1 +1

For the charge-exchange quadrupole,

r —(t, +t2)r +2r [p„(r)—p~(r)][V, (r) pE z]—2A' dp(r) dg (r) 2 (2)

(2) m dr dr
PI (r)= g(2)(E(2) +E(2) )p —1 +1

(3.27)

(3.28)

(3.29)

(3.30)

The first term in the numerator on the rhs of Eqs. (3.27),
(3.29), and (3.30) (which we will refer to as the
Tassie term) represents the contribution of the kinetic en-
ergy of the nuclear Hamiltonian to the double commuta-
tor, and it is identical in its shape with the transition den-
sity for isoscalar excitations deduced from nuclear collec-
tive models, or from the classical oscillator sum rule.
The term proportional to (t)+t2) comes from the ex-
change part of the nucleon-nucleon force, and we will
refer to it as the exchange term. The third term in Eqs.
(3.27), (3.29), and (3.30) is responsible for the difference in
the shapes of the transition densities for the p = —1 and
@=+I modes. (In N =Z nuclei, this term is a direct
consequence of the violation of charge independence as
probed by an isovector operator. ) The term proportional
to p„(r) p~(r) in Eqs. (—3.29) and (3.30) will be referred to
as the symmetry term. In the monopole case, the symme-
try term will include also the term proportional to
p,„„„(r),which is a result of the subtraction of the IAR.

where [see Eq. (3.11)]

(~)
~ 5(r —r )U„'~)(r)= g '

I;M(r()r„(i) .
re

(3.31)

(3.32)

The sign of p'„'(r) cannot be determined from Eq. (3.31),

D. Microscopic transition densities

The transition density p'„'(r) can be calculated in the
linear response approach using the following formula:

' 1/2

p„(r)=+ —Im Tr[Up ' (r)G~(E„)U~ '(r)] .

but it may be guessed by using
2

1&nI I QI I0&'= Jd'r Q) '(r)p' '(r)I'tM(r)

(3.33)

[see Eq. (3.10)], and also, by assuming that it resembles
the shape of a phenomenologically derived p'„'(r). In or-

der to avoid the ambiguities and the difficulties in deter-
mining the sign of p„' (r) in Eq. (3.31), we use the follow-

ing alternative approach: the transition density is ob-
tained from the off-diagonal response, rather than from
the diagonal one, as in Eq. (3.31). The formula is

(~) (0
~

Q' '
~ n~ &(n~

~
Up '(r)

) 0&(L)( )

ImTr[Q„' ' G„—(E„)U„' '(r)]
(3.34)

y (L)

where R„' ' was defined in Eq. (3.13). The sign of p'„'(r)
as calculated from Eq. (3.34) is no longer arbitrary; also,
the normalization, Eq. (3.33), follows automatically.

IV. RESULTS FOR STRENGTHS
AND TRANSITION DENSITIES

A. RPA results

The HF basis is obtained by using the Skyrme III
force. The RPA equation (3.5) is solved in the r-
coordinate space, ' and the linear response to the one body
operator Q&

' can be evaluated by
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TABLE I. Properties of the ground states of the calculated nuclei.

Nucleus Isospin
~n

(neutrons) (charge)

runs radii {fm)
I p

(protons)

40Ca
48C

~Ni
907r
120Sn

140Ce

208pb

0
4
2
5

10
12
22

3.36
3.60
3.79
4.31
4.76
4.98
5.65

3.41
3.47
3.77
4.26
4.65
4.89
5.53

3.50
3.56
3.85
4.34
4.72
4.96
5.58

3.39
3.54
3.78
4.29
4.71
4 94
5.60

4.10
4.28
4.90
5.15
5.42
6.10

S„' ' =—Im r v' fl (r)G„(v,v', E„)fL(r')dv dr'
IJ

(4.1)

[see also, Eq. (3.1)]. The lp-lh continuum is taken into
account using the method of Ref. 32, and, consequently,
the calculations will render particle escape widths. The
spreading widths are not treated in our framework; how-
ever, they are expected to be of the order of 2—4 MeV. 3

The inclusion of spreading widths into the calculations
should not very much affect our results.

