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' O(a, a) elastic scattering angular distributions have been measured for incident energies 39.3,
49.5, and 69.5 MeV. These data, and previous measurements at 32.2, 104, and 146 MeV, have been

subjected to a global optical model analysis. The deduced global potential has two energy-dependent

parameters which are found to vary smoothly with energy and it is uniquely determined by the data.
Backward angular distributions measured between 40 and 54 MeV are also presented and shown to
be nicely reproduced by the model. The sensitivity of the cross sections to the various regions of the

real potential has been investigated as a function of energy using the notch test technique. The low

energy behavior of the differential cross sections can be understood in terms of the semiclassical

decomposition of Brink and Takigawa. A natural extrapolation of the global potential below 30
MeV is shown to reproduce the wide bump observed in the experimental excitation functions

around 20 MeV. This bump is shown to be due to an l =8 shape resonance and is interpreted as the

J =8+ member of the E =04+ rotational band of Ne, in contradiction with the current attribu-

tion. Other bound and quasibound states supported by the potential are discussed in the light of
orthogonality condition model-type arguments and shown to be consistent with the well-known

K =0» and 0 bands, and with the first three states of the E =04 band of Ne.

NUCLEAR REACTIONS ' O(a, a), measured o.(8), E = 39.3, 49.5, 69.5 MeV;
global optical model analysis, E =32—146 MeV; semiclassical decomposition of
the scattering amplitude; investigation of the compatibility of the potential

description with existing low energy data and comparison with cluster models.

I. INTRODUCTION

Nucleus-nucleus elastic scattering angular distributions
are generally analyzed in the framework of the optical
model. At a given energy a local, I-independent potential
is often found to give a good description of the experimen-
tal differential cross section. It has been known for a long
time that this potential is not unique and thai the impor-
tance of the uncertainties (the so-called "continuous" and
"discrete" ambiguities) critically depends on the particular
system, the incident energy, the investigated angular
range, as well as on the precision of the data. For alpha
and helion elastic scattering it has been found possible'
to eliminate the discrete ambiguity on the potential pro-
vided the analysis is performed on data taken at a suffi-
ciently high incident energy and extending on a sufficient-
ly broad angular range. For other light projectiles close to
the a particle (as, e.g., Li) the same elimination criteria
seem to apply but their extension to heavier projectiles
appears to be doubtful. '

The discrete ambiguities observed at low energy in the
scattering of light composite projectiles are often associat-
ed with the strongly absorptive character of the potential.
However, it is worth pointing out that strong absorption is
not a prerequisite for the appearance of ambiguities of this
type. Even in the case of proton scattering, which is
known as a weak absorption process, it has been demon-
strated (at E~ = 10 MeV in the case of chromium iso-
topes ) that at least two distinct potentials were able to
reproduce the scattering data equally well. However,
discrete ambiguities have seldom been mentioned for
nucleon-nucleus scattering because it was realized very
early from theoretical considerations ' that the nucleon-
nucleus potential should be about 50 MeV deep; therefore
subsequent analyses have been restricted to this potential
family. In the case of composite particle scattering the
observed ambiguities thus do not necessarily point to a
very strong absorption. One of the best examples which
illustrates this point is that of a+" Ca elastic scattering
for which the discrete ambiguity exists at low energy but
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where absorption is known to be exceptionally weak as
compared with that needed for neighboring nuclei. ' lt
is possible to resolve this ambiguity by analyzing high en-
ergy data where rainbow scattering is observed" and to
trace the potential from the highest energy (E =166
MeV) to the low energies (L'~ =20 MeV). The transparen-
cy of the potential allows its precise determination down
to very small distances: Notch tests reveal that the
scattering is sensitive to modifications of the real potential
down to 1—2 fm (Refs. 9 and 12) and likewise a model-
independent analysis shows that the error band on the
real potential remains narrow down to these distances. It
is worth stressing that for most neighboring nuclei such a
precise determination of the real potential does not seem
to be possible, as the stronger absorption found for these

systems leads to much broader error bands. The a+ Ca
potential derived from all these analyses varies smoothly
with energy and is able to reproduce the complicated evo-
lution of the experimental differential cross sections on
the whole angular range. These qualities, together with
the fact that this potential is "unique" and well deter-
mined over a wide radial region, indicate that it has a
strong underlying physical content and require a rnicro-
scopic understanding.

