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Variational estimate of a breakup amplitude
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Estimates of the correction to the Born amplitude are obtained from a variational principle. A
wave packet representation is used to provide an off-shell amplitude in a time-independent theory of
collisions. The theory is applied numerically to a breakup reaction p + H~p + n + d.

NUCLEAR REACTIONS Time independent, off-shell amplitude, obtained
from variational principle. Wave packet representation generates fragmentation

exclusive cross sections.

I. INTRODUCTION

During recent years, evidence has been gathered on the
importance of multistep processes in inelastic scattering as
well as in multinucleon transfer reactions in the collisions
of both light' and heavy ion projectiles on target nuclei.
Whereas the evaluation of higher-order processes in the
case of inelastic scattering of the target can be treated
reasonably wdl within the framework of the coupled-
channel Born approximation (CCBA), the treatment of
multistep processes in rearrangement collisions is much
more difficult. The proper study of reactions leading to
three or more body final channels is still a difficult ques-
tion. It has been often dealt with in an extremely ap-
proximate fashion by merely considering the phase space
available for the nuclei in the final channel. The difficulty
in evaluating the amplitudes for such processes arises
from the problem of constructing the correct asymptotic
wave functions for the final channel. In particular, the
description of the propagation of even three nuclei with a
given total energy is not perfectly well understood.

In a series of earlier papers, ' we developed a variation-
al approach to the evaluation of multistep amplitudes. It
was pointed out in these papers that a possible method
which circumvents the problem of the boundary condi-
tions to be satisfied by the propagator is to use a wave
packet description all the way. The usefulness of a wave

-I

packet description has been stressed by several authors
for many years, but very few calculations have explicitly
employed time independent wave packets for the evalua-
tion of scattering amplitudes. In connection with the use
of wave packets, one should also employ a complex total
energy in the propagator, the imaginary part of which
should be commensurate with the momentum spread of
the wave packet. The variational method that has been
proposed was shown to be surprisingly accurate in the case
of an exactly solvable model of potential scattering in the
previous paper.

In the present work, we formulate the problem of a
breakup reaction where the final channel is a three-body
channel. We describe the description of the channel states
in terms of wave packets and demonstrate how it is possi-
ble to obtain a practical estimate of the multistep ampli-
tudes with a proper treatment of the many-body propaga-
tor. The problem of the construction of the correct chan-
nel wave functions which are the true eigenfunctions of
the asymptotic channel Hamiltonian is then shown to be
tractable by the same method after a suitable projection.

II. THE MODEL

As an application of our variational principle we con-
sider the breakup reaction p+ H~p+ n+ d. The wave
function selected to describe the initial channel is

(r, —s, ) + (rz —sz) +.(rz —s3) +(r4 —s4) +(Ims, ) +(Imsz) +(Ims 3) +(Ims4)
y =m.

—'p —'exp—
2 2

(2.&)

where the projectile has coordinate r
&

and is assumed to be a proton spin up, while the constituents of the target are as-
sumed to be a neutron spin up, a proton spin down, and a neutron spin down, with coordinates r2, r3, and r4, respective-
ly. This selection of spins makes the four nucleons distinct particles; hence the unessential complications of antisym-
metrization can be postponed. The complex vectors s ~, . . . , s4 which shift the single-nucleon Gaussians present in Eq.
(2.1) are chosen with components

s
&
—— ikP sin8

ikP cos8

sz —— ——,
' ikP sin8

d —,
' ikP cos8— ——,d —,

' ikPzcos8—

v3
s 4

—— —d ——,ikP sin8
2

——,
' d —,

' ikP cos8—
(2.2)
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FIG. 1. Cxeometry of the initial (left-hand side) and final (right-hand side) wave packets. The radius of each single nucleon wave
packet is scaled to show the ratio P/d or P/O'. The scales of momenta are arbitrary.