In Table I details are shown about the ground states of
the calculated nuclei. For Ca, r„&r ~ due to the
Coulomb polarization. ' ' ' This effect is counterbal-
anced in the other nuclei, by the excess neutrons.

In Tables II—IV the calculated RPA strengths and
average excitation energies [see Eqs. (3.20) and (3.21)] for
the charge-exchange components of the monopole, dipole,
and quadrupole are given. The operators for these excita-
tions are defined in Eq. (3.26). The NEWSR and EWSR
of Eqs. (3.18) and (3.19), respectively, are exhausted up to
83—95% for all the nuclei treated, except Ca. In this
nucleus, we focus our attention on rather subtle effects,
and hence, numerical accuracy is crucial. We used a final
spacial mesh to solve the RPA equations for Ca, and the
sum rules are exhausted up to 95—100%. The differences
in S& ', @=+1,for l. =0, 1, and 2 in Ca are a conse-
quence of the Coulomb polarization effect in the parent
nucleus ground state, as may be seen from the NEWSR.
In the other nuclei, S'+~ &S'

&
for I, = 1,2 because the ex-

cess neutrons: (i) contribute to the b, T, = —1 transitions
and (ii) exclude some of the AT, = + 1 type configurations
(Pauli blocking). This blocking effect is most pronounced
for the charge-exchange dipole in the heavier nuclei. With

respect to the 0+ case, part of the excess neutron transi-
tion strength goes to the IAR, and it may happen (in Zr,
for example) that S'+ ~' & S' &'.

In Ca, the average excitation energies for a given mul-
tipolarity are separated by about twice the Coulomb dis-
placement energy, and in the other nuclei, this separation
is reduced by the symmetry energy.

As representative examples, we show in Figs. 1 and 2
the calculated distributions of strength for Ca and Pb.
More details about the RPA results can be found in Ref.
7.

B. Results for transition densities:
The sum-rule approach

The radial parts of the transition densities are calculat-
ed from Eqs. (3.27)—(3.29), by using the Skyrme III HF
ground state densities and the RPA results of Tables
II—IV. As examples, we show in Figs. 3—8 the results ob-
tained for the I.=0, 1, and 2 charge-exchange transitions
in Ca and Pb. The total transition density for each
mode, represented by a continuous line, is the sum of the
three terms discussed in Sec. III C.

We observe that the calculated transition densities differ
in their shapes from the Tassie term. This is due to the
exchange and symmetry terms. In X =Z nuclei the sym-
metry term contributes little to the total transition density;
its effect is mainly felt at the tail of the transition density.
However, it is this term that accounts for the Coulomb
polarization in the parent nucleus ground state. For nu-
clei which possess large values of X—Z, the situation is
different: the symmetry term contributes substantially to
the transition density. Finally, we observe that the transi-

TABLE II. RPA results for the total transition strengths and
average excitation energies of the charge-exchange monopole.

g(M) E(M) g(M) E(M)
+1 +1 —1 —1

Nucleus (fm ) (MeV) (fm ) (MeV) (MeV)Nucleus

TABLE III. RPA results for the total transition strengths
and average excitation energies of the charge-exchange dipole.

5+1(1) (1) S(1)

(fm ) (MeV) (fm )

Ca
48C

"Zr
120Sn

'40Ce
208pb

127.3
105.7
127.7
400.0
431.7
590.2

1026.6

26.0
33.0
25.9
22.9
22.4
21.8
16.3

88.9
155.9
204.0
377.0
859.4
959.6

1997.4

42.6
38.7
41.4
42.3
39.6
42.8
43.5

Ca
'Ca

~Ni
"Zr
120Sn

140Ce

208pb

13.1
6.0

12.0
17.6
10.2
4.5
2.3

13.0
17.4
11.9
8.2
6.5
8.0
6.9

12.0
24.2
23.6
44.8
84.2

105.1
204.0

27.8
23.4
26.2
26.4
25.6
26.6
28.1
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Nucleus
S+1(2)

{fm )

(2)

{MeV) (fm4) (MeV)

TABLE IV. RPA results for the total transition strengths
and average excitation energies of the charge-exchange quadru-
pole.

tion densities for the Pauli blocked p=+1 modes in
heavy nuclei have more than one node. This is not
surprising. For example, one would expect the transition
density for the 1, @=+1 excitation in Pb to have
nodes, since this excitation is due to 3%co 1p-1h configura-
tions.

