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Charge-symmetry analysis of elastic n- +d-scattering below the 33 resonance
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It is shown that elastic md differential cross sections from 47.5 MeV up to 116 MeV are quite well
described by the impulse approximation theory in its form-factor formulation. This theory is used
to derive a theoretical expression for the charge asymmetry A, valid for T & 100 MeV, which in-
cludes the effects of Coulomb distortion, 6- and target-baryon mass differences, and internal
Coulomb corrections. The theoretically predicted A is found to be in reasonable agreement with the
only existing data for A below 100 MeV at T =65 MeV.

NUCLEAR REACTIONS H(m —,m —), T =65 MeV; impulse approximation
theory; charge-asymmetry A; (6++,6 ) mass difference; Coulomb distortion, '

internal Coulomb correction.

It is, of course, well known that one of the consequences
of the charge symmetry of the m-nucleon interaction is the
equality of the m. +d and m d elastic cross sections apart
from Coulomb effects. With the advent of high intensity
pion beams together with the refinement in experimental
techniques and accuracy for pion laboratory energies( 140 MeV (we especially allude here to the availability of
both m+d and m d data at the same energy), the experi-
mental study of the n +d system h—as naturally turned to
the examination of the consistency of the data with simply
Coulomb-corrected charge symmetric theory. ' This com-
parison constitutes a very sensitive test of nuclear charge
symmetry, particularly in the case of the differential cross
sections, and is customarily ' made in terms of the charge
asymmetry A defined by

(do./d0) —(do /d0)
(do/dQ) +(do/dQ, )

While it has been pointed out previously' that the
intermediate-energy md system is very well suited for test-
ing charge symmetry, we want to emphasize here the op-
timal character of the pionic kinetic energy region (100
MeV for such analyses from the point of view of theory.
Because of the success of the three-body approach to n.d
interactions, including the elastic channel, it may not be
so well known that the experimental data from 47.5 MeV
(Refs. 6 and 7) up to 116 MeV (Refs. 3 and 8) are still well
described by the "old" impulse approximation (IA) theory
To set the stage for the charge symmetry calculations in
that older framework which ensue, we first summarize the
status and the use which we have made of that earlier (and
surprisingly efficacious) theory here. Briefly, the exten-
sive numerical study of the single-scattering contribution
[which is expected to dominate the pion-nucleus interac-
tion at low energy (TL ( 100 MeV), where the n.N interac-
tion is rather weak] to the elastic m+d cross section in the
25—100 MeV region of McMillan and Landau (which ex-
amines effects owing to the presence of the D-state corn-

ponent of the deuteron wave function, to the internal
motion of the target nucleons, and to uncertainties in the
off-energy-shell pion-nucleon scattering amplitudes and
the pion-nucleon phase shifts) finds that while the deute-
ron cross section is sensitive to the presence of the D-state
wave function component, it is not particularly sensitive
to ambiguities (i.e., differing off-energy-shell functions
and choice of interaction energy) in the off-energy-shell
pion-nucleon amplitudes and indeed, that it is given quite
accurately' by a form-factor approximation. This last
approximation, which may be the most useful formulation
of the theory, requires a choice of the momentum k„of
the struck nucleon at which the ~N T matrices are to be
evaluated. We have adopted Ca.rlson's choice, "'

k„=—4q,

where q is the recoil momentum of the deuteron which
McMillan and Landau find very accurate for all pion
scattering angles through the 25—100 MeV region. In
fact, they conclude that in the above energy and angular
domain, the single scattering approximation to the red
scattering amplitude can, with little error, be written in
terms of essentially on-shell AN amplitudes and deuteron
form-factor integrals.

To make matters simpler, we use the McGee wave func-
tion' (with a 7%%uo D-state probability), which considerably
facilitates numerical (and, indeed, analytical) work, as well
as the energy-dependent phase shifts of Rowe, Salomon,
and Landau' in the present incarnation of the form-
factor approximation. These phase shifts, a convenient
parametrization of the on-shell m.N interaction below 400
MeV, fitting the available S, P, and D wave mN phase
shifts of various groups, reproduce most of the experimen-
tal cross sections well.