A correct description of antisymmetrization is likely to
be an essential ingredient of a theoretical description of
the system if the scattering is sensitive to rather small in-
teraction distances. The exclusion principle between tar-
get and projectile is rigorously taken into account in mi-
croscopic approaches such as the resonating group and
generator coordinate methods (RGM and GCM). '

The basic ingredients of these methods are fully antisym-
metrized wave functions and some nucleon-nucleon effec-
tive interaction. It should be kept in mind that simplify-
ing assumptions have to be made on these ingredients
(like, e.g., oscillator wave functions for the clusters) in or-
der to make the calculations feasible. A more serious de-
fect of these approaches is that very few channels can be
taken explicitly into account (quite often the calculation is
restricted to the elastic one) and therefore an empirical ab-
sorption is sometimes introduced to simulate the neglected
channels and allow a direct comparison with the experi-
mental cross sections. More often comparison with exper-
irnent is carried out on energies, widths, and spins of
quasibound and virtual levels of the system. The unam-
biguous determination of these quantities from the data is
known to be a delicate problem. ' On the other hand, the
position and width of the calculated levels depend on the
particular effective interaction used and could also be af-
fected by the inclusion of previously neglected channels.
Therefore a decisive comparison of these microscopic cal-
culations with the experimental data appears to be diffi-
cult in many cases.

Promising approaches have recently been proposed to
circumvent these difficulties; they consist in building from
the complicated RGM kernels real local potentials which
predict phase shifts very similar to those generated by a
full microscopic calculation. ' ' These equivalent local
potentials are directly comparable to those extracted
phenomenologically from optical model analyses. These
approaches give an additional impulse to the unambiguous

and accurate determination of. a potential capable of
reproducing the experimental data on the broadest energy
and angular ranges for specifically selected couples of nu-
clei. The systems of doubly closed-shell nuclei are good
candidates for that purpose, both from the theoretical
point of view, due to the tractability of the calculations,
and from the point of view of the phenomenological
analysis, as the weaker absorption expected for these sys-
tems should allow a precise determination of the potential
on a wider radial range.

Returning to the a+ Ca system, there exists a few cal-
culations in the framework of clusterlike microscopic
models [RGM (Refs. 19—24) or shell plus cluster
model ' ]. Though they all predict low energy states
which group into "rotational" bands, they show some
differences in the energy position of the bands with
respect to the threshold as well as in their degree of split-
ting. Moreover, the comparison with specific experimen-
tal states is complicated by the fact that the spectroscopy
of Ti is not so well known as that of lighter nuclei, espe-
cially above the a+ Ca threshold. When attempted,
direct comparison between the predictions of RGM calcu-
lations and experimental angular distributions does not
help because of the very qualitative nature of the agree-
ment obtained. Therefore we believe that a confrontation
of local equivalent potentials derived microscopically, like
those built in Refs. 17 and 18, with existing unique
a+ Ca optical potentials ' could be a possible way out
for this problem.

Apart from the thoroughly investigated a+a system
which would be of little interest in the present context, the
only remaining o.+ doubly closed-shell nucleus candidate
is the a+' 0 system. The low energy spectroscopy of

Ne is fairly unainbiguous. ' Moreover, this nucleus
has been subjected to numerous cluster model investiga-
tions. ' In these calculations the K =0&+, 0, and 04+

bands are commonly interpreted as unexcited core a+' 0
cluster bands; all GCM-RGM calculations, limited to this
cluster configuration, carried out with various nucleon-
nucleon effective interactions, predict essentially similar
phase shift energy behaviors. Unfortunately for '6O(a, a)
elastic scattering there exists no systematic optical model
analysis comparable to those available for the a+ Ca
system. Most experiments have been restricted to bom-
barding energies below E~ =30 MeV, i.e., to the energy re-
gion where prominent structures are observed in the exci-
tation functions; the main purpose of these experiments is
to extract spins, resonance energies, and widths of states
of the compound system. ' For E~&30 MeV on y
sparse and/or incomplete angular distributions are avail-
able. 39-~

This prompted us to undertake measurements comple-
menting those few existing above 30 MeV; these new re-
sults are presented in Sec. II. These data together with
those available above 30 MeV taken from Refs. 42—44
have been subjected to a global optical model analysis,
which is presented and discussed in Sec. III. In Sec. IV
we show how the extracted potential can be traced down
to energies well below E =30 MeV by analyzing selected
angular distributions and by investigating the main trends
of existing excitation functions, and we also discuss the
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significance of quasibound and bound states supported by
its real part. Finally we emphasize the general compati-
bility of our potential with current microscopic ideas. A
summary of the main results is presented in Sec. V.

angle. This was done following a procedure outlined by
Silverstein.

At the laboratory angle 0, the yield of scattered parti-
cles is given by

The experiment was performed at the Louvain-la-Neuve
isochronous cyclotron. The incident a-particle beam was
focused at the center of a cylindrical gas cell located in a 1

m diam scattering chamber. Data were taken at four in-
cident energies 31.2, 39.3, 49.5, and 69.5 MeV (the data
taken at 31.2 MeV were used to test the compatibility of
our measurements with the older data of Cowley and Hey™
mann around 30 MeV). These values correspond to the
energies at the center of the gas target. The energy spread
of the beam is of the order of 0.3%. The size of the beam
spot at the center of the target is about 5 X 5 mm.