40C

48Ca

~xi
"Zr
120Sn

140Ce

208Pb

292.9
217.3
459.7
832.9

1009.1
1120.2
1532.6

25.1

29.9
23.8
19.6
18.0
17.6
12.1

256.2
526.0
658.0

1431.8
3202.6
4012.0
9636.2

40.1

34.2
35.9
36.6
33 ~ 8
35.7
36.1

C. Results for transition densities:
The microscopic approach

The transition density for an excited state
~

n& ) at ener-

gy E„ is directly evaluated with the RPA Green's func-

tion, Gz(r, r', E„),in r-coordinate space, as follows:
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PO 40
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IO 20 40

Energy ( MeV) Fnergy (MeV)

-S(E)
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IO 20 50 60

Energy (MeV)

FIG. 1. Distributions of strength for the hT, =+1 components of the (a) monopole, (b) dipole, and (c) quadrupole in Ca.
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FIG. 2. Distributions of strength for the hT, =+1 components of the (a) monopole, (b) dipole, and (c) quadrupole in pb.

—Im J r' fL(r')G&(r', r,E )dr'
7T

—Im Jr' r" fi"(r')Gz(r', r",E„)fi(r")dr'dr"
1/2

where f'I (r) is given in Eq. (3.26).
%'e will discuss in detail the AT, =+1 components of

the dipole in Ca. This case is interesting because the
peaks are quite well separated, and it is possible to attach
some physical meaning to each of them. The transition
densities for the three main peaks are shown in Fig. 9.
The peak at the lower energy end in both the AT, =+1
and 6T, = —1 modes represents a volume transition,
while the other two have the characteristics of a surface

transition. Of course, the 6T, = + 1 transition density
and its analogous AT, = —1 density differ little; we at-
tribute this difference to the Coulomb polarization in the
parent nucleus ground state as well as in the final (excited)
state.

In Figs. 10—14 the transition densities for the strongest
peaks in the strength distributions of the charge-exchange
monopole and quadrupole of Ca, and monopole, dipole,
and quadrupole of Pb are shown. These transition den-
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FIG. 12. The transition densities for the strongest peaks of
the monopole strength in Pb, from the microscopic approach.
The continuous (dashed) line represents the transition density for
the strongest peak of the hT, = + 1 (AT, = —1) mode.

tions to various fragments of the giant states are averaged
out.

V. RESULTS OI' 0%'IA CALCULATIONS
OF PION CHARGE-EXCHANGE REACTIONS

FIG. 14. The transition densities for the strongest peaks of
the quadrupole strength in Pb, from the microscopic ap-
proach. The continuous (dashed) line represents the transition
density for the strongest peak of the AT, = + 1 (hT, = —1)
mode.
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FICr. 13. The transition densities for the strongest peaks of
the dipole strength in Pb, from the microscopic approach.
The continuous {dashed) line represents the transition density for
the strongest peak of the hT, = + 1 (hT, = —1) mode.

Most of the experimental data on pion charge-exchange
reactions exciting giant resonances were obtained at
T + =165 MeV. The absorption of the pions around the

(3,3) resonance is very strong, and hence, this charge-
exchange reaction is sensitive to the nuclear surface only.
As we deal with the excitation of giant multipole reso-
nances of the electric type, the appearance of the r factor
(L is the multipolarity, and L =2 in the case of the mono-
pole) in the transition operator leads to the amplification

of the effects in the outside region of the nucleus. There-
fore, in pion charge-exchange reactions in the (3,3) reso-
nance region, one can shed light on such nuclear structure
effects as Coulomb polarization and the role of the excess
neutrons.

Correspondingly, our calculations were performed with
T + = 165 MeV. We used the code Dwpr (Ref. 37) modi-

fied as follows: (i) external transition densities were read
in and renormalized to a given strength, (ii) the coeffi-
cients of the optical potential were generated internally us-

ing pion-nucleon phase shifts from Ref. 38, (iii) HF
ground state densities were used in the optical potential.
The optical potential employed to distort the pionic wave
functions was of the modified Kisslinger39 form.