As a consequence of this choice, the projectile wave
packet is boosted by an amount k and the target by the
opposite momentum —k. The geometry is that shown in
Fig. 1, with a choice 8=0 and d&0. The reaction plane is
the (y,z) plane and the triangular equilateral shape of the
target is designed to prepare a forthcoming application of
the model to the channel a+' C. Nothing precludes in
the following the consideration of the limit d =0.

%Pith the traditional total potential
4

i &j=1

taken as a sum of two-body interactions, the prior poten-
tial defined by this partition I —(234) is, obviously,

It is also obvious that 7 factorizes in the representation
provided by standard Jacobi coordinates, namely R for the
total center of mass, g] and g2 for the internal structure

of H, and p for the relative distance between p and H.
Hence,

X=I, (R)I;„,(g], gp)I „](p)exp(ik p), (2.3)

where, in an obvious notation, I, , I;„„and I „1are suit-
ably normalized Gaussians for the total center of mass,
the internal structure of H, and the channel degrees of
freedom, respectively. It may be stressed at this point that
this factorization is all that is needed to relate the infor-
mation carried Qy X to that embedded in the physically ex-
act channel function

X'"=y, (R)]/r;„,(g'], gp)exp(ik p),
where y, is any center-of-mass wave function and f;„]is
the exact internal wave function of H provided by the
Hamiltonian A =M+ P . This relation between the
model wave packet 7 and the physical channel function
7'" will be discussed in Sec. IV.

For the final channel we choose the model wave packet

—3p —6

(r]—s ', ) +(rz —s z) +(r3 s 3) +(r4 —s ~) +(Ims ]) +(Ims z) +(Ims 3) +(Ims 4, )
Q exp—

2 2 (2.5)

where again r1, r2, r3, and r4 are the coordinates of a proton spin up, a neutron spin up, a proton spin down, and a neu-
tron spin down, respectively. The complex shift vectors are now
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0
s ) —— iP2( —,

' k'sinO'+ k "sinO" )

iP ( —,
' k'cosO'+k "cosO")

0

s 2 —— l p ( ~ k S111O —k slI1O )

&x'
I
T(E+ir)

I
x),

where the finite imaginary part I" has been made explicit.
Because of our use of wave packets the legitimate order of
magnitude of I is automatically given by the zero point
energies carried by I „&, I,',~, and I,",&. With obvious nota-
tions the zero-point kinetic energy for each degree of free-
dom 1s

iP ( —,
' k'cosO' —k "cosO" )

0

(2.6)
3A'

4mp
(2.10)

—,
' (d' —iP k'sinO')

2 EP k cosO

where m is the nucleon mass.
A central, spin- and isospin-independent interaction has

been chosen as the sum of a short-range repulsion and
middle-range attraction, both Gaussians

0
——,

' (d'+iP k'sinO')

——,
' iP k'cosO'

P ij
——V+exp—

(r; —rJ)
2

—v exp-
p+

(r; —rj)
p

inducing the geometry shown by Fig. 1. The projectile
1

—+

leaves with momentum —,k '+k" after knocking out the

neutron spin up with momentum —,k ' —k " and the deute-

ron spin down remains with momentum —k '. A dis-
tance d' is taken for the deuteron extension and all the
geometry has been confined to the (y,z) reaction plane.
An extension of the model to an 0.+a+ Be channel is ob-
viously in order.

The "post" potential is now V'=&—P 34 and it is
again trivial to check that X factorizes as

The Hamiltonian A =~+X contains only the internal
kinetic energy,

4 g2 g2

i=1
(2.12)

Hence the formalism is free from any center-of-mass
spuriosity, as long as all wave functions which appear in
the calculations factorize, like g,g', into the same center-
of-mass wave packet I, and an internal wave function.

