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The "optical background" representation of Kawai, Kerman, and McVoy for the fluctuation am-

plitude is written in an alternate form which has certain advantages in formulating the theory of
doorway states and of multistep compound reactions. We reconsider the doorway state approach of
Feshbach, Kerman, and Lemmer using the present representation of the fluctuation amplitude. Fi-
nally, we use the present representation of the fluctuation amplitude for developing a theory of mul-

tistep compound reactions following the idea of chaining due to Feshbach, Kerman, and Koonin.
The advantages of the present approach are emphasized in both the cases.

'NUCLEAR REACTIONS Optical background representation of the fluctuation
amplitude, doorways, preequilibrium reactions, multistep compound reactions.

I. INTRODUCTION

The original idea of Bohr, commonly known as the in-
dependent hypothesis, ' together with the subsequent eva-
poration model by Weisskopf is a well understood and
successful formalism for explaining various aspects of
compound nuclear processes. Similarly, the mechanism of
direct nuclear reactions is also now well understood. But
the reactions which are neither purely direct nor purely
compound still lack a satisfactory dynamical theory. The
aim of the present paper is to improve the understanding
of the mechanism of such reactions through a satisfactory
dynamical theory. Such reactions include, for example,
preequilibrium reactions and heavy ion deep inelastic col-
lisions.

Feshbach, Kerman, and Koonin (FKK) recently
developed a dynamical theory for such processes. They
generalized the doorway state approach of Feshbach, Ker-
man, and Lemmer ' (FKL) to the case where a hierarchy
of doorways are present. They proposed the chaining hy-
pothesis where they assumed that the reaction proceeds to
the most complicated compound nuclear states through
different stages of increasing complexity and transition to
the final state is allowed at any of the intermediate stages
including the most complicated stage. FKK worked with
the optical background representation of the scattering
amplitude first introduced by Kawai, Kerman, and
McVoy (KKM) and applied the chaining hypothesis. By
so doing they developed a statistical theory for multistep
compound and direct reactions. They broke up both the
direct and Auctuation cross sections into multistep
components —the successive components involving an in-
termediate stage of increasing complexity. This idea of di-
viding the cross section into its multistep components was
first used by griffin in his exciton model. Since then, be-
fore and after the work by FKK various workers' have
divided the cross section into multistep components and
experimental results have supported this idea. "'

The elegant formulation of FKK defines the direct and
fluctuation amplitudes using the approach of KKM. This
introduces two problems into the formalism. First, the
chaining condition which FKK introduces is merely a hy-

pothesis imposed from outside, though their dynamical
formulation violates it. A part of this violation is physical
in origin, another part is a mathematical artifact of the
special version of the optical background representation
they use. FKK divide the closed (open) channel space Q
(P) into a hierarchy of orthogonal spaces Q„(P„),
n =1,2, . . .,r, where the excitations of the nth stage is
more complex than those of the (n —1)th stage. Then
they assume that the residual interaction can induce tran-
sition from the nth stage only to the (n+ 1)th stages. That
means the spaces Q„and P„are related by the residual in-
teraction to Q„+, and P„+~ spaces. Hence, physically,
chaining hypothesis must be broken for the time evolution
of the system in the Q space. For example, instead of
passing from the Q„space to the Q„+~ space, the system
may first pass to the P„+j space and then propagate to the
P space through the P space and then pass to the Q
space. Sevgen' pointed out that such a violation of the
chaining hypothesis must occur and found out the modifi-
cations necessary in order to incorporate such processes.
We call such a violation of the chaining hypothesis physi-
cal. However, at extreme low energies where the elastic
channel is the only open channel whose projection is
denoted by Po in FKK one has P =0 and physical viola-
tions of the Q space chaining through the P space is not
allowed. Even in this limit the chaining condition is not
exact in the FKK approach. Second, the optical back-
ground representation of KKM has the nice property that
the fluctuation amplitudes average to zero without requir-
ing the property of statistical fluctuation of the form fac-
tors of certain transitions. It mould be nice to maintain
this property while defining multistep components of the
fluctuation amplitudes. The multistep components of
FKK do not satisfy this property and use the property of
statistical fluctuation of certain form factors. It is the
purpose of the present paper to remedy the above two lim-
itations of the FKK approach.