The results include the calculation of the cross sections
using the following transition densities:

Method /: The Tassie (macroscopic) transition density, 9

normalized to the classical oscillator EWSR.
Method 2: The Tassie transition density, normalized to

the calculated total RPA strength, S„' ' of the correspond-
mg mode.

Method 3: The transition density calculated within the
sum-rule method (see Sec. III 8).

Method 4: The transition density calculated within the
microscopic approach (see Sec. III C).

For methods 1—3 the excitation energies used were
those given in Tables II—IV. Methods 1 and 2 are intro-
duced in order to facilitate the understanding, through
comparison, of the sensitivity of (m

+—,~ ) cross sections to
nuclear structure details. The nuclear structure input of
method 1 contains no specific information on the nuclear
response relevant to the charge-exchange process, apart
from the excitation energy. The corresponding results can
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tell us mainly about the differences in the cross sections
due to the differing distortions in the incoming m. —and
the outgoing m, and differing Q values. In method 2,
some information concerning the charge-exchange process
is introduced in the transition densities, through the RPA
strength. In methods 3 and 4 information pertaining to
the charge-exchange process and to the particular features
of the initial and final states is taken into account, as al-
ready described in Secs. IIIB and IIIC. Method 4 was

used for the monopole and dipole of Ca, Zr, ' Sn, and
Pb. For all other cases, in order to save computing

time, we adopted the following procedure: for each peak
in the RPA strength distribution, the cross sections were
calculated using the average nuclear excitation energy and
the average transition density for that peak. The results
for each peak were afterwards summed to obtain the total
angle-differential and the total angle-integrated cross sec-
tions. Tests showed that the results for each distribution
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FIG. 15. The angle-differential cross sections for the (~,m ) reaction (continuous lines) and the (m+, m ) reaction (dashed lines)
exciting (a) the monopole, (b) the dipole, and (c) the quadrupole in ' Sn. The results were obtained with method 3. The available ex-
perimental results are also shown.
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TABLE V. The cross sections at 0= 1 of the (m —,m0) reactions exciting the isovector monopole (in pb/sr).

Nucleus
Method 1

(m, m' ) (ll+, 7T )

Method 2
(7T,m' ) (77+,7T )

Method 3
(m-, m') (re+, ~')

Method 4
(~+,~0)

40ca
48Ca

"-'Zr
120Sn

140Ce

208Pb

588
562
634
726
780
793
803

499
638
574
677
758
734
752

1143
699
874

1013
660
679
550

678
1171
898
891

1277
1022
1001

1183
582
865
725
470
435
235

846
1333
904

1088
1238
1087
1155

1352
672
966

1109
710
844
562

889
837

1136
1285
2094
1615
2026

obtained by this procedure deviate by no more than 5%
from results obtained in the detailed microscopic calcula-
tions.

In the framework of the response function theory, one
can look upon method 4 as equivalent to a direct calcula-
tion of the nuclear response to an external perturbation,
which can be represented by the operator

r r'g' '* E', r' t r, r', r; X'+' Er

A. Angular distributions

The angular distributions for each multipolarity, calcu-
lated within the four methods, have quite similar shapes.
The distributions are of diffractive nature, as expected
from the absorptive behavior of the charge-exchange pro-
cess around the (3,3) resonance. In the limit of the strong
absorption model '"' the angular distributions for L=0, 1

transitions are proportional to J~(qjR), where JI is the
Bessel function of order L, qz is the transverse component
of the momentum transfer on the incoming pion direction,
and R is a kind of effective nuclear radius, ' while 1.=2
transitions are described by a combination of Jo(q&R) and
Jq(qqR).