For the sake of completeness it is recalled that, while
the prior and post Born amplitudes

X'=r, (R)r„,(g ')r,'d(p ')

)&exp(ik '
p ')r,",~(p ")exp(ik" p "), (2 7)

and

T, =&x'I vIx& (2.13a)

where I, is the same center-of-mass wave packet as in
Eq. (2.3), and 1,'„„, I '„~, and r,",

~ are Gaussians related to
the internal structure of the deuteron, and the two relative
motions of the channel with

T,'=&x Iv Ix&, (2.13b)

are trivial to calculate from Eqs. (2.1), (2.5), and (2.11), the
multistep amplitude

p =
2 (ri+r2 —r3 —r4) &T=&x'I v'(E+iI —A ) 'v IX) (2.14)

and p"= r
&

—r2. The relation of g' with

X'"=y, (R)p,'„,(g')exp[i(k '-p '+k ".
p ")], (2.g)

where li,'„, is the exact deuteron internal wave function
provided by A, will also be discussed in Sec. IV.

The operators V and V' define a T operator

is here estimated as the stationary value of a functional of
two trial functions P and P'. This functional Ji may be
selected either as

F=&0''I v IX&+&x'I v'I 0& &0'I «+&r —~— ) IA&

(2.15a)

T =V+ V'(E —A ) 'V (2.9a)

OI

T = V'+ V'(E —~) ' V, (2.9b)

depending upon the usual "prior" or "post" definition.
This is a perfectly well defined operator in the Hilbert
space of the present four-body problem as long as E is
complex and one calculates matrix elements such as
&X'

I
T IX) between smooth and fastly decreasing wave

packets. As a matter of fact, the physical amplitude is

&x'ex
I
T

I
xex)

where E is on shell. The quantity of interest in the present
theory is the off-shell matrix element

&y'I(E+ir —m) Iy&
'

In both possible choices for E, the variational conditions
th respect to P and P' read

I y) =(E+ir—~)-'v IX) (2.16a)

I y & =(E—~ r —~)-'v
I
x') . (2.16b)

(In a space of restricted trial wave functions these equa-
tions must of course be projected into the subspace of al-
lowed variation of P' and P, respectively. ) It is clear from
Eqs. (2.16) that P and P' will be off-shell approximations
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to purely outgoing and ingoing waves, respectively. It can
be stressed that P and {('are square integrable, like VX and
VX'. This is an obvious consequence of the choice of g
and X' as wave packets and of a nonvanishing I .

In the present paper the variational parameters of P and
P' are chosen as linear, i.e.,

le&=X .IV. &, (2.17a)
n=1

(2.17b)

namely an expansion basis of wave packets g„ is chosen.
This choice of trial functions has the advantage of con-
verting the variational principle into a straightforward
linear algorithm. It can indeed be checked that the varia-
tional estimate of ET is then

This induces for the "triton" described by Eq. (2.1) a self-
energy

et =2ep+ 3( U34 &
——15.0 MeV (3 2)

and for the "deuteron" described by Eq. (2.5) a self-energy

6d=Ep+ (U34 & = —2.4 MeV . (3.3)

These are tolerable orders of magnitude, although I;„,[see
Eq. (2.3)] and I „, [see Eq. (2.7)] obviously differ from
strict eigenstates of A . As will be seen, the prior and post
Born amplitudes remain very much compatible, however.
This indicates that the deviation from eigenstates is not
drastic.

Finally, the relative momentum k " between the proton
and neutron spin up (particles 1 and 2) in the final channel
has been frozen to modulus k"=0.5 fm and angle
0"= 3m. /2. The kinetic energy of the pair is thus

hT=g(X'
~

V'
~ f„&S„„(g„~V

~
X&,

nn'
(2.18) eh=A k /I =10.4 MeV . (3.4)

where S is the inverse of the matrix M whose matrix ele-
ment is

w„„=(y„~(E+iI A)
~

—1/J„& . (2.19)

Although physically less flexible than a nonlinear set of
trial functions, the choice, Eq. (2.17), has the further ad-
vantage that it can incorporate the coupled-channel ap-
proximation. Indeed, in the present work, the first X
functions of the basis g„are just taken as wave packets
similar to X, Eq. (2.1). Instead of the physical modulus k
and the physical angle 0=0, running values K and 0 are
taken in Eq. (2.2). In the same way the last K basis vec-
tors g„have been chosen to take the form of X', Eq. (2.5).
For the sake of simplicity, k " remains fixed, and only k '

is converted into a running K". The summations, Eq.
(2.17), can also be interpreted as discretizations of in-
tegrals. Hence the formalism also relates to the generator
coordinate method, with K and K ' as generator coordi-
nates. The nonorthogonality of the basis is known to be a
minor difficulty. The numerical application which fol-
lows shows how this scheme seems to be convergent in a
practical way.