We provide an alternative derivation of the KKM opti-
cal background representation and write the final result in
a form which has certain advantages in defining the mul-
tistep fluctuation components. First, the unphysical viola-
tions of the chaining condition are eliminated, i.e., in the
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extreme low energy limit (P—+0) the chaining condition
becomes exact. Second, the multistep fluctuation ampli-
tudes defined from this representation average to zero
without needing the property of statistical Auctuation of
the form factors.

Using the present representations we derive the mul-
tistep compound cross sections in the general case where
the chaining condition is not valid. Sevgen' considered
this problem assuming that the system enters the Q space
always through the stage Q~. We do not see any justifica-
tion for imposing this constraint when the chaining condi-
tion is removed, since, physically, the system can propa-
gate in the P space until it reaches the stage n and then it
can pass to the Q„+~ space. We show how this possibility
can be accommodated to the considerations of Sevgen'
using the present form of the optical background represen-
tation.

In Sec. II we derive the alternate representation for the
optical background representation and show its
equivalence to the KKM representation. As a warmup to
the discussion of multistep compound reactions, in Sec. III
we discuss the doorway state formulation of FKL using
the present and the usual optical background representa-
tions and show the advantages of the present approach. In
Sec. IV we define the multistep Auctuation components
using the present form of the optical background represen-
tation. In Sec. V we show how the chaining condition is
restored in the low energy limit where the elastic channel
is the only open channel. Finally, in Sec. VI we present a
brief summary.

the last term in (2.1) is not zero. This problem can be easi-
ly avoided by defining

where
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where, as in ICICM, ( )I denotes averaging over an energy
interval I. As in KKM we use the Lorentzian averaging
function which yields

( +gg )I Q[E HQQ HQPGPPHPQ+ i(I/2)] 'Q

(2.7)

Insofar as ( 9'«)I is unchanged by reaveraging the ener-

gy average of fluctuation amplitude Tfl is zero, ( Tfl )I -=0.
Hence, with the separation given by (2.4) the compound-
direct interference is eliminated in the average cross sec-
tion. Using the following iterative series for ( Sgg )I,

& &gg &I = & Ggg &r + & Ggg &IHGPPH & Ggg &I +
(2.8)

II. THE OPTICAL BACKGROUND REPRESENTATION

For the sake of simplicity we consider the problem of
elastic scattering of two nuclei. Following Feshbach' we
separate the transition amplitude into its slowly and rapid-
ly varying components as follows:

(G ),=Q[E H+ '(I—/2)] 'Q, (2.9)

in Eq. (2.5) and rearranging terms it is not difficult to see
that T,p can be written in the form of the first term on the
right-hand side of Eq. (2.1):

T= (P
~

( V+ VGpp V)
~ P )

+ (P ~

( 1 + VGpp )H 9' ggH( 1 +Gpp V)
~ P ) (2.1)
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where

Gpp P(E Hpp+ie——) 'P—, (2.2)
S,p P(E Hpp Hpg ( Gg——g )IH——gp ) 'P (2.11)

Sgg ——Q(E —Hgg Hgp GppHpg +i e) 'Q—,

and where V is the channel interaction, P is the incident
channel state, and H is the Hamiltonian of the system. In
Eqs. (2.1)—(2.3) we use the notation Hzz ——PHP,
Hpg PHQ, etc. , wher——e P and Q refer, as usual, to open
and closed channel spaces. The first term on the right-
hand side of (2.1) varies slowly with energy while the last
term varies rapidly with energy. However, the average of

l

and

~=V+H&GQQ&, H. (2.12)

The resolvent operator 9'
p was introduced by KKM in

their formulation of the optical background representa-
tion. It is not difficult to realize that T,p given by Eq.
(2.10) is the optical transition amplitude implicit in the
work of KKM. Using Eq. (2.7), Eq. (2.6) can be written
as

Tfl=&4 I(1+VGPP)H&&gg)li(I/2)SQQH(1+GPPV)
~

P& . (2.13)

Equations (2.4), (2.10), and (2.13) constitute the present
form of the optical background representation. In the rep-
resentation of KKM Eq. (2.13) for the fluctuation ampli-
tude is replaced by

