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A three-channel resonating-group calculation is performed to study the effects of channel cou-
pling on the properties of the H+a system. The channels included are H+a, n+ Li, and n+ Li*
channels, with Li and Li* described by (1s)"(1p) harmonic-oscillator functions representing d+ a
cluster configurations with relative orbital angular momenta equal to 0 and 2, respectively. By com-
paring with the H+a single-channel result, it is found that the three-channel calculation improves
the L = 1 ground state energy by 0.68 MeV and yields additional features such as cusps in the L =0
and 2 phase shifts and a dispersionlike resonance structure in the L =1 phase shift. In addition, it
is noted that, in states with larger L values, the n+ Li* aligned configurations make particularly
important contributions. Characteristics of nucleon-exchange terms have also been briefly investi-
gated; here one finds that, as far as the H+u system is concerned, the important one-exchange and
core-exchange contributions are only weakly affected by the presence of other channels.

NUCLEAR REACTIONS H(a, n) Li, H(a, n) Li*. Effects of channel cou-
pling. Resonating-group method with H + a, n + Li, and n + Li* channels.

I. INTRODUCTION

The resonating-group method (RGM) was proposed by
Wheeler' more than forty years ago. Since then, it has
been extensively employed to study bound-state, scatter-
ing, and reaction problems especially in light systems.
Because of computational complexities associated with the
necessity of taking into exact account the antisymmetriza-
tion of the wave function and the center-of-mass motion,
it was generally thought that the domain of applicability
of this method must be quite limited; indeed, it has been
emphatically stated by some authors about ten years ago
that, from a practical standpoint, it can only be applied to
very light systems with A (8. As is now well known, this
viewpoint turned out to be much too pessimistic. In the
early and mid-seventies, several generator-coordinate
methods began to be developed. With these computation-
al techniques, it was soon found that RGM calculations
are feasible in even much heavier systems. In fact, a large
number of such calculations now exist, and much infor-
mation has been obtained to advance our knowledge con-
cerning the clustering properties of nuclei and the charac-
teristics of internuclear interactions.

For detailed and systematic investigations, however, it
is our opinion that, because of limitations imposed by
present-day computational facilities, major efforts should
still be concentrated on very light systems. Among these,

the seven-nucleon system is likely the most interesting one
from the following viewpoints: (i) for the H + a configu-
ration, core-exchange effects are very important because
the interacting nuclei have a small nucleon-number differ-
ence, and (ii) the interplay of different cluster structures,
such as the H+ a, n+ Li, and n+ Li* structures, may
be quite significant in this system. In addition, it is of
course known that the He(a, y) Be reaction is relevant to
the solar neutrino problem. ' Quite clearly, a better
understanding of the structure of the seven-nucleon sys-
tem would lead to a more reliable estimate of the capture
rate for this reaction.

In this investigation, we shall make a resonating-group
study of the seven-nucleon system by taking H+ a,
n+ Li, and n+ Li' channels into account, with Li and
Li' being T =0 states described by (ls) (lp) harmonic-

oscillator shell-model functions representing d+ a cluster
configurations with relative orbital angular momenta I
equal to 0 and 2, respectively. For clarity in presentation,
the discussion will be centered on the H+ 0, channel; in
other words, we shall be mainly concerned with the cou-
pling or specific distortion effects of the n+ Li and
n + Li* channels on the bound-state and phase-shift
properties of the H+ e system.

Specific distortion effects on the bound and resonance
states of the H+ a system have previously been con-
sidered by other authors. ' The results obtained showed
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that, with such effects taken into account, there is a gain
of about 0.7 MeV for the cluster separation energy in the
ground state of the compound system. This is an interest-
ing finding, since the corresponding gains in the o.+a and
d+ a systems are equal to about 0.3 and 1.7 MeV, respec-
tively, ' '" indicating that the importance of specific dis-
tortion effects can be correlated with the compressibilities
of the clusters under consideration. In this calculation, we
shall consider the effects of channel coupling not only on
the bound and resonance states to verify the above-
mentioned result, but also on the scattering phase shifts in
order to obtain information concerning the reaction mech-
anisrn.

The present investigation of channel-coupling effects is
undertaken also to supplement our recent three-cluster
resonating-group study in which the inAuence of d+ a
surface clustering on the properties of the n+ Li system
was examined. ' It is our hope that with the knowledge
learned from this and the previous investigation, we can
gain a clear picture about the level structures and the reac-
tion mechanism in the seven-nucleon system.

It should be mentioned that, as has been emphasized
many times previously, the Pauli principle has the effect
of reducing greatly the differences between seemingly dif-
ferent cluster structures when the nucleons are close to
one another. Thus, especially in the low-excitation region,
it is a good approximation to omit other cluster configura-
tions, such as d+ He, n+ Li' (T =1), and so on. ' We
are confident that the present three-channel study is suffi-
ciently extensive for our purpose.