The IA expression for the elastic ~+—d differential cross
section is given in the form-factor approximation in the
laboratory by' (cok ~cvk, , where cvk is the initial total
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pion energy in the laboratory and q = kL —k L }

O
8 d kL Ed(q)

dn ( O)
kL[kL (Md+~kL ) kL k Lcok'L]

x[IFs I'+ II'D I'+ 3 I Gs+GD I']

and

30= Jp 2 gP' 9 1' dT

B2 ——f j2( —,
'

qr)u (r)w (r)dr,

Cp ——f jo( —,
'

qr)w (r)dr,

C2 ——f 12( ,' qr)w—(r)dr,
where the S-state radial wave function is given by'

5

u (r) =XMAS.

(12a)

(12b)

(12c)

(12d)

(13)

Fs ——R (
—TL, OL, k,„)f+(K,'„,—K,„;E)Ap(q),

Gs =R ( TI. & OI. , k,„)g ( K ',„,K,„;E)Ao(q)

I+2'I'= [R(TL OL, ka, }]'If'-«4. K4. E) I'

&& I(CO(q)} +4[B2(q)—4 v 2C2(q}] I

GD R ( TL OL kg@)g ( K I&y& Ic&&y E)

X ——,Co(q)+ B2(q)+ —,C2(q)
3 vZ 1

where

(4a)
with

(4b)

(4c)

(S(,a() =(1.0,0.3294),

(S,,a, )=(—0.63608,5.733a, ),
(Ss,a2) = ( —6.6150, 12.844a(),

(S4,a4) = ( 15.2162, 17.331a(),

(S5,aq}=(—8.9651,19.643a(),

N =1.05607(m /Ac)'/

and the D-state radial wave function is given by'

(14)

(ss')'/'
R (TL,OL, k) =

[EN«}EN(k+ q }]'"
EN(k)=(M +k )'

with the customary two-body invariants given by

s =m +M +2[oIk EN(k) kL k], —

s'=m~+M +2[cok, EN(k+q) —k L (k+q)],
L

(5)

(6)

(7)

(8) with

6
w (r) =0.0269%+D;e ' 1+

p;(m r/Pic)

p; (m„r/Pic)

(15)

2t =2(m —cok co„, + kL k L ) .
L

(9)

Note that in the present calculations we have elected to
take E =Vs. The initial and final pion center-of-mass
momenta are given by

K= I [s —(M+m ) ][s —(M —m ) ]/4s I'/
K'=[s' —(M +m ) ][s'—(M m„) ]/4s—'I '/

(D(,P() =(1.0003,0.3294),

(D2,p2) = ( —20.34,4.833a(),

(Ds,p3) =( —36.60, 10.477a, ),
(D4,P4) = ( —123.02, 14.506a ( ),
(D5,P5) =(305.11,16.868a(),

(D6,P6)=( —126. 16,21.154a, ) .

(16)

respectively. It follows trivially from Eq. (8) that One has for the spin-non-flip (f+) and spin-flip (g) tw—o-
body amplitudes,x'v '= —,t +co~„—m

Note that by K,„, K,'„we mean K [s ( k = ——,
'

q )],
K'[s'(k= ——,'q)]. The form factors Ao, B2, Cp, and C2
are

f+ 4f(3/2)+ 2 f(I/2)+f

g g(3f2)+ g(1 f2)

where

(17)

(18)

iS'1}(K )0

sin5I+(Kp)+IcrI '(K', K;Ko)
Kp

and

i5( +} (K0)
f +

f (K, Ic&E)= g (I + 1)0'I+(K &K&Ko)'
1 =0 Kp

sin5I '(Kp) PI (cosO) (19)

iS'I) (K )

g (IC, K;E}=g O'I~(IC &IC;Kp)
p

m('} (K )0

sinn(1+'(Ko) aII-'(K', K;Ko)—
Kp

sin5', '(Ko) PI'(cosO), (20)
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with

(21)KO=K($ =so =E )

We take for the off-shell functions ITI+ (Refs. 9 and 16),

)0~:I —
I I I

I
I I

)
I I

)
I

(I)g +=1,0

crI+(K &Ic&KO) =KK /KO .