III. NUMERICAL APPLICATION

A. Parameters

The single-nucleon Gaussian width is chosen as @=2
fm. This induces a momentum Auctuation 6 k =0.S
fm ', hence zero-point energies of order eo ——7.8 MeV.
This is to be compared with the Ganil energies in which
we are interested, namely 10 to 80 MeV per nucleon.
Hence the imaginary part of the energy has been set to the
value I =10 MeV throughout this numerical application.

For the sake of simplicity the geometrical parameters
have been taken as d =1/V 3 fm and d'=1 fm. To show
that the formalism can incorporate interactions with a
non-negligible repulsion, the parameters of the force, Eq.
(2.11),have been taken as

v+ ——350 MeV, p+ ——1 fm,

U =60 MeV, p =3 fm.

B. Rule for energy conservation

AkE=~d+~s+~o+
2l1l

(3.6)

C. Bases

Substituting IC for k in Eq. (3.5), we select for the basis
of expansion (2.17) of P and P' in functions of the forms
(2.1) and (2.5) the values K= 1 fm ', l.5 fm ', 2 fm
and so on, with an increment of 0.5 fm '. The corre-
sponding values of E are, respectively, 20.5 MeV, 55.1

MeV, 103.6 MeV, and so on. For each value of X, a value
of K' is derived from Eq. (3.6) with K' substituted for k'.

As regards angles, a sequence of values —2m/3,—m/2, —m./3, —m/6, 0,m/6, . . . , 2m/3 is considered for 8,
then for O'. It is expected that the mechanism of forward
scattering is dominant. Hence the basis is always sym-
metrically centered around the values 0=0 and 6'=0.

Five bases have been considered to study the conver-
gence properties and the component admixtures of P and

One of these bases corresponds, for instance, to eight
energies and three angles. Namely for this (8,3) basis, 8
runs from —m/6 to m/6 and X runs from 1 to 4.5 fm for
the specification of g„according to Eq. (2.1). Then 0'
runs from —w/6 to w/6 and X' follows EC by energy con-
servation to specify f„cacrdoi gnto Eq. (2.5). This makes

The total center of mass being subtracted, there are
three zero-point kinetic energies. For the initial channel,
the self-energy e, includes two of them. The third zero-
point energy occurs in the channel relative motion. The
energy to occur in the propagator is thus chosen as

2A kE =e,+eo+-- (3.5)
3tPl

For the final channel, however, there are two degrees of
freedom in the continuum, hence the wave packet repre-
sentation introduces two zero-point energies. This prob-
lem of course disappears as P~ oo. In the present case, as
a matter of convention, we have taken only one eo into ac-
count. Namely, energy conservation is assumed to occur
if
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an expansion of P and P' into 48 components. In an obvi-
ous notation, the other bases investigated in the calcula-
tion are (15,3} (9,5), (5,9), and (9,7). In the special case of
the (9,5) basis, the angular values are actually —m./6,
—m/12, 0, m/12, and m'/6.

D. Orthogonality defect

Table I shows a few matrix elements of the overlap ma-
trix

as an illustration of the density of the basis. As soon as
energies and angles carried by f„and P'„differ by two or
three steps in the basis parameters, these vectors are prac-
tically orthogonal. In any case, as shown by Eq. (2.19},
this overlap matrix enters trivially into the calculation of
the Green's function.