In Sec. II we give a brief description of the resonating-
group coupled-channel formulation. The results are dis-
cussed in Sec. III, where channel-coupling effects on the
energies of the bound and resonance states, and on the
characteristics of the scattering phase shifts in the H + a
system will be considered. Finally, in Sec. IV, we summa-
rize the findings of this investigation and make some con-
cluding remarks.

II. FORMUI. ATION

The formulation of a coupled-channel resonating-group
calculation has already been described in Ref. 4; hence
only a brief description will be given here. Because the
nucleon-nucleon potential to be adopted is purely central,
both the total orbital angular momentum L and the total
spin angular momentum S are good quantum numbers.
The value of S will be taken as —,

' since, as was mentioned
in the Introduction, the emphasis of this investigation is
to study the effects of channel coupling on the incident
H+ a channel.

Denoting the H+ 0., n+ Li, and n+ Li channels as
channels I, 2, and 3, respectively, we write the trial wave
function in a particular L state with magnetic quantum
number M as

pIL ~ ' p~Qg fII (R I ) Yl (R 1 4SZ (Rc.m, )
R1

(2)

$6(I =0) fq~(Rq) YI(Rz) ksZ(R, m )
2 L

(3)

$6(I =2) fpl(R3)F((R3)
I R3

, L

X gsZ(R. ) '

where Ez is the total energy of the system and H is a
Galilean-invariant Hamiltonian operator given by

7 7H=gr+ g v„

with W being an antisymmetrization operator, g~ and gz
being appropriate spin-isospin functions, Z(R, ) being
any normalizable function describing the motion of the to-
tal c.m. , and R; (i =1,2, 3 with Rq ——R3) representing the
vector separation distance between the clusters. The rela-
tive orbital angular momentum I is coupled with the inter-
nal orbital angular momentum I to yield the desired value
of L. As is evident, l is equal to L in the n + Li channel
(channel 2); however, in the n + Li* channel (channel 3), l
will assume the value 2 for L =0, 1 and 3 for L = 1, and
L —2, L, and L +2 for L & 2.

The functions P and P, describe the internal spatial
structures of the a and H clusters, respectively. They are
chosen to have the lowest configurations in harmonic-
oscillator wells. To simplify the calculation, we adopt a
common value o. of 0.44 fm for their respective width
parameters. This latter value is chosen such that the sum
of the experimentally determined mean-square matter ra-
dii of the a particle and the triton is reproduced. The
functions P6 and P6 represent the spatial structures of Li
in its ground and excited states; as has already been men-
tioned, these will be taken as (ls) ( lp) harmonic-
oscillator functions describing d+ o. cluster configura-
tions with internal orbital angular rnomenta I equal to 0
and 2, respectively. Again, for the sake of reducing com-
putational effort, we shall make the simplifying assump-
tion of choosing the width parameter of the oscillator well
to be the same as that for the o,' and H clusters, namely,
0.44 fm

The linear variational amplitudes or relative-motion
functions fIi, fq~, and fz~ are obtained by solving the
projection equation

gM yyM

where

with Vz being a nucleon-nucleon potential and T, being
the kinetic energy operator of the total center of mass.
Following the procedure outlined in Ref. 4, one readily
finds that these functions satisfy a set of coupled integro-
differential equations. For example, in the L =3 state, the
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number of such equations in this set is five, involving the
relative-motion functions fi3, fz3, f&i, f33 and f35 In
each of these integro-differential equations, there appear,
in addition to the direct potential, kernel terms which
represent the nonlocal interaction and the coupling to oth-
er channels. The derivation of these kernel terms is quite
complicated and a brief discussion of it, together with a
description of a new calculational method for evaluating
RGM matrix elements with Gaussian functions, is given
in the Appendices.

The nucleon-nucleon potential employed in this investi-
gation is purely central; it has the form"

1+PJ 1 —P)q

2 ' 2
Q 2 —Q pPf

2

VpR
——200.0 MeV, aR ——1.487 fm

Vp~ = 178.0 MeV, a, =0.639 fm

Vp, ——91.85 MeV, a; =0.465 fm

(9)

This particular nucleon-nucleon potential is chosen be-
cause it yields a satisfactory description of not only the
two-nucleon low-energy scattering data but also the essen-
tial properties of the deuteron, H, and a particle.

As is noted from Eq. (7), we have further simplified the
calculation by omitting the Coulomb interaction. This is
a reasonable assumption to make, since our main objective
is to study the influence of channel coupling on the prop-
erties of the H+a system. It is certainly to be expected
that the coupling of the channels should be affected inore
by the nuclear interaction than by Coulomb effects.