(22a)

(22b)

}Q}—

After McMillan and Landau, we write the off-shell modi-
fied point Coulomb amplitude (a = „', ) as

aM(TL +m )

EIIO(1 —cos8)
(23)

I
IQ I I } I I I I

) l I

Theory, which has been so compactly summarized in Eqs.
(2)—(23), and experiment, at 47.5, ' 65, 82, 116, and 142
MeV, (m+), and at 47.5 (preliminary data), 65, and 142
MeV (n. ), are compared in Figs. 1—3. One sees that the
quality of the fits provided by the form-factor approxima-
tion ranges from marginally acceptable (47.5 MeV) (Ref.
17) to very good (82 MeV) beyond 60' in the laboratory.
In this connection it seems appropriate to point out once
again that the inclusion of P-wave pionic absorption leads
to a further improvement in the backward fit' to data
provided by the phase shift input of Rowe et ah. ' This is
illustrated in Figs. 4 and 5 in the case of the 65 MeV (Ir +—

)

Saclay data; for n exchange only (using the McCxee wave
function' ), the theoretical differential cross section
enhanced by the P-wave dispersive contribution' is seen
to agree remarkably well with the experimental data for
backward angles for both sr+ and Ir on d. We conclude
that the IA theory in the form factor appproximation offers
a viable alternative (to the three body theory) -description of

}Go

b

IGo 60 90 )20 )50

8L (deg)
)80

FIG. 2. Same as Fig. 1 at 116 and 142 MeV (Ref. 8).

the data in the pion kinetic energy range &100MeV.
We turn now to the consequences of this theory in its

form-factor approximation for charge symmetry in terms
of the predicted A (8L, ) [Eq. (1)] and to the introduction of
the simple modifications of IA input which enable one to
treat the charge-symmetry-breaking effects on 3 from b, -

isobar and spectator-mass differences and from external
and internal Coulomb corrections.

We take up the external Coulomb correction first.
Here, we follow Pedroni et al. ' in adopting a potential

IQ
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I /
I I 1

I I
I
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FICx. 1. Comparison of elastic m+d differential cross sections
in the form factor version of IA theory with data at 47.5 (Refs.
6 and 7), 65 (Ref. 3), and 82 (Ref. 8) MeV.
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FICx. 3. Same as Fig. 1 for m. d at 47.5 (Ref. 7) and 65 (Ref.
3) MeV.
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CA

1.5—

m+ 65 MeV

in the non-spin-flip (f) and spin-flip (g) m p elastic am-
plitudes,

fm p f (3/2)+f
(25)

~+p (3/2)

1.0—
I

2l [5(3/2+)+(1/3)C33
(26)

in the non-spin-flip (f) and spin-flip (g) vr p elastic am-
plitudes,

I I I I I

fn p I f(3/2)+ 2f(1/2)

50 60 90 120 150 I SO

8L(deg)

FIG. 4. Comparison of 65 MeV ~+ Saclay data (Ref. 3) with
IA prediction [with Coulomb distortion {solid curve)] and with
P-wave dispersive enhancement (Ref. 18) with w exchange only
(dashed curve).

g~ p l g(3/2)+ g(1/2)

Following Zimmermann, ' we make a two-parameter
(A, B) ansatz for the —,

' wave functions' and, neglecting
particle size effects, find the approximate results,

model approach suitable for the low-energy regime. The
correction for Coulomb distortion in the two-body chan-
nels (m—p) entails the substitutions'

2)(g(3/2) +c+ )~[e ' ' —l j]/2iKo (24)

~l
' ll
\

2.5

2.0—
10—
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FIG. 5. Comparsion of 65 MeV ~ Saclay data (Ref. 3) with
IA prediction [with Coulomb distortion (solid curve)] and with
P-wave dispersive enhancement (Ref. 18) with ~ exchange only
(dashed curve).