The calculated angular distributions for the charge-
exchange components of the monopole attain their peak
values for 8=0', then sharply decrease as 8 increases. The
distributions for the dipole transitions reach their maxima
at angles which closely correspond to the angle at the
maximum of J~ (q&R ). The 2+ angular distributions ex-
hibit two maxima: the first is at 0=0' and the second
one, larger in its magnitude than the first, at 8=+' jR (ap-

proximately corresponding to the maximum of J2). As
examples, in Fig. 15 are shown the angular distributions
for the charge-exchange reactions exciting the monopole,
dipole, and quadrupole in ' Sn. The results were ob-
tained with method 3. %'e remark that the AT, = + 1 an-
gular distributions are flatter than those of the AT, = —1

mode corresponding to the same multipolarity. This is, of
course, due to the differences in the magnitudes of the
cross sections, which will be discussed below. Note, in
particular, that the angular distribution of the hT, =+1
quadrupole is quite flat for 0' & 0 & 30 .

B. Cross sections

Tables V—VII give the calculated angle-differential
cross sections for the excitation of the electric monopole,
dipole, and quadrupole, respectively, for all the nuclei we
treat. For the monopole we give the cross sections at
8=1' (which is close to the 8=0 maximum), for the di-
pole we list the cross sections at maximum, and for the
quadrupole, the values of the cross sections at 8=1' (close
to the 8=0 maximum) and at the second maximum are
tabulated.

In method 1, only the differing Q values and the differ-
ing pionic distortions are taken into account. Large
differences in Q values favor the (~,vr ) cross section
over the (rr+, m. ) one, therefore the results obtained with
method 1 satisfy o(m, 7r ) & o(rr+, 7r. ), wher. e o denotes
the angle-differential cross section at maximum. The ex-
ception is Ca, where the average excitation energies
E+~,E'

~ [see Eq. (3.21)] are quite close to each other for
I.=O, 1, and 2 because the symmetry energy is large as
compared to the Coulomb displacement. Thus, in Ca,

TABLE VI. The cross sections at maximum of the (m —,m ) reactions exciting the isovector dipole (in pb/sr).

Nucleus
Method 1

(m , m ) (m.+,m )

Method 2
(m. , m ) (m.+,m )

Method 3
{~+,~ )

Method 4
(m —,H) (~+,m')

Ca
Ca

60Ni

"Zr
120Sn

'40Ce
208pb

712
612
709
680
689
654
633

626
689
657
642
665
655
634

935
289
499
408
163
56
16

754
1312
905
980

1299
1302
1442

846
227
335
375
60
35
14

623
1117
762
691
982
853
779

1154
343
543
576
166
98
36

844
1490
1200
1099
1906
1482
1454
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TABLE VII. The cross sections at 8=1' {the upper value) and at the second maximum (the lower value) of the (m+, mo) reactions
exciting the isovector quadrupole (in pb/sr).

Nucleus
Method 1

(m. , m. ) (m+, m )

Method 2
(~+,~0)

Method 3
(~-,~') (~+,~')

Method 4
(~+,H)

311
452

263
372

447
649

330
467

349
476

493
728

Ca 287
396

320
425

220
303

592
786

215
305

626
807

242
346

335
439

307
392

353
463

508
564

348
453

488
603

551
721

357
441

323
388

309
381

480
577

349
432

520
607

447
590

580
706

Sn
378
459

371
429

224
272

697
806

151
211

792
900

240
297

1085
1334

140Ce 352
425

341
370

171
206

592
643

152
193

669
751

182
221

710
791

208Pb 380
444

358
391

116
136

687
750

69
104

732
781

86
98

810
905

the pionic distortions effect overcomes the Q-value effect.
In method 2, the transition strengths [Eq. (3.20)] are

also introduced, in addition to the eFfects already taken
into account in method 1. For N ~Z nuclei, the excess
neutrons are responsible for the fact that the strength in
the AT, = —1 mode is larger than that in the AT, =+1
mode. Therefore, one should expect that the cross sec-
tions, as calculated with method 2, obey o (rr, ~ )

& o(m+, m ), even though the Q-value effect favors
o(m+, m. ). In Ca, where X =Z, the cross sections calcu-
lated with method 2 obey cr(vr, m ) &cr(rr+, rr ) due to the
following two reasons: (i) the above mentioned Q-value
effect, and (ii) the Coulomb polarization effect.