T = (P
~
(1+4 9', ) V Q9'gg Vgp(1+ $,p@ )

~
P),

(2.14)

where

+Qg =«E—Hgg —Vgp&.„VPQ) 'Q,

Vpg ——Hpg [i (I/2) ( Ggg )I ]

and

(2.15}

(2.16)
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Vgp
—[i(I/2)( Ggg &I] Hgp . (2.17}

Since the optical amplitudes of KKM and the present
work are identical it may not be surprising to predict that
Eqs. (2.13) and (2.14) yield equivalent results, since in both

the cases the optical and fluctuation amplitudes must sum
up to the full amplitude given by Eq. (2.1). Indeed the re-
sults given by Eqs. (2.13) and (2.14) are equivalent. The
equivalence can be proved by using the following easily
verified identites:

II= Vpg&—gg Vgp

=PH[i(I/2)(Ggg &I]'~ (Ggg+ Sgg Vgp S,pVpgGgg)[i(I/2)(Ggg &I]'~ HP

=Hpgi (I/2) ( Ggg &I(Ggg +GggHgp [ &op Hpg (G—gg &Ii (I/2)GggHgp 1 'Hpgi (I/2) & Ggg &IGgg )Hgp

=Hpgi (I/2) ( Ggg &I [Ggg +Ggg Hgp SppHpg ( Ggg —( Ggg & y ) ]Hgp

=Hpgi (I/2)(Ggg &I Pgg(H HGPPH (—Ggg &III }P ~

(2.18)

(2.19)

(2.20)

(2.21)

where

8'pp P(E Hp——p Hpg—GggHg—p) 'P . (2.22)

(1+4 3 op)8()p Gpp=(1+VGpp)

G p&p, (1p+ S,p k) =(1+Gpp V) .
(2.25}

Hence, the equivalence of Eqs. (2.13) and (2.14) is estab-
lished.

Although Eqs. (2.13) and (2.14) are equivalent we be-
lieve that Eq. (2.13) has certain advantages, especially in
the formulation of doorway states and multistep com-
pound reactions. In order to understand these advantages
let us consider the effective Hamiltonians of Sgg and
y KKM

Equation (2.19) follows from (2.18) by considering the
Neumann series of the resolvent operators of both sides.
Equation (2.20} follows by using the explicit form (2.9).
Finally, Eq. (2.21) follows by using Eq. (2.3). Using Eq.
(2.11) we can rewrite Eq. (2.21) as

8 =So 9'o+(Ggg &li(I/2)9 ggHG 8, ', (2.23)

=8,p'GPPH ( Sgg & 1i (I/2) 9' ggHGPP 9,p', (2.24)

wh«e Eq. (2.24) follows by considering Neumann series
solutions of the relevant resolvent operators in (2.23) and
(2.24). Substituting Eq. (2.24) in Eq. (2.14) one arrives at
Eq. (2.13) with the use of the identities

states or multistep compound reactions. The essence of
Eq. (2.14) is that the Tn defined by it averages to zero
without using the property of statistical fluctuation of cer-
tain form factors. This property cannot be maintained in
the multistep components defined via (2.14), whereas it
can be maintained in the multistep components defined
via (2.13). Although Eqs. (2.13}and (2.14) are equivalent,
the multistep components defined from these equations
cease to be equivalent. We discuss these aspects first in
the doorway state model of FKL in the next section before
discussing multistep compound reactions in Sec. IV.

Q=d+9,
PQ=Pd=Pq=dq =0 .

(3.1)

In addition, following FKL (Ref. 6) one assumes, as usual,

Hpd &0, Hdq &0, (3.3)

Hpq
——0,

so that

(3.4)

III. DOOR&'AY STATES

We introduce the projection operator corresponding to
the doorway state by d such that

A gg
——Hgg+HgpoppHpg (2.26)

Hpg ——Hpd, Hgp ——Hdp . (3.5)

~KKM H +V (2.27)