The target gas was chemically pure natural oxygen.
The dominant contaminants were xenon ( & 15 ppm) and
argon ( & 0.4 ppm). The gas cell was made of brass pieces
welded and bolted together to form a cylinder 8 cm in di-
ameter and 2 cm useful height. The 320 azimuthal open-
ing was closed by a Havar window 5 p thick. The gas
pressure in the cell was monitored continuously by a cali-
brated pressure transducer whose output signal was fed in
the acquisition system.

The detector system consisted of four silicon detectors 1

mm thick fixed on a turntable rotating around the target
cell. The detectors were of the surface-barrier —type ex-
cept at 69.5 MeV where Si(Li) detectors 3 mm thick were
used. In the latter case the turntable temperature was kept
at about —25'C with a circulation of cold methanol. The
detectors were located at 26.8 cm from the center of the
target.

For each detector there were two collimators. One
brass collimator 0.2 cm wide and 2 cm high was placed at
5 cm from the target cell while a lead collimator was posi-
tioned just in front of the detector. It had a thickness of
10 mm and defined an aperture 1 mm wide and 8 mm
high. To avoid crosstalk between adjacent detectors, 5
mm thick aluminium plates were mounted radially be-
tween the target and the detectors.

A fixed monitor detector was placed at 165' with
respect to the beam axis. The accuracy of the detection
angles was about 0.1'. The alignment of each pair of col-
limators was checked with a laser beam.

Each detector amplifier chain was connected to one in-
put of a multiplexer, the output of which was fed into a
1024 channel analog-to-digital converter. The dead time
in each chain was monitored continuously with a random
pulser. The beam intensity was adjusted to get dead-time
corrections less than 10%. The spectra were accumulated
in a PDP-8 computer end stored on magnetic tapes for
further off-line processing.

The raw angular distributions were obtained by integra-
tion of peaks in the spectra. The assignment of peaks was
done on the basis of kinematics. Before transformation to
the center of mass system, we had to correct the data for
multiple scattering in the gas and the window. At each
angle we computed the target thickness and effective solid

XOG(8) da

Xo and Io are the numbers of target nuclei and projectiles,
respectively. The factor G(8) depends on the geometry
and on the angular dependence of the cross section. We
chose to evaluate G(8) with a Monte-Carlo method in-
stead of performing analytically tedious multiple integrals.
The accuracy of our calculations was checked by small
angle Rutherford scattering (8, & 30 ) on natural xenon
gas. This was done with a 32 MeV alpha particle beam.

In this work we also use ' 0(a,a) elastic scattering data
obtaioed as a by-product of a previous experiment. They
cover a center of mass angular range from 121.3 to 176.3
deg. The incident energies were 40, 42, 44, 46, 48, 50, and
54 MeV. These old data were normalized to the present
ones at 39.3 and 49.5 Me%. The interpolation at other en-
ergies was done assuming the energy dependence given by
Van Oers et al. at 0, =175'.

III. OPTICAL MGDEL ANALYSIS

The ' O(a, a) elastic scattering angular distributions ob-
tained at E~=39.3, 49.5, and 69.5 MeV, together with
those previously measured at 32.2, 104, and 146 MeV by
the Pretoria, Karlsruhe, and Juhch groups, have been
subjected to an optical model analysis. In a first step, in-
dividual searches were performed at each energy using
various real geometries; because of the well-known insen-
sitivity of the cross sections to the detailed shape of the
imaginary potential, the latter was restricted to a squared
Woods-Saxon form factor:

8'(r) = Wo/{ 1+exp[(r —Rg)/2ar] J (3.1)

Although the familiar discrete ambiguity is present at low
energy, from E =69.5 MeV a single potential family
reproduces the experimental data on the whole angular
range (we will return to the problem of the uniqueness of
the extracted potential at the end of this section). Within
this family the resulting potential is found to vary
smoothly over the broad investigated energy range: The
real part shows little energy variation in the surface region
(r & 5 fm), while it displays a systematic decrease in the
interior region when energy increases; on the other hand,
the parameters 8'o and aq of the best fit imaginary poten-
tials fluctuate with energy around some average value,
while the rms radius (r )z shows a systematic increase.

This prompted us to look for some global parametriza-
tion of the potentia' allowing a description of its energy
dependence in terms of a minimum number of parameters.
It was found that the following flexible parametrization,
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V!r ) = Vo I 1+a exp[ —( r /p ) ] I / I 1+exp[( r —R)) ) /2a)) ] ) + Vc(r ), (3.2)

where all the parameters, except a, are kept fixed with en-
ergy, is able to reproduce the radial as well as the energy
behaviors of the best fit real potentials with good accuracy
for the following values of the parameters:

Vo ———38 MeV, p =4.5 fm,

R~ ——4.3 fm, a)i ——0.6 fm (3.3)

[note that the real well depth is not given by Vo but by
Vo(I+a)]. Vc(r) is the Coulomb potential of a uniform-
ly charged sphere of radius 1.3 & 16' fm. For the
imaginary part we kept the parameters Wo and al of Eq.
(3.1) fixed at the average values

a =3.625 —0.0105E (3.5)