In the realistic calculations, performed with methods 3
and 4, in addition to the factors discussed in relation to
methods 1 and 2, the particular shapes of the transition
densities in the two AT, = + 1 and AT, = —1 modes also
have an effect on the values of the resulting cross sections.
In method 4, the Q-value effects and the changes occur-
ring in the transition densities, as one goes to different nu-
clear excitations energies, are taken into account. There-
fore, it is not surprising that the absolute values of the
cross sections calculated with methods 3 and 4 differ con-
siderably. However, the ratios of the cross sections for the
two charge exchange components (AT, =+1) of the same
multipolarity, as calculated in both method 3 and method
4, are in reasonable agreement with each other.

As shown in Secs. IIIB and IIIC, the shapes of the
transition densities calculated within the sum-rule method
and the microscopic approach are affected by the differ-
ences in the neutron and proton densities, resulting from
the Coulomb polarization of the core protons, and by the
distribution of the excess neutrons. As explained at the

beginning of this section, one expects these effects to be
amplified in pion charge exchange reactions around the
(3,3) resonance. Therefore, the cross sections calculated
with methods 3 and 4 should reflect this kind of amplifi-
cation. For example, calculations with methods 3 and 4
yield for cr(vr, m )/o(sr+, m ) for the charge-exchange di-
pole in " Ca the values 1.36 and 1.37, respectively. This
ratio is significantly larger than the value obtained due to
the Q value and distortion effects (method 1) only,

cr(vr, m)/o(m+, m )=. 1.14,
and larger than the value obtained with method 2,

o(m, ~ )/cr(~+, vr ) =1.24 .

In Ca, the Coulomb polarization effect results in
cr(~,~ ) & o(n+„m ) also 'for L=0, 2 with both methods
3 and 4. For the X & Z nuclei, the excess neutrons, which
cause the AT, = —1 mode transition densities to extend
farther away from the nuclear surface than those of the
b T, =+1 mode, favor the (m. +,m. ) cross section over the
(rr, m ) one. Note that, for the monopole of Zr, the
cross sections of the two components are close to each
other although 2V —Z=10 for this nucleus: the effect of
the excess neutrons is reduced greatly by the Coulomb po-
larization of the core protons.

We will give more details on the microscopic calcula-
tions with method 4. As opposed to methods 1, 2, and 3,
where only the angle-differential cross section for a single
state is calculated, in method 4 one obtains the double dif-
ferential cross section d o/dQ dE„, where E„ is the ex-

citation energy of the state
~
n„), @=+1. The total

angle-differential cross section is calculated as follows:
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do p~ d o
dQ "o dQdE„

We also introduce the average reaction excitation energy,
e&, defined as

f 0
d dEd"

n

(5.2)

2 g

200 - dQdE

{p.b sr-' MeV-i)

IOO—

20
I I I i i I I

This quantity may be compared with the experimentally
measured average energies. The quantities e&,E& may
differ, sometimes by as much as 4 MeV. For the (~+,n )

reaction exciting the monopole in Zr, the RPA excita-
tion energy is 42.3 MeV (see Table II) and the average re-
action excitation energy is 38.1 MeV. Another example is
the case of the (~,n ) reaction exciting the dipole in

Sn: we obtained E+1——6.5 MeV and @+1——7.9 MeV.
Thhe reason for these differences is provided b th f
that the i

'
e y e act

a e pion-nucleus transition operator, as opposed to
the operators considered in RPA, is energy dependent.
This energy dependence enters in a complicated way
through the pionic distortions and through the pion-
nucleon t matrix.

diff
In Figs. 16—23, we show the calculated d bl-

erential cross sections, at the angles corresponding to

120S d 208
their maxima, for the monopole and dipol f C Z,

n, and Pb. Note that due to the above-mentioned
energy dependence, these distributions differ visibly from
the RPA ones obtained with the multipole operators as
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FIG. 19. The calculated double-differential cross sections, at
the angles corresponding to their maxima, of the (~—+, ~ ) reac-
tions exciting the dipole of Zr. The cross sections are plotted
as a function of the nuclear excitation energy with respect to the
target ground state.

probes (see Figs. 1 and 2 in this work and figures in Ref.
7). Also, the difference in the space dependences of the
multipole operator and the pion-nucleus interaction might
contribute to the changes in the distributions. The widths
of the individual peaks in Figs. 16—23 correspond to par-
ticle escape widths. For example, the monopole transi-
tions in the AT, = —1 channel exhibit a wide peak at the
high energy end with a width ranging from about 10 to 15
MeV. In the AT, = + 1, these widths are lower, because
lower energies correspond to smaller penetrability factors.
The introduction of a relatively small spreading width
will smooth out the fragmentation in the AT, = + 1

mode.