With these definitions Tg defined by Eq. (2.13) naturally
breaks up into two parts:

respectively. It is easy to see that both of these effective
interactions violate the chaining condition in general even
when the Hamiltonian H obeys the chaining condition.
But in the extreme low energy limit when the elastic chan-
nel is the only open channel the chaining condition can be
restored via Eqs. (2.13) and (2.26), whereas it will be al-
ways violated, as in the approaches of FKK and Sevgen,
while using Eqs. (2.14) and (2.27). It is this violation of
the chaining condition in the approaches of FKK and
Sevgen through the Q space which we call unphysical in
the Introduction. There is another problem with Eq.
(2.14) if one uses it to formulate the theories of doorway

Tfl = Td + Tq ~ (3.6}

Ta=(p
~
(1+VGpp)H& &aa &Ii(I/2»aaH(1+GPPV)

l 0&

(3.7)

and

T& = (P ~
(1+VGpp)H( &aq &Ii(I/2)&qaH(1+Gpp V) I 0 &

(3.8)

with
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8'=HGppH . (3.12)

—].3 q»
=geq Hq» 9»»,

where

and

eq (E Hqq+ie)

1

E—~dd —~dd —~dqeq ~qd
—1

(3.9)

(3.1 1)

In Eq. (3.6) T» is the doorway state part and is expected to
yield the doorway space resonances once the q space is
averaged. This can be done with respect to a Lorentzian
averaging function of width J' large compared to the
width and spacing of q space states. In Eq. (3.6) I is sup-

posed to be large compared to the width and spacing of
doorway states. It is not difficult to see that Td averages
to zero when averaged with respect to an averaging func-
tion of width I large compared to width and spacing of
doorway states. This is because averaging Eq. (3.7) one
has

j»f» i(I/2)

,. [E e» —&d'
~

—(W»»+H»» &eq-' &,Hq») ~

d'&+i(r/2)]' ' (3.13}

with

fa' (f ~
(1+I'Gpp)H

~

d'&, (3.14)

since both Td and Tq average to zero the energy averaged
cross section will have no interference terms between d
and q spaces:

where we have employed an eigenfunction expansion in
terms of eigenfunctions of Hdd with eigenvalue e~. As I is
large compared to the spacing and width of doorway
states the matrix element of the denominator can be con-
sidered to be real. In a large nuclear system the sum in
(3.13) will extend over many states, and because of the
squared term in the denominator, as argued by KKM, Td
averages to zero without needing the (questionable) prop-
erty of statistical fluctuation of the form factors f».

In Eq. (3.6) T» is the rapidly varying part corresponding
to q space fluctuations. Again using the forms given by
Eq. (3.10) for the resolvent operator Pq» it is easy to see
that (Tq)~=0. In fact, (Tq)i =-0, where l' is just suffi-
cient to wash away the q space fluctuations while retaining
the doorway space fluctuations (I)I'). In other words I'
is large compared to the width and spacing of states in the

q space but can be comparable to the width and spacing of
states in the doorway space. Using Eq. (3.10) it is easy to
see that

j,'&j"; &, (i/2)
[E eq+i(I/2)][E— eq+i(I'/2)]— (3.15)

jq ——(P
~

(1+VGpp)HÃ»»H i q) . (3.16)

Here we again have employed an eigenfunction expansion
in terms of eigenfunctions q of Hqq with eigenvalue eq.
Again it can be verified that as eq moves along the real
axis the product

[E eq + i(I/2)) '[E—eq+ i(—I'/2)] (3.17}

moves around a heart shaped curve centered at the origin.
Hence, as pointed out by KKM, even without the assis-
tance of random phases of j"q's the factor (3.17) assures
that the phases of the terms in the sum will distribute
themselves between 0 and 2~, in such a way that the sum
in (3.1S) vanishes.

Although Td and Tq average to zero it does not mean
that the corresponding cross sections are zero. In fact
they will contribute to d and q space cross sections. But

(~n&r = &~» &i+ &~, )i . (3.18)

In Eq. (3.18) (o» ) is the d space contribution to the cross
section, and (oq ) is the q space contribution. From Eqs.
(3.7) and (3.8) it is easy to see that both the terms in (3.18)
vary on the same scale as the doorway space fluctuations
when I is big enough to wash away just the q space fluc-
tuations.