The coupled integro-differential equations are solved by
a variational technique discussed by Kamimura. ' From
the resultant relative-motion functions, we extract the di-
agonal element SP i, and the off-diagonal element SII I of
the scattering matrix. ' As is customary, the diagonal ele-
ment will be parametrized as

where u is an exchange-mixture parameter, chosen in a
way to be discussed below. The potentials V~, V„and V,
are taken to have the following Gaussian forms:

VR ——Vp„exp[ —~~ ( r, —r, )'],
V, = —Vp, exp[ —a, ( r; —rj ) ],
V, = —Vp, exp[ —a, ( r; —rJ ) ],

with

III. RESULTS

A. Determination of the exchange-mixture parameter u

The exchange-mixture parameter u in the nucleon-
nucleon potential is determined by using experimental
data on the H + a cluster separation energies in the —,

3

ground and the —,
' first excited states. ' By averaging

these energies according to (L S ) weighting and by fur-
ther adding a Coulomb energy of 0.86 MeV estiinated by
utilizing experimental results on the ground-state energies
of Li and Be, it is found that, in a calculation where
Coulomb and spin-orbit effects are not included, the
H+ a relative energy in the lowest L = 1 state should be

equal to —3.17 MeV. To obtain this latter value with our
present three-channel formulation, we find that the value
of u is 0.985.

With this value of u, we calculate the threshold energies
of the n+ Li and n+ Li' channels .The results are
shown in Fig. 1, where it is seen that the calculated values
are larger than the experimental values by about 2 MeV.

B. Effects of channel-coupling on bound
and resonance states

11.01
+6n+ Ll

Q—
6.70

~ 6-n6L~
(D
U

L=3
2

0

8.38
n+6t i

478
n+ Li

2.62 2.59 2.76.-.1.90.

Channel-coupling effects on the I.=1 bound state and
L =3 resonance state are shown in Fig. 1, where the
columns labelled by SC (single channel), CC (coupled
channel), and Full represent, respectively, results obtained
with the H+a channel alone, with the H+a plus
n+ Li channels, and with all three channels included.
As is well known, these particular states can be reasonably
well described by a single t+ a cluster configuration;
even so, however, we note that there is a substantial irn-
provement when the n+ Li and n+ Li* channels are
taken into consideration. For the L =1 ground state, the
energy is inainly improved by the inclusion of the n + Li
channel; further addition of the n + Li' channel seems to

Sr I. rjl I exp(2i5I ——I ),L L ~ L
(10) -2 31 -2.31

L =
1 -..-3.00

in terms of the reflection coefficient ili r. and the phase
shift 5& I . For the coupling or off-diagonal element SII z,
only the result for the transmission coefficient, defined as

L L
n», I. = Is»

will be needed in the following discussion.

Thres. SC CC Carr.

Theory Exp't

FIG. 1. Comparison of L = 1 ground-state energies and L =3
resonance-state energies obtained with the single-channel (SC),
coupled-channel (CC), and full (Full) calculations. Calculated
and experimental threshold energies for the various channels are
also shown.
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have much less influence. The opposite turns out to be
the case for the L =3 resonance state. Here the calcula-
tion shows that there is only a minor difference between
the SC and CC results and the improvement in the L =3
resonance energy comes almost entirely as a consequence
of the presence of the n + Li' channel.

The above observation concerning the roles of the
n+ Li and n+ Li channels in the L =1 and 3 states
can be easily understood. In the L =1 state, the relative
orbital angular momentum l has the same value equal to 1

in both channels. On the other hand, in the L =3 state, I
is equal to 3 in the n + Li channel, but may have a small-
er value equal to 1 in the n+ Li* channel (i.e., the
aligned configuration). This means that the neutron can
come closer to Li* than to Li; consequently, when the
value of L is large, one expects the n+ I.i' channel to
have a larger influence.

The energy values obtained with the SC and the full ca1-
culations differ by 0.68 and 0.72 MeV in the L =1 and 3
states, respectively. The fact that the improvement in the
L =3 state is even larger than that in the L =1 state has
also been found by Mihailovic and Poljsak in their
cluster-model study of Li. If one now makes a further
Coulomb-energy correction of 0.86 MeV, then the calcu-
lated I =3 resonance occurs at 2.76 MeV which agrees
rather well with the value of 3.04 MeV determined from
experimental data by (1.S) weighting.

It is interesting to compare the results obtained here
with those obtained by other authors. In the cluster-
model study of Beck et al. , the cluster configurations in-
cluded are the two-cluster configuration H+ a, and the
three-cluster configurations n + a + d(T =0) and n + a
+d ( T = 1) with the d + a relative orbital angular
momentum chosen to be equal to 0. The result showed
that, for the L = 1 ground state, the energy obtained with
the full calculation is 0.66 MeV better than that obtained
with a single-channel H + e calculation. In the investi-
gation carried out by