C. Comparison with experiment

Experimental results concerning the observation of the
charge-exchange components of the isovector dipole and
monopole in (m. +—

,m ) reactions became recently avail-
able. ' In Refs. 4 and 5 the authors used incoming pions
with T + = 165 MeV, to study the excitation of giant reso-
nances in a variety of nuclei. The outgoing pion energies
and directions were measured using the Los Alamos
Meson Physics Facility (LAMPF) m spectrometer. The
quantitative analysis was performed under the assumption
that the background was isotropic, and therefore could be
subtracted out. The angular distributions were extracted

FIG. 20. The calculated double-differential cross sections, at
the angles corresponding to their maxima, of the (m —+,a ) reac-
tions exciting the monopole of ' Sn. The cross sections are plot-
ted as a function of the nuclear excitation energy with respect to
the target ground state.

by a least square fit procedure. The orbital angular
momentum transfer was inferred from the measured
angle-differential cross sections by comparing them with
the results of DWIA calculations.

To begin with, we find that the shapes of the angular
distributions, as calculated with methods 1—4, are in satis-
factory agreement with the shapes of experimental ones.
This agreement is exemplified in Fig. 15, where the avail-
able experimental do. /dA are also drawn. Note that the
absolute values of the angular distributions in Fig. 15 are
not normalized to experiment. Therefore, the apparent
discrepancy results mainly from the discrepancy in the ab-
solute value.

We will now discuss the magnitudes of the calculated
cross sections and the average excitation energies, as com-
pared to experiment.

1. The charge exchange dipole

The measured cross sections at maximum in the cross
sections for Ca are the following:

o(n. , m. ) =0.87+0.09 mb/sr,

o(vr, m. ) =0.51+0.05 mb/sr,
and

o(n, n )/o(sr+, m. )=1.69+0.24 .

The results for the absolute values of the cross sections,
obtained with the realistic methods 3 and 4, agree reason-
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FIG. 22. The calculated double-differential cross sections, at
the angles corresponding to their maxima, of the (m —+,~ ) reac-
tions exciting the monopole of Pb. The cross sections are
plotted as a function of the nuclear excitation energy with
respect to the target ground state.
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FIG. 21. The calculated double-differential cross sections, at
the angles corresponding to their maxima, of the (m—+, m ) reac-
tions exciting the dipole of ' Sn. The cross sections are plotted
as a function of the nuclear excitation energy with respect to the
target ground state.
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FIG. 23. The calculated double-differential cross sections, at
the angles corresponding to their maxima, of the (m —,~ ) reac-
tions exciting the dipole of Pb. The cross sections are plotted
as a function of the nuclear excitation energy with respect to the
target ground state.

ably well with experiment. In particular, method 3 yields
cross sections which are very close to the experimental
ones. The theoretical ratio is about 1.4 in methods 3 and
4 while methods 1 and 2 yield for this ratio the values
1.14 and 1.24, respectively. Thus, when Coulomb polari-
zation effects in the initial and final nuclei are taken into
account in a detailed manner, the calculated ratio of the
cross sections at their maxima is closer to experiment.

The b.T, = + 1 component of the isovector dipole in
Zr was observed at an excitation energy of 9.0+0.7

MeV with respect to the target nucleus ground state. The
calculated RPA excitation energy is 8.2 MeV, and the re-
action average energy is e+& ——8.0 MeV. The cross sec-
tions at the maximum obtained with methods 3 and 4 are
in agreement with experiment.

In ' Sn, there is data on both charge exchange com-
ponents of the dipole. The AT, = + 1 component was ob-
served at 7.8+0.85 MeV above the ' Sn target ground
state. The RPA energy is 6.5 MeV, and the average reac-
tion energy is 7.9 MeV. The AT, = —1 component was
reported at 24.1+1.2 MeV. The RPA calculations yield
25.6 MeV, and the reaction average excitation energy is
24.5 MeV. %'e see that DWIA calculations, where the en-
ergy dependence of the operator which excites the dipole
is taken into account, yield results which compare well
with experiment for both the AT, = + 1 and AT, = —1

modes in ' Sn.