F. Convergence

The values obtained for b, T, Eq. (2.18), for a typical en-
ergy E = 103.6 MeV and three observation angles
0'= rr/6, 0, and m—/6 (8=0), are listed in Table II for
the various bases considered. A tolerable level of conver-
gence seems to be reached. It can be noticed, however,
that ET systematically turns out to be of the same order
of magnitude as the Born amplitudes and opposite in sign
to them, as if, for instance, one had obtained P= —X.
This is because, insofar as

V fX)=(~—E) fX), (3.7)

then the discretization induces

~y)=(E+il A) 'V ~X)=(E—A) '(A E) ~X) . — —
(3.8)

It will thus be of great interest in the future to investigate
numerical applications with higher level densities and
smaller values of I, so that P becomes closer to an on-
shell outgoing wave. Then the compensation between ET
and the Born amplitudes will become less systematic.

G. Final results

These are shown on Fig. 2, for three energies present in
our bases, namely 55.1, 103.6, and 165.9 MeV. Not

E. Level density

The straightforward estimate of the resolvent
(E+iI —A )

' which is here obtained by matrix inver-
sion demands a justification, since the continuum has been
discretized. For that purpose, the spectrum of the Hamil-
tonian when projected on the basis (9,7) has been calculat-
ed. It is found that about 90 eigenvalues spread between 0
and 500 MeV. Although these eigenvalues turn out to
cluster rather than spread evenly with the kind of basis we
used, the average level density is thus of order 1 level per 5
MeV. Since I has been taken of order 10 MeV, the
discretization then appears to be tolerable. For a basis
such as (8,3) the average level spacing is no longer smaller
than I, and it is indeed found that convergence is not
achieved. For intermediate cases like (15,3), (9,5), and
(5,9) the level density seems to be just sufficient.
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TABLE II. Numerical estimates obtained for the multistep correction amplitude AT when different
expansion bases are considered. The asterisk for the (9,5) basis shows that an angle step of m/12 rather
than m/6 has been used. The results seem to show a larger sensitivity to the number of energies includ-
ed than to the number of angles. All values are listed in MeV, the wave packets being square normal-
ized to unity. The prior and post Born amplitudes are also listed for comparison.

B

(8,3) —0.92 + 0.98i —2.41 + 2.03i —0.85 + 0.92i

(15,3) —1.36 + 0.42i —3.00 + 1.20i —1.28 + 0.56i

(9,5)* —1.31 + 0.39i —3.04 + 1.27i —1.16 + 0.45i

(5,9) —1.43 + 0.41i —3.30 + 1.32i —1.31 + 0.45i

(9,7) —1.34 + 0.42i —3.04 + 1.28i —1.23 + 0.50i

+B 1.56—0.21i 3.20—0.68i 1.58 —0.23i

1.80—0.21i 3.S3—0.66i 1.65 —0.21i

surprisingly, one observes a forward peaking of the ampli-
tude, although the choice I9"=2m./3 induces a slight left-
right asymmetry. The values shown take into account an
average between the post and prior Born amplitudes,
namely the calculated final amplitudes are

T= —,
' (T~+ Ts)+ET . (3.9)

1.5

0.5

For comparison the post and prior Born amplitudes at
103.6 MeV are also shown in Fig. 2. For the sake of sim-
plicity only the modulus

~

T
~

is displayed in Fig. 2. The
interested reader would be supplied upon request with the
separate real and imaginary parts of the amplitudes, to-
gether with the computation code.

As the T operator, defined by Eqs. (2.9}, has the same
dimension as the Hamiltonian A, the theory provides all
amplitudes in MeV, since square-normalized wave packets
have been used. The usual representation of amplitudes,
however, makes use of plane waves of unit flux. A con-
version factor is thus in order.