FIG. 6. Comparison of theoretical predictions of A (OL ) at 65
MeV with Saclay data (Ref. 3): (i) No Coulomb distortion ef-
fects (solid curve); (ii) Coulomb distortion effects in the two-
body channels (m+—p) only according to Ref. 1 (dashed curve);
(iii) Coulomb distortion effects in all two-body channels (both
m —p and ~—n) according to Ref. 1 (dot-dashed curve). Particle
size is neglected.
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r

C33 —+ . (krN) [ —,
'

A + ,
'

A—BkrN+ —,
' 8 (krN) ]+ 2 [ 1 —cos2(533+kPN)]

(2krN )

1
sin2(533+krN)+ —,[y+1n2krN —(krN) ]cos2533

1 2

~N

~ 1 1——+kr N sin2533 ( —1+—,y+ —,in2kr N ) ~, (28)

adequate for our purposes. The effect of the correction
for Coulomb distortion in the case of pionic scattering on
the proton in the deuteron is shown in Fig. 6 (dashed
curve). Note that already at this stage of correction one
finds theory and experiment in good agreement for
8L & 50 . In the case of pionic scattering on the neutron in
the deuteron (m—+n channels), the approach of Ref. 1 fur-
nishes us with an effectiue two-body correction [Eqs.
(5.2a), (5.6), and (5.11) of Ref. 1] in what is essentially a
three-body context. [Here we take' for the effective
charge radius of the neutron r, =—,'Rd, with Rd-2. 0 fm,
where Rd is the deuteron root-mean-square (rms) radius. ]
This additional distortion correction calculated numerical-
ly here leads to quite sizeable effects (see the dot-dashed
curve of Fig. 6).

That the b,-isobar mass difference ' (in particular,
Ma —M&++) might be a significant dynamical mecha-
nism for the generation of charge-symmetry-breaking
effects was recognized and studied some time ago by
Myhrer and Pilkuhn in the case of m

—+d total cross sec-
tions at the 6 resonance. Recently, Rinat and Alexander
have taken up this idea again in their study of elastic m

—d
scattering in the intrinsically off-shell approach of the
three-body method with a view to examining the effect of
such perturbations on the three-body prediction for A at
T~ ——143 MeV where experimental results for the asym-
metry parameter exist. They use (as we do, also) the most
recent data for the electromagnetic mass difference of

the b, and b, ++, M& —Ma++ ——5.9+3.1 MeV. (With
this measurement the accuracy has been improved by a
factor of 2 over previous values. ) The effect of the 6-
isobar mass difference on A (OL ) is easily predicted from
the observation that as

3 (OL )-do /dQI do —/dQI,

the increased mass of the 6 relative to the 6++ implies
a corresponding weakening of ir n scattering in the (dom-
inant) 33 channel vis-a-vis the corresponding two-body
scattering of ir+p, thus moving 2 toward negative values.
(There will be some moderation in this effect when one
takes into account the mass splitting of the target baryons
with M„—M~&0.) The various mass perturbations may
be handled quantitatively in the simple unitarized model
of low-energy 33 scattering made up of the comparable
contributions from the 6 resonance and crossed nucleon
poles, "

i533(ICp)
e sin5s3(ao)

(Ma —M)
3 4m pyz . r

co (Ma —M) —co' —i—(a.o)
2

(29)

80—

70—
where

60—

50—
0)

40—

30—

8 f ao(M& —M)
I (xo)=—

4~ m a)*(ao)
(30)

20—

IO—
co*=co(ao)+E(ao)—M . (31)

500 l00 l50 200
q (Mev)

FIG. 7. Comparison of P(33) phase shift (in degrees) in the
analysis of Rowe et al. (Ref. 14) (solid curve} with the simple
unitarized model including nucleon recoil (see text).
(f /4n =0.084.) Note they are virtually indistinguishable up to
20 deg.