The experimentally measured magnitudes of the cross
sections are

o(7r, rr ) =154+32 pb/sr

rr(rr+, rr ) =704+151 pb/sr .

The theoretical magnitudes are

o(rr, rr ) =60 pb/sr (method 3),
=166 pb/sr (method 4),

cr(n+, vr ) =982 pb/sr (method 3)

=1906pb/sr (method 4) .

The calculated ratios a(sr+, m)/cr(vr. , m ) are 16.4 in
method 3 and 11.5 in method 4, while the experimental
value is 4.7. This shows that the influence of the excess
neutrons in the charge-exchange dipole of ' Sn is overes-
timated in our calculations, as compared to experiment.

2. The charge-exchange monopole

The AT, = + 1 component of the isovector monopole
in Zr was observed at 22.8+1.3 MeV. The theoretiml
results are the following: 22.9 MeV in RPA and 21.9
MeV with method 4. The experimental cross section at
the maximum was found to be 891+125 pb/sr. The
theoretical results agree with this value.

In ' Sn, a AT, = + 1 transition of 0+ multipolarity
was observed in the (n, n. ) reaction, at 18.3+0.5 MeV.
The theoretical excitation energies are somewhat larger:
22.4 MeV from RPA calculations, and 23.9 MeV from
method 4. The cross sections calculated with methods 3
and 4 are in good agreement with experiment. In Ref. 5,
the authors also quote a tentative result for the cross sec-
tion of the (m+, vP) reaction exciting the monopole in

Sn. These results lead to a value of o(~,vr )/.
o.(rr+, m. ) which is larger than 1, in disagreement with the
theoretical estimate:

rr(vr, rr )/o(m+, m)=0.37.
in method 3, and 0.34 in method 4.

Preliminary experimental results" indicate that a lower
limit for the ratio o(m, rr )/a(m+, m)for th. e monopo. le.
of Ca is about 2. The theoretical predictions are

rr(rr, rr )/rr(sr+, rr ).=1.40

in method 3 and 1.52 in method 4.

3. The charge-exchange quadrupole

To date, the AT, = + 1 components of the isovector
quadrupole have not been observed. Theoretically,
(m+ ,n.—)reactions exciting the quadrupole have substantial
cross sections (about 30—80% of the monopole cross sec-
tions). For example, the b, T, = + 1 component of the
quadrupole in ' Sn is theoretically found to be at 18.6
MeV, and its forward angle cross section is about one-
third of the monopole one.

The relative flatness of the calculated angular distribu-
tions for the (rr, rr ) reactions [see Fig. 15(c)] suggests
that some of the quadrupole strength might be "hidden"
in the background, and, therefore subtracted out in the ex-
perimental analysis.

VI. SUMMARY

In this work, we presented the results of a systematic
study of pion charge-exchange reactions in which giant
electric isovector resonances are excited. We use the
DWIA framework and we emphasized the nuclear struc-
ture aspects which are probed in these reactions. The
self-consistent HF-RPA framework was employed and
distributions of strength, excitation energies, and transi-
tion densities were derived. The cross section calculations
were performed using four methods. The description of
the various relevant aspects of nuclear structure was im-
proved from method to method. We found that the calcu-
lated absolute values of the cross sections and their ratios
are sensitive to details of the nuclear structure.

The theoretical results for the cross sections and aver-
age energies are in reasonable agreement with the available
experimental results. More experimental data, including
the one whose analysis is still in progress, will make the
comparison with theory even more significant.

In conclusion, this work shows that pion charge ex-
change reactions, along with other reactions, are a useful
tool in the study of giant resonances in nuclei. In particu-
lar, because of the three charge states of the pion, we mn
learn about the isovector properties of giant resonances,
such as isospin structure, relative transition strengths of
the various charge exchange components, and shapes of
the transition densities and their relation to the isovector
part of the ground state density.
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