This parametrization is shown in Fig. 3; it corresponds for
the real volume integral Jz/4A to the following linear
variation:

f

does not lead to a peculiar radial dependence of the de-
rived potentials; although simpler form factors could be as
successful in representing the data, the energy dependence
of Fig. 2 would then require more than a single energy-
dependent parameter. The parameter a (Table I) decreases
smoothly with energy; in good approximation it can be
represented by the linear variation

8 0 = —25 MeV, Ql =0.65 fm . (3.4)
4A

Jg
(1 aE ),— (3.6)

All the energy dependence of our global potential [Eqs.
(3.1)—(3.4)] is thus contained in the two remaining param-
eters, a for the real part and RI for the imaginary part.
Finally these two parameters were finely tuned to the data
at each energy. At E~ =104 MeV the fit obtained gives
too low cross sections at small angles as was already ob-
served in the individual best fit; this discrepancy is also
apparent in the best fit to the same data obtained by
Harakeh et al. Moreover, the values of a and RI we de-
duced do not carne into line with those obtained at the
other energies. This could possibly indicate some experi-
mental normalization problem at this energy; indeed ad-
justing the overall normalization both improves the fit and
gives values of a and RI in better agreement with the gen-
eral trend (the optimum renormalization of the data is
0.729). The resulting parameters are given in Table I, to-
gether with the volume integrals per nucleon pair. The
corresponding angular distributions are compared with ex-
periment in Fig. 1. Inspection of Fig. 1 shows that our
global potential proves successful in describing the corn-
plicated evolution of the angular distribution pattern, in-
cluding the backward enhancement observed at low ener-
gies as well as its progressive disappearance with increas-
ing energy.

The real part of the potential for energies E~=32.2,
69.5, 104, and 146 MeV is plotted in Fig. 2. It can be seen
that the nonstandard parametrization of Eq. (3.2) for V(r)

with J))/4A =418.1 MeVfm and a=0.00196 MeV
The value of this last coefficient is close to those extracted
phenomenologically for heavier targets ' and substan-
tiated by folding model calculations taking into account
the nonlocality of the nucleon-nucleus interaction.
The parameter Rz (Table I) is also shown as a function of
energy in Fig. 3. The associated volume integral Jl/4A

10

10'

E
(

10
10

TABLE I. Best fit values of the parameters a and Rr of the
global optical potential [Eqs. (3.1)—(3.4)] obtained at several en-

ergies, together with the real and imaginary volume integrals per
nucleon pair.

(MCV)
Jg /4A

(MeVfm )

&r
(fm)

Jr/4A
(MeVfm ) 60 120

I ) ) 1 ) ) I ) ) I ) )

180

32.2
39.3
49.5
69.5

104.0
146.0

3.407
3.125
3.224
2.848
2.374
2.174

399.1
378.6
385.3
357.1
321.5
306.5

3.122
3.536
3.974
4.382
4.496
4.650

41.2
56.4
76.9

100.7
108.3
119.1

Hc~ (deg )

FIG. 1. Comparison of the global optical model cross sections

[Eqs. (3.1)—(3.4) and Table I] with experimental angular distri-
butions at 32.2 MeV (Ref. 43), 39.3, 49.5, 69.5 MeV (this work),
104.0 MeV (Ref. 42), and 146.0 MeV (Ref. 44) (the 104 MeV
data have been multiphed by 0.729, see text).
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10

10

FIG. 2. Real part of the global potential defined by Eqs.
(3.1)—(3.4) and Table I, for E =32.2, 69.5, 104.0, and 146.0
MeV.

(Table I) increases linearly with energy up to about 50
MeV; this is followed by a slower increase with a tendency
to saturation. This behavior is similar to that observed in
alpha-particle elastic scattering on heavier nuclei ' ' as
well as in proton elastic scattering on various nuclei (see,
e.g., Ref. 52).

A measure of the transparency of the derived potential
is provided by the so-called "notch test" technique which
consists in analyzing the effect of local perturbations of
the potential on its ability to describe the data. ' '

There exist various ways to perform these modifications;
here we chose to perturb the real part of our global poten-
tial by multiplying it by the factor

f(r;S,b,d)=1 —d expI —[(r S—)/b] I,
where S is varied from 0. to 8.5 fm in 0.5 fm steps. The
notch was given a width of about 1 fm by taking b =0.5
fm, while its depth was limited to 10%%uo (d=0. 1). This
last value was chosen to avoid excessive modifications of
the potential such as those resulting from performing full
notches (d = 1) or cancelling the potential in some
range. The effect of the perturbation was judged by
evaluating the ratio X /Xo of the chi-squares correspond-
ing, respectively, to the perturbed and unperturbed poten-
tials. The result of these calculations for E~ ranging from
32.2 to 146 MeV is presented in Fig. 4. This figure shows
clearly that, at least for the present system, the scattering
is not Inore sensitive to small distances at high energies
than at the lower ones, and therefore it would be wrong to
interpret the disappearance of the discrete ambiguity for
E~) 69.5 MeV as resulting from a transition from dif-
fractive to refractive behavior (cf., e.g., Ref. 55). The
scattering is seen to be sensitive to the interaction poten-
tial at distances as small as about 2 fm; however, the po-
tential depth at the origin remains completely undeter-
mined at any energy. The most striking energy trends are
a slow shift of the maximum of sensitivity to larger dis-