After taking Ma —M =2. 1m~ and "fine-tuning" the cou-
pling to the value, f /4m. =0.084, expression (29) is found
to yield a phase shift nearly indistinguishable from that of
Rowe et ai. ' up to 20'. (Even at 5s&—60, the divergence
between the two fits is only about 10%%uo.) (See Fig. 7.)

Neglecting Coulomb distortion for the moment, one has
the on-shell substitution rule for ~+d elastic scattering,
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i533 i533 .
e stn533~ —,e stn533+

f2 Ice [(Ma++ —Mp )+(M„—Mp )]

(ro +M„M—p) (Ma++ —Mp) —co i—
(32)

where

fz a-3 [(M ++ —Mp)+(M„—Mp)]p++
4~ m (ro*+M„—Mp)

(33)

together with the analogous rule for

i533 ~
fi533

~

e sin533 —+ 4 e sin533+
4m

m d elastic scattering,
3

Ko
2

Nl ~ . I(ro*+M~ —M„) (M& —M„)—ro' i— (34)

where

[(Ma M„)+—(M p M„)]—

3 4m' m (ro*+Mp —M„)
(35)

20

In Fig. 8, we show a plot of A(OL, ) (dot-dashed curve)
which includes both the effects of Coulomb distortion and
of baryon mass differences. Note that the predicted
A (OL ) shows considerable sensitivity to the latter of these

effects for eL )80'. In this angular domain, theory
predicts a smooth variation with OL which is consistent
only in an average sense with the structure exhibited by
the data. On the other hand, we observe that even this
qualitative agreement disappears when one includes the ef-
fects of Coulomb distortion in the (n.+—n} channels accord-
ing to Ref. 1. [See Fig. 9 (solid curve). ] (This may indi-
cate that a larger effectiue neutron charge radius would be
more realistic here. }

We conclude our discussion of perturbations on A (OL )

with an elementary treatment of the internal Coulomb
corrections in terms of the IA formalism. We confine
ourselves to those arising from intermediate states in the

l5—
20

IO-
l5—

A (%)
l0-

A(z)

I I

50 60 90
8 (deg)

I

l20 l50 l80

FIG. 8. Comparison of theoretical predictions of A (OL) at 65
MeV with Saclay data (Ref. 3): (i) Coulomb distortion effects in
the two-body channels (m —p) only according to Ref. 1 (dashed
curve); (ii) Coulomb distortion effects as in (i) together with 6-
mass perturbation (M —M ++ ——5.9 MeV) and spectator

mass-difference perturbation (dot-dashed curve); (iii) Coulomb
distortion effects and mass perturbation [as in (ii)] and internal
CouIomb corrections from a simplified cutoff model (see text) in
the case of m d scattering (solid curve).

I l

50 60 90 I20

8„(deg}

I

l50 l80

FICi. 9. Comparison of theoretical predictions of A (0L ) at 65
MeV with Saclay data (Ref. 3): (i) Coulomb distortion effects in
all two-body channels (both m

+—
p and m+—n) according to Ref. 1

(dashed curve); (ii) Coulomb distortion effects as in (i) together
with 6-mass perturbation and spectator mass-difference pertur-
bation (solid curve).
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~max d qI=
(2') q

2A q,„=1MeV,

for a cutoff of 1 fm '. After making the appropriate

(m n) channel. [Observe that the spectator baryon is neu
tral in the case of the (tr+p) channel. ] These corrections
comprise the attractive (b, p) interaction and the repul-
sive (pp) interaction (from the crossed nucleon pole).
Since the resonance and crossed nucleon pole contribu-
tions to 633 are nearly equal in size at threshold, we expect
the internal Coulomb corrections to nearly cancel in the
loto energ-y region. Quantitatively, the internal Coulomb
correction (for point charges) is characterized by

mass shifts in our model expressions (32) and (33) we see
that the perturbation translates into the small effect
( ( 15%) exhibited in Fig. 8 (solid curve). In short, the ap-
parent discrepancy between theory and experiment noted
earlier persists. It is hoped that with the further acquisi-
tion of elastic m. —+d scattering data at energies below
T = 100 MeV, this puzzle will be resolved.
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