On one hand, in the present theory, any degree of free-
dom related to the continuum, see for instance p in Eq.
(2.3), occurs with a wave packet

2
I (p)=sr 3~4(PVp) 3~2exp — exp(ik p), (3.10)

2 2

-904 -60 -304 00 30 604 8'

where p is the reduced mass number of p.
On the other hand, the Fourier transform of I is

I (o ) =rr ~ (P/V p) ~ exp
(o —k)

2p
(3.11)

FIG. 2. Post and prior Born amplitudes for k =2 fm ' and
estimates of breakup amplitudes for k =1.5, 2, and 2.5 fm
Thin lines have been drawn to guide the eye. At 0' in the recoil
angle 0' the Born amplitudes are of order 3.5 and 3.2 MeV,
respectively. The wave packets which simulate the channels
have the geometry displayed by Fig. 1.

with o. the conjugate variable of p. This is to be com-
pared with the Fourier transform of the unit-flux plane
wave

(2m') ~ J dp exp( i p o. )exp(ik —p)

= (2~} $( g —k ) . (3.12}
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To be normalized like the 5 function in Eq. (3.12), the
Gaussian in Eq. (3.11) must be integrated without any
squaring. It is trivial that

P (o.—k)do exp-
2p

' 3/2

(3.13)

(3.14)

In the present case, the conversion factor from the wave
packet amplitude to the plane-wave amplitude is thus

C3/4CI Cl/2 tr 0 ( 3 ) ~
9/4 9/2 8 3/4 (3.15)

IV. DISCUSSION AND CONCLUSION

The purpose of this paper was to illustrate the flexibility
and applicability of the variational principle, Eqs. (2.15).
This has been achieved by the consideration of a full-
Qedged four-body problem, involving a two-body initial
channel and a three-body final channel. In the process,
the theory has been shown to incorporate the cluster
model (with nontrivial geometries), the generator coordi-
nate method, and the coupled channel method. The dis-
torted wave Born approximation would be a special case
of the latter. An additional property of the theory is a
correct treatment of center-of-mass motion when a suit-
able control of 7 and 7' by Gaussians is implemented.

In a forthcoming paper a model of the a+ ' C

hence each degree of freedom with reduced mass number

p brings the need of a multiplicative factor
' 3/4

C

~o,+a+ Be reaction will be considered in order to illus-
trate applicability of the theory to the calculation of ex-
change terms. It is already obvious at this stage that ex-
change terms, either in the internal symmetrization of a
cluster or in the reaction mechanism, are made easy to cal-
culate through the single-particle factorization of 7 and
X'. This is only a slightly tedious, but straightforward ex-
tension of the theory.

Another question in order is the optimization of the ex-
pansion basis of P and P'. Although a definite amount of
convergence was obtained in the present calculation, it
must be borne in mind that this convergence is likely to be
basis dependent. The basis itself can be optimized if it is
included in the variational principle. This problem is now
under investigation.

A final question to clarify is the relation of the present
time-independent wave packet theory (TIWP) with the
more usual time-independent theories of nuclear collisions.
The conversion factors such as described by Eq. (3.15) are
only a first step for such a relation. The solution is pro-
vided by a comparison of, e.g. , Eq. (2.3) with Eq. (2.4).
The point is, a large number of adjustable parameters,
such as 8, E, P, and d, can be introduced inside the model
wave packet X. As a matter of fact, an overcomplete basis
can even be made of such TIWP. Let A, denote generically
the parameter set of such a basis. It is then always possi-
ble to reconstruct the exact channel wave function 7'" by
an expansion

X'"=f1A,f (A, )Xg, (3.16)

where f (A, ) is a suitable mixture coefficient. Hence a usu-
al T-matrix amplitude would be given by the expansion

(3.17)

where, in obvious notations, one also recognizes a recon-
struction of the exact final channel wave function g ".

When sharp resonances are not investigated a finite
value of I can be retained. In the present paper, only
qualitative estimates of amplitudes were looked for.
Hence a reconstruction of X'" and g'" is not needed. It is
much easier to take advantage of the fact that 7 and 7'",
for instance, have an identical factorization scheme; see
Eqs. (2.3) and (24). The free parameters P and d, for in-
stance, could be adjusted to make I';„,(g~, gq) as close as

possible to the true eigenstate P;„,( g'~, g2).
In conclusion, a systematic simulation of channe1 wave

functions by time-independent wave packets reduces the
calculation of exclusive amplitudes to the techniques of
the microscopic theory of bound states.
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