32.2 MeV

39.3 MeV

49.5 MeV

69.5 MeV

I
I

I
I

I

I

'104 MeV

I

100

E {M~v)

150 146 MeV

FIG. 3. Energy behavior of the parameters a and Rl of the
global potential of Eqs. (3.1)—(3.4): Best fit values (open and
closed circles, see Table I); linear approximation of Eq. (3.5) for
a (solid line); graphical interpolation for Al (solid line); linear
dependence of Rl used between 15 and 32 MeV [dotted line; cf.
Eq. (4.1), see text].

1
0 5

S(fm)

1 1 a 4

10

FIG. 4. Ratio of the chi-square obtained after perturbing the
potential with a radial notch centered at S to that of the best fits
presented in Fig. 1.
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and

are presented in Fig. 8; the semiclassical cross sections
o(e) are very similar to the quantal ones at the three ener-
gies (compare with Fig. 11 below and with Fig. 1). At
small angles the scattering is seen to be dominated by the
barrier component, while the internal component accounts
for the backward oscillations. This again points to the
particular transparency of the ' O(a, a) optical potential,
which is reminiscent of that observed in low energy

Ca(a, a), where a similar mechamsm was proved ' to
be responsible for the large angle enhancement. One sees
in Fig. 8 that while the magnitude of o~ does not change
much with energy, ol decreases by more than an order of
magnitude between 21.5 and 39.3 MeV due to the increase
of absorption in the internal region.

For scattering energies near or above the critical energy
E,"„'„atwhich the effective potential loses its pocket at the
grazing angular momentum, it sti11 appears possible to
distinguish the two components in the quantal S matrix
up to a second critical energy E,'„'„noticeably higher
than the first one, although the semiclassical method of
Brink and Takigawa does no more allow the explicit cal-

100

culation of these components. The persistency of two
contributions above E,"', is exhibited by the osci11ations
observed in the reflection coefficients just below the graz-
ing angular momentum, which are interpreted semiclas-
sically below E,' ', as resulting from the interference be-
tween the two components SI and Sz. Above E,'„", these
oscillations progressively vanish, and they disappear com-
pletely above E,„'„where the reflection coefficients show a
monotonic variation with I. In the present case, our global
potential gives E',„', =40 MeV and E,'„', =75 MeV. [It is
worth noting that both critica1 energies increase with tar-
get mass number: For Ca(a, a), calculations performed
with potential A of Delbar et al. give E,'„",=SO MeV and
E,'„', =10S MeV, while for Zr(a, a) Takigawa and Put
find E',„',=80 MeV and E,'„', =165 MeV.] In the transi-
tion region, i.e., for E~=40—SO MeV, the progressive
disappearance of the backward enhancement may be asso-
ciated to the decrease of ol due to the persistent increase
of absorption. More importantly, the fading of the oscil-
lations in the reflection coefficients at the grazing (see Fig.
9) leads to destructive interference between the successive
partial wave amplitudes at back angles. Above E',„'t =75
MeV, where the reflection coefficients behave smoothly
with l (Fig. 9), and where the distinction between two
components loses any physical meaning, the angular dis-
tributions show the typical exponential falloff of rainbow
scattering' (see Fig. 1 and also Fig. 10 below).

We now turn to the problem of the uniqueness of the
potential derived in our analysis. As expected, the discrete
ambiguity is present at 32.2 MeV, where potentials deeper
than our potential [Eqs. (3.1)—(3.4)] turn out to give
equally acceptable representations of the data (the first
deeper family has Jz/4A =570 MeV fm; there exists also
some evidence for a shallower family, with
Jz/4A =245 MeVfm, which, however, reproduces the
data very poorly and cannot be located any more above 32
MeV). The deeper potentials can be traced up to 49.S
MeV, but above that energy they predict angular distribu-
tions resembling those observed experimentally at lower
energy, in contradiction with the data which show a
monotonic decrease with angle. This indicates that our
experimental data at 69.5 MeV satisfy the uniqueness cri-
teria of Goldberg and Smith, ' i.e., that they extend at this

E„=21.5 MeV 32.2 39.3 49.5 69.5 104.

0.5

10-10-
0 60

H~ Ideg)

120
0 10 20

FICr. 8. Semiclassical angular distributions corresponding to
the reflection coefficients of Fig. 6 at E =21.5, 32.2, and 39.3
MeV: Total (full line), barrier (dotted line), and internal (long-
dashed line) cross sections.