We could have tried to carry on the same analysis start-
ing with Tn defined by Eq. (2.14). With conditions
(3.1)—(3.5) Tn of (2.14) naturally breaks up into four

pieces:

IU. MULTISTEP CGMPOUND REACTIONS

In this section we use representation (2.13) for the Auc-
tuation amplitude in order to define its multistep com-
ponents. As in FKK we divide the Q space into a set of
orthogonal subspaces Q„such that

and

Q= QQ. Q.Q
n=1

Q„P=PQ„=O,

H„=—Q„HQ =0, ~n —m
~

)1. (4.3)

Tdd + +dq + Tqd + Tqq ~ (3.19)

where TJ. satisfies (2.14) with Sgg™replaced by i Sg~ j,
i,j=d, q. The main difficulty with the separation (3.19) is
that although (Tri)i=0, (TJ )i&0, because in TJ one
does not have a product of two resolvent operators of the
form ((G)iG), as in Eqs. (3.7) and (3.8), which will
guarantee the vanishing of the average. It is also not pos-
sible to extract the doorway space resonances in a simple
way from the energy averaged cross section using (3.19},
because of the appearance of interference terms between
various pieces. This problem will be more serious if one
uses Eq. (2.14) to define the multistep components of the
fluctuation cross section as in Refs. 5 and 13.
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The spaces Q„, n =1,2, . . . , r, define a hierarchy of door-
way states such that for m & n, Q is more complex than
Q„. The spaces Q„should be compared with d and q of
Sec. III. Now Ta of Eq. (2.13) can be naturally broken up
into the following components:

Following Sevgen we define W(n} through the follow-
ing nonlinear recursion relations

W(n) = W(n + 1)+W(n +1)G„+~W(n + I), (4.7)

with

n=l m =1
(4.4) W(r) =A (4.8}

where T„satisfies Eq. (2.13) with 9~~ replaced by b,„
defined by

and

W(r —1)=A +A G„A (4.9)

&, =0, (4.6)

for each rn and n. We shall see that Tn contributes to
fluctuations of space Q when m &n, and to fluctuations
of Q„when n & m. As each component of Eq. (4.4) aver-
ages to zero, crossed terms will be absent in the cross sec-
tion.

~n, m Qn +QQQm

In their treatment of multistep fluctuation components
FKK and Sevgen took m = 1, which is a good approxima-
tion in the absence of many open channels. But if we have
several open channels the system can propagate through
the P space to a complicated configuration and then enter
the Q space at a stage m&1. So, physically, in the pres-
ence of other open channels one will in general have con-
tributions to T„ for m&1. We shall see below that

etc., where

G. =Q.X' —Q. W(~)Q. ] 'Q.

with

(4.10)

(4.11)

With these definitions one can evaluate the various h„j
through

b,„J=G„W(n) g b, J, n &j
m &n

(4.12}

T~jn =~nj ~ (4.13)

where T represents transposed. Any of the 5„'s can be
calculated using Eqs. (4.12) and (4.13). Explicitly, one has

a„,=G„W(n) 1+ g G, W(~&)+ g G,W(m2)G, W(~»+
n &ml &1 n &m2&m1&1

+G„,W(n —1)G„2W(n —2) . G3W(3)GqW(2) b~ 1, n &j . (4.14)

Using (4.11), (4.13), and (4.14) all the h„J.'s can be found out. For example,

b4 3=G4 W(4)[1+G3 W(3)+ G2 W(2)+ G3 W(3)G2 W(2)]G& [W(2}G2+ 1]W(3)G3 (4.15)

It is interesting to realize that An starts with the propa-
gator G„and ends on the propagator 6 . From Eqs.
(2.13), (4.4), and (4.5) it is easy to see that T„m has the
form

Tn, m g Tn, m
j=1

where

'~H&&, ,„&, (In)~„H
~

q'+'&,
j=1

(4.16)

Aj „=Aj„6„ (4.17a)

~

y'+'& =(1+G„V)
~
y),

and (g' '
~

is defined analogously. Let us now study
(4.16) and prove (4.6). We note using Eqs. (4.11), (4.13),
and (4.14) that Aj n and An m have the form

T
~n, m =Gn~m, n ~ (4.17b)

where an explicit expression for A can be easily written
down. [For example, one can easily read off the expres-
sion for A43 using Eq. (4.15)]. Now substituting (4.17)
into Eq. (4.16) one has

where p„and p„are biorthogonal states of the operator
Q„W'(n)Q„with (energy-independent) eigenvalue e„, the
usual arguments of KKM can be used to verify (4.6). The
expression (4.19) is, however, not in general valid because