FICs. 9. Modulus of the quantal reflection coefficients SI cal-
culated with the global potential of Eqs. {3.1)—(3.4); at 21.5
MeV, a is given by prescription (3.5) and R& ——2 fm, while at the
other energies, a and Al are taken from Table I.
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energy beyond the rainbow angle. In order to check that
this is indeed the case, we have calculated the deflection
function with the global potential [Eqs. (3.1)—(3.4)] at
several energies; the rainbow angles extracted at
E~ =49.5, 69.5, 104, and 146 MeV are, respectively,
0@-178', 115', 60', and 40. The experimental data are
thus seen to extend beyond the rainbow angle at the three
highest energies; the 104 MeV data set is the best in this
respect: it allows us to assert that our global potential is
indeed the unique one, as it reproduces the data equally
well at small angles as beyond the rainbow angle (see Fig.
1). This would appear at first sight to be at variance with
the results of the analysis performed by Harakeh et al.
at 104 MeV where potentials belonging to different fami-
lies seem to give a comparable representation of the data;
however, as pointed out in Ref. 46, their potential I,
which belongs to the same family as ours, is the only one
giving a good fit both to the small angle diffraction pat-
tern and the large angle exponential falloff.

To summarize this section and for illustrative purposes
we present in Fig. 10 the predictions of the global poten-
tial [Eqs. (3.1)—(3.4)] from 30 to 70 MeV in 2 MeV steps
on the whole angular range; a was fixed by prescription
(3.5), while Rl was obtained by graphical interpolation
from Fig. 3 (full lines). Obviously there is a sharp con-
trast between the complicated low energy behavior of the
cross sections (say, below E =40 MeV), which is dom-
inated by interference effects between f~ and fz, especially
at midangles, and the much smoother high energy regime
where the transition to rainbow scattering is observed, and
where the internal wave contribution, although present up
to about 75 MeV, plays an ever diminishing role.

IV. DISCUSSION

It is tempting zo try to follow the potential below
E =32 MeV, in the region where much structure is ob-
served in the excitation functions ' (we will here restrict
ourselves to energies E )15 MeV). A detailed descrip-
tion of this structure is clearly outside the scope of the op-

tical model: Calculations performed in this energy region
with potential (3.1)—(3.4) using values of a and Ri extra-
polated from the values obtained above 30 MeV predict
only a wide bump around E =20 MeV.

However, there appears to exist below 32 MeV some
"windows" in energy for which the optical model provides
a reasonable description of the angular distributions; this
is apparent in the work of England et al. , where a good
optical model description was obtained at 21.5 MeV, and
in the orthogonality condition model (OCM) study of
Ohkubo et al. ' in the energy range E~=21—24 MeV.
Indeed we obtain quite a satisfactory agreement with the
experimental angular distribution of Bergman and Hob-
bie at E~ =21.5 MeV with potential (3.1)—(3.4) where a
is still fixed by prescription (3.5) and Ri assumes the value
2 fm (see Fig. 11). With the linear dependence,

Rl ——3.122+0. 105(E~—32.2), (4.1)

fixed by the value of Ri just obtained at 21.5 MeV and
that obtained at 32.2 MeV (Table I), we next calculate the
angular distributions at the energies E =25.4, 26.6, 28.1,
29.1, 30.0, and 30.9 MeV investigated by Cowley and Hey-
mann; they are compared with experiment in Fig. 12.
The overall agreement obtained can be considered as satis-
factory in the sense that the essential features of the data,
i.e., the evolution of the position of the oscillations and
their peak-to-valley ratio, is correctly reproduced. How-
ever, the agreement with the experimental pattern ai inter-
mediate and backward angles deteriorates at E =28. 1

and 29.1 MeV, i.e., at energies where broad structures are
observed in the back angle excitation function. ' The
observation of such structures led Cowley and Heymann
to analyze their data (from 25.4 to 32.2 MeV) within the
frame of a single Regge pole model: In their analysis the
scattering amplitude is the sum of a resonant contribution,
supposed to be responsible for the large angle enhance-
ment, and of a background contribution, generated by a
smooth-cutoff model, which describes the diffractive
behavior at small angles. Comparison of Fig. 12 with Fig.
3 from the paper of Cowley and Heymann shows that
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FIG. 11. Comparison of the prediction of the global optical
potential of Eqs. !3.1)—(3.5) (with Ri ——2 fm) with the experi-
mental angular distribution of Ref. 36 at E =21.5 MeV.
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40 FIG. 17. Bound and quasibound states calculated with the
real part of the 32.2 MeV potential; states labeled by the same
principal quantum number N are connected by a solid line.

FIG. 16. Bound states and phase shifts calculated with the
real part of the 32.2 MeV potential [cf. Eqs. (3.1)—(3.4) and
Table I].

another group of even l states is apparent at negative ener-
gies, ending at l =8, just above the threshold. In fact, the
potential supports many additional bound states (Fig. 17)
which group naturally into bands of alternate parities and
can be labeled with the principal quantum number
N=2n„+/, where n„denotes the number of radial nodes
of the associated wave function. ' The states bound by
more than 10 MeV, which do not appear in Fig. 16, corre-
spond in fact to X & 8, while the three groups of states
mentioned above are characterized by N=S—10 (an in-
complete X= 11 band of very broad states can also be dis-
cerned in Fig. 16 at higher energies).

If we interpret our potential in the spirit of OCM-type
approaches, ' which support the use of deep local po-
tentials as a good approximation to full RGM calcula-
tions, we are led to discard the states with X & 8 (simulat-
ing the forbidden states of the RGM), and to retain the
states with K) 8 which are the only ones susceptible of a
physical interpretation. The first two bands (N=S and 9)
must then be interpreted as the members of the "inversion
doublet" of Ne, and the third one as the "higher nodal
band" predicted in RGM-GCM calculations (see Ref. 15
and references therein, and Ref. 72). The experimental
states belonging to the E =0&+,0 bands, which are
generally associated with the inversion doublet bands, are
displayed in Fig. 18, together with the allowed N=8 and
9 states found in our potential; the higher nodal band is
often associated' with the experimental K =Oz band,
whose states are shown on the same figure together with
our N=IO states. The overall agreement appears to be

gratifying, especially if one keeps in mind that these states
are calculated with a potential deduced from an analysis
of elastic scattering data at much higher energies, i.e.,
above E~=30 MeV. The %=8 band is seen to be shifted
downwards by about 4—6 MeV with respect to the experi-
mental ground state band, while the shift of the %=9
band is only 1—4 MeV; both calculated bands also appear
to be too compressed with respect to experiment. The
first states of the %=10 band are in very good agreement
with those of the experimental 04+ band; this agreement
deteriorates for the J =6+ and 8+ states. However, the
experimental states proposed in Ref. 30 as candidates for
the 6+ and 8+ members of the X=0&+ band (with'
E„=12.58 and 17.30 MeV, respectively) have far too nar-
row widths to be compatible with the present analysis.
Indeed, our 8+ state with %=10, .which is found around
E =21 MeV, is several MeV's wide, i.e., nearly two or-
ders of magnitude wider than that given in Ref. 30; doubt
has also been cast on the attribution of the 6+ state at
E„=17.3 MeV to the same band (see Ref. 15, pp.
129—131). In fact all existing RGM-type calculations in-
variably predict very large widths for the higher members
of this band. '7

Our potential locates the last member of the %=10
band at about E =30 MeV (see Fig. 16); it manifests it-
self in this energy region by a very broad plateau in our
calculated excitation function at 8=180'. Unfortunately,
the existence of this gross structure, which is the last
predicted by the potential, cannot be tested experimentally
because no detailed excitation function exists above
E =30 MeV.

The results shown on the left-hand side of Fig. 18 were
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FIG. 18. Comparison of the N=8 —10 states calculated with

the real part of the 32.2 MeV potential (left-hand side) with the
experimental K =0~+, 0, and 04+ rotational bands of Ne
(center) (Refs. 29 and 30); the N =8 and 9 bands calculated with

a+ ——3.02 and a =3.21 are displayed on the right-hand side

(see text). The two experimental states appearing between

brackets are those whose assignment to the E =04+ band is

questioned in the text.

magnitude is also reported in Ref. 66). Our resulting
%=8 and 9 bands are shown on the right-hand side of
Fig. 18. The better agreement obtained for the odd parity
band is not surprising in view of the fact that it has a
more pronounced cluster structure than the ground state
band, which appears to be more shell-model —like. '5 The
volume integrals per nucleon pair corresponding to a+
and a are, respectively, Jz+/4A =369.9 and

Jz /4A =384. 1 MeV fm, i.e., significantly lower than the
value extrapolated from higher energy [Eq. (3.6)] to the
region of the threshold. This deviation remains, however,
small as compared with the distance between adjacent
families (Sec. III), while the parity splitting appears to be
a still smaller effect. This last result is compatible with
the conclusions of microscopic investigations, where the
parity dependence is found to decrease with increasing
mass asymmetry of the system.