T„=g (f' '
~
H(A~ „)1(G„)ii(I/2)G„A „H

~

f'+') .
j=1

(4.18)

In Eq. (4.18) we have the product of two resolvent opera-
tors of the form ((G„)IG„),and, if one can employ the
usual spectral representation of G„,

n nE—e
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Q„R"(n)Q„=Q„A g„+Q„U(n }Q„, (4.20)

where the first term on the right-hand side alone will con-
tribute to poles appearing in G„of (4.10) at a rate given by
D„—the spacing of states in the nth space. However,
from the definition of Q„W(n)g„ it can be easily realized
that the last term of (4.20} contains the sum of terms each
of which contains at least one of the resolvent operators
G;, i =(n +1), (n+2), . . . , r, and hence appears to contri-
bute to poles appearing at a rate given by D;. Hence, the

Q„W(n)g„of Eq. (4.10) is strongly energy dependent in
general.

In the following we find the conditions under which Eq.
(4.19) can be justified so that Eq. (4.6) is valid. Using Eqs.
(4.7)—(4.9} it is easy to see that Q„R'(n)g„can be written
as

last term of {4.20) cannot be taken as slowly varying.
Now extending the arguments of FKK and making eigen-
function expansions of the resolvent operators G s, suc-
cessively, in the last term of (4.20) it is easy to realize that
an approximate energy independent diagonalization of
(4.20), needed for justifying (4.19), is possible if the aver-
age width I; of the levels in the space i is large compared
to the average spacing of poles D„of the nth space ':

I; ~~D„, all i ~ n . (4.21)

We also assume that I „»I „+l. If (4.21) is satisfied the
energy independent diagonalization (4.19) can be justified
and G„will contain poles at a rate given by D„. Equation
(4.18) has exactly the form of Eq. (2.13) and hence using
(4.19) in (4.18) it is easy to see that the product of the en-
ergy denominators of ( T„)1,given by

'
~
H(~j, » &I I

P~'&I'(~~2)(4'~'
I m, n &IH

~

0'+'&
(4.22)

will guarantee (4.6). The present averaging technique is
very different from the arguments of self-averaging used
by FKK.

Expanding the A„of Eq. (4.16) [as in Eq. (4.15)] it is
easy to see that the expression for T„given by (4.16) will
contain all 6 s from i =1 to k where k is the larger of n
and m, assuming that the averaging interval J is large
ellollgh towash 'away 1Rpld vallatlolls 111 (EJ „)I. As
(4.21) is assumed to be satisfied, G; contains poles appear-
ing at a rate given by D;, and Gk (where k is the larger of
n and m) will determine the most rapidly varying fluctua-
tions of T„.Hence T„will contribute to n space fluc-
tuations if n )m and to m space fluctuations otherwise.

So, in brief, one of ihe major achievements of the
present work is Eq. (4.6), showing that doorway classes
can be defined consistently with (4.21), whose interference
terms automatically average to zero, so that the multistep
compound cross section is a simple sum of contributions,
one from each class. The present result is significantly
different from that of Friedman et al. ' who achieved the
same goal imposing the condition I"„+&~&I „ for the
width of the successive classes. From Eqs. (4.4) and (4.16)
it is easy to see that the compound nuclear cross section
relating channels c and c' will have the form

r r

Ofl, cc' g g nr+ c, nm, rcm' r

n =1m = i

(4.23)

which is the form obtained by Weidenmiiller et al. '

Equation (4.23) has the same physical content as Eq. (4.4).
The factor ~„, in each element of o. gives the probability
of reaching the nth space from channel c, H„denotes
the propagation from stage n to m, and finally ~
denotes the escape to channel c' from the mth space. Fi-
nally, one has to sum over all possible m and n from 1

to r.
It is, however, also possible to write the final result

{4.23) in the form given by FKK and Sevgen. From an
expansion of b, [of the form given by Eqs. (4.14) and
(4.15)] it is easy to realize that the probability flow factors
of FKK and Sevgen becomes very complicated and can be

read off from Eq. (4.14). Instead of giving a detailed dis-
cussion of the calculation of cross sections in the most
general case we shall limit ourselves to the extreme low en-
ergy limit in Sec. V (assuming no exoergic reaction chan-
nels) in order to see the advantages of the present ap-
proach.

Since the calculation of the cross section is in general
complicated, we consider the extreme low energy limit
which will clearly show the advantages of the present ap-
proach over that of FKK (Ref. 5) and Sevgen. ' In the
case of the neutron-nucleus scattering the incident neutron
energy is assumed to be so low that the only open channel
is the elastic channel (assuming no exoergic channels). As
the neutron gets trapped it passes through a hierarchy of
doorway hallway states all of which belong to the g space.
Hence, the violation of the chaining condition through the
P space is not allowed. The whole P space now corre-
sponds to the entrance channel space Po which is connect-
ed by the residual interaction to the chain

where the chain is terminated at the rth stage which has a
very complicated mode of excitation. The depletion fac-
tor, as we shaH show below, exhibits such a chaining for
the multistep components of the fluctuation cross section.
The work of FKK and Segven, however, fails to reproduce
such a chaining because of unphysical violation of the
chaining through the Q space. The effective Hamiltonian
A ~ of (2.26) obeys the chaining condition (4.3) as

Q„HgpP=PHpgg„=0, n~l . (5.1)

But the effective Hamiltonian A ~~ of (2.27) violates the
chaining condition (4.3) because of the presence of the
square root factors in the V's. It is this violation of the
chaining condition through the Q space which we call un-
physical since in the extreme low energy limit the physical
system obeys the chaining condition.



DOORWAYS AND MULTISTEP COMPOUND REACTIONS 2019

In the present case Tn of Eq. (2.13) can be naturally Also, one has
broken up into the following multistep components:

~n, 1 GnH~&n —1 ), 1

Tfl g Tl, i ~

n=1
(5.2)

~i,.=~i,(n-i'. (5.8)

T„ i
——(Q' '

~
H(hi „)li(I/2)b, „ iH

~

g'+'), (5.3)
Substituting Eqs. (5.7) and (5.8) in (5.3) and following the
arguments given after Eq. (4.16) it is easy to see that

and

b „1——G„HGn 1H . . HG3HGPHG1 (5.4)

and where the b.'s are again defined by Eq. (4.5). Now the
effective Hamiltonian A of S~~ defined by Eq. (2.26)
obeys the chaining condition, and hence one has

(5.9)

i.e., each of the multistep components of the fluctuation
amplitude averages to zero. Now one can calculate the
multistep components of the fluctuation cross section':

g, n =G,HG, HG, HG„,HG„. (5.5)

Now Eqs. (4.7)—(4.11) are valid with A replaced by H as

4m
, 2 &

I
T., i I

'&
k

(5.10)

=H„=O,
)

n —m
~

&1 . (5.6) where

T„ I
——(I/2)

[E e„f f

—8—e„+t(I/2)
[

where we have used the following eigenfunction expansion of G„(Refs. 5 and 13):

~
na)(na

~

n

(5.11)

(5.12)

Now one can simplify (5.11) as follows':

&
I
T., iI'&=—& I

&@' 'IH~i, (.-iP I
«& I'& &1&na IH~(. -i), iH I

@'+'& I'&
n n

(5.13)

2ir(
~

(y' '~Hhi („ i)H
~
na)

~
)

Dn

Dn

2vrI „
2'(

i
(na iHb(„ i) iH i g ) i )

Dn
(S.14)

where I „and D„are the average width and spacing of state of space Q„. Now one can go on using the chaining identity
(5.4) successively in

X=2irD (
~ (P ~Hk}

& i&H ~na)
~

)

as in FKK, and arrive at

X=2~D. i&1&ad' 'IH~i, .-2H I(n —1)P& I'&pl »-'»~D. '&
I
&« —1)PIH I«& I'&,p.

Defimng

(5.15)

(5.16)

I „',=2~D„-'(
~
((n —1 y

~

H
~

na)
~

').,
and iterating this process we get

n —1

X=(I iDi ') ff I kI k
'

k=1

(5.17)

(5.18)

where

n —1

T„=2nD, 'I, + I"j',I'k '
k=1

(5.21)

(5.22)

where

1., =2 ( [(y'-')H
~
iy) ~'), .

From Eqs. (S.12), (5.14), and (5.18) one has
r r

r, -1 r,' D„ -1 r,' r,&~"~'=D, ,&, r, 2.r„„&,r, D,

and from Eqs. (5.10) and (5.20) one has

(5.19)

(5.20)

Equation (5.21) gives the desired result for the fluctua-
tion cross section in the present case. Each partial cross
section first contains the usual factor 2~D1 'I

1 represent-
ing the probability for formation of the first stage —the
doorway space Qi. Then a product of depletion factors
I"kI k

' appears expressing, as in FKK, propagation to
some final space Q„. The factor D„(2irI „) ' represents
propagation in Q„space, and then the product of de-
pletion factors I kI k

' represents propagation to the door-
way space Q i again. Finally, the factor 2irD i

'I
i
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represents the escape to the (elastic) exit channel.
So in the extreme low energy limit we have symmetry

between the exit and the entrance channels. The explicit
symmetry between the entrance and exit channels in Eq.
(5.21) is, of course, physical in origin since the chaining
condition is exact in this limit. Because of the unphysical
violation of the chaining condition through the Q space, as
is obvious from Eq. (2.27), the FKK result fails to possess
this symmetry. Here we have used an apparently asym-
metric fluctuation amplitude Tn given by Eq. (2.13),
which yields a symmetric multistep cross section, whereas
FKK use the manifestly symmetric optical background
representation of KKM given by Eq. (2.14) and obtain an
asymmetric multistep cross section. As pointed out by
FKK and Sevgen the various terms in the summation in
Eq. (5.21) contribute to precompound emission from stage
n, and the contribution from the rth space has a sym-
metric Hauser-Feshbach form' as has been pointed out by
Satchler' in the limit of only one open channel.

In this section we have calculated the multistep fluctua-
tion cross section in the extreme low energy limit. A simi-
lar calculation can be carried out starting from Eq. (4.16)
in the general case. One should use expansions of the type
given by Eq. (4.14) for both (b 1 „)t and 4„ in Eq. (4.16)
and proceed as in the present discussion which is valid for
the extreme low energy limit. Then the product of de-
pletion factors may produce a complicated route for prob-
ability flow. There are two essential differences between
probability flow in the present case and that obtained by
FKK and Sevgen. First, because of the physical violation
of the chaining condition through the open channel P
space the system can bypass any number of doorway hall-
way states in the Q space and enter the Q space at stage m.
How large m is will depend on how large the P space is.
At low energy we have seen that m =1. At higher ener-
gies more and more complicated states may belong to the
P space. Hence the system may propagate to a complicat-
ed configuration through the P space and enter the Q
space at stage m, m &1. This possibility was not con-
sidered by FKK and Segven and is allowed in the present
approach. Second, in the approach of FKK and Segven in
the nth multistep fluctuation component the system al-
ways moves directly from the nth stage to the exist chan-

nel space. In the present approach, apart from having a
transition from the nth stage to the exit channel space, the
system may take various other routes to the exit channel
space, as can be easily understood from Eq. (4.16). An ex-
plicit calculation of the various multistep components of
the fluctuation amplitude is complicated and not very in-
teresting physically and hence is not performed in the
present work.

VI. SUMMARY

We provide an alternative derivation of the KKM opti-
cal background representation and write the final result in
a form which has certain advantages in defining multistep
fluctuation components of the cross section. First, the un-
physical violations of chaining in multistep fluctuation
components through the Q space is eliminated; i.e., at low
energies, as expected, the present theory obeys chaining as-
suming no exoergic reaction channels. Second, the mul-
tistep fluctuation amplitudes of the present approach aver-
age to zero without needing the property of statistical
fluctuations of the form factors. Using the present ap-
proach we derive expressions for the multistep fluctuation
amplitudes in the general case. We calculate the multistep
fluctuation cross sections in the extreme low energy limit
and find that the chaining condition is restored, though in
the most general case the chaining condition is expected to
be violated. The final result in this special case is sym-
metric with respect to the incident and the exit channels in
agreement with physical expectations. The result of FKK
and Segven in this special case is asymmetric and violates
the chaining condition in contradiction with physical ex-
pectations.
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