It is worth closing this discussion of the phase shifts
and band structure properties of our potential by noting
the great similarity of its real phase shifts (see Fig. 16) and
those derived from the numerous RGM and GCM calcu-
lations performed so far. '

Finally, we show in Fig. 19 that our 32 MeV potential
is nearly identical to the direct potential of Ohkubo et al. ,
which was calculated from the Hasegawa-Nagata-
Yamamoto (HNY) effective nucleon-nucleon interaction '

and was shown in an OCM calculation to describe suc-
cessfully the band structure and also the elastic scattering
data around E =21—24 MeV. It is also compared with
the folding model potential of Buck et al. whose depth
was adjusted to obtain an optimal description of the first
two bands of Ne, but was not tested on elastic scattering
angular distributions; the somewhat shorter range of this
potential, which in all likelihood results from the zero
range of their nucleon-nucleon interaction, would prob-
ably be a handicap to an optical model analysis at higher
energies.

obtained with the value a=3.41 (i.e., they correspond to
the best fit two-parameter potential at E =32 MeV); it, is
clear that a consistent use of the prescription (3.5) down to
negative energies would worsen the disagreement with ex-
periment for the first two bands, i.e., it would lead to
more overbinding. This points to some kind of saturation
of the potential depth below E~ =15—20 MeV; a similar
effect has been reported for the volume integral Jz of the
optical potential deduced from a model-independent
analysis of Ca(a, a). A saturation of the potential depth
is also predicted in the recent theoretical analysis of Aoki
and Horiuchi based on the deduction of an equivalent lo-
cal potential from the ROM nonlocal integral kernels
[these calculations also predict a decrease of Jz at higher
energies, similar to that observed experimentally and men-
tioned in Sec. III (cf. Fig. 3)]. As a matter of fact, we ob-
tain a better agreement with experiment for the first two
bands by slightly readjusting the depth parameter a of the
potential; the best agreement is obtained by allowing this
parameter to depend on parity. The optimal values
cx+ ——3.02 and cx =3.21 were obtained by adjusting,
respectively, the calculated 2+ and 3 states to their ex-
perimental counterparts (a parity effect of comparable

10

10
'])

QJ

100—
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FIG. 19. Comparison of the real part of our 32.2 MeV poten-
tial (open circles) with the direct OCM potential of Ohkubo
et al. (Ref. 61) (solid line) and with the folding model potential
of Buck et al. (Ref. 66) (dotted line).
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V. SUMMARY AND CONCLUSIONS

The compatibility of the phenomenological optical po-
tential deduced from the analysis of extensive elastic
alpha-nucleus scattering data with microscopic descrip-
tions of the system has been investigated in the particular
case of the a-' 0 system, which appeared to be the best
candidate for that purpose. New elastic scattering mea-
surements were carried out at Louvain-la-Neuve at
E~ =39.3, 49.5, and 69.5 MeV. These data, together with
previous measurements at 32.2, 104, and 146 MeV, were
subjected to a global optical model analysis. The extract-
ed potential, which has only two smoothly varying
energy-dependent parameters, gives a precise description
of the data on the broad energy range investigated; it also
reproduces previous unpublished backward angular distri-
butions measured at Louvain-la-Neuve between 40 and 54
MeV, i.e., in the transition region where the backward
enhancement progressively disappears. The sensitivity of
the calculated angular distributions to the various regions
of the real potential has been investigated as a function of
energy using the notch test technique. A semiclassical
analysis of the optical model amplitude shows that the
complicated energy evolution of the low energy data re-
sults from the interference of the barrier and internal
wave amplitudes. The available data were shown to allow
the elimination of the discrete ambiguity; the real volume
integral per nucleon pair of our potential, which is about
400 MeV fm at low energy, decreases with energy with a
slope comparable to that found for higher mass targets.

A simple extrapolation of the potential below E =30
MeV turns out to provide a natural description of some
angular distributions, and of the average excitation func-
tions down to 15 MeV. The broad structure observed at
some angles around 20 MeV incident energy is consistent-
ly interpreted as the J =8+ member of the IC =0& rota-
tional band of Ne, in contradiction with the current at-
tribution, for which this state is located 5 MeV lower
and is very narrow. Phase shift and bound state calcula-
tions allow to locate lower members of this band, as well
as states belonging to two lower bands, which are in good

agreement with the well-known E' =0~+ and 0 bands of
Ne. Lower energy states are discarded by invoking the

Pauli exclusion principle between target and projectile
through orthogonality condition model-type arguments.
The phase shifts and band structure properties of our po-
tential are very similar to those predicted by existing
RGM-GCM calculations.

In conclusion, the unique potential deduced from the
present extensive analysis of ' O(a, a) elastic scattering
data over a broad energy range provides a natural descrip-
tion of the low energy properties of the system, including
the band structure of Ne. We believe that these proper-
ties make it an ideal interface between various experimen-
tal aspects of the o;+' 0 system and their description in
terms of microscopic models. The extension of this type
of investigation to the a+ Ca system —where a unique,
global optical potential describing elastic scattering on a
broad range of energies and angles is available —would
probably shed some light on the band structure properties
of Ti. For elastic heavy ion scattering where the ab-
sorption is known to be more important than for alpha-
particle scattering, a precise determination of the interac-
tion potential in the interior region could prove impossi-
ble. However, the recent observation of back angle
anomalies for specific systems, reminiscent of those ex-
isting for some alpha-nucleus systems, could point to a
certain transparency of the interaction. 'Whether this
transparency will allow an accurate determination of the
optical potential for these systems through an extensive
analysis of the data remains an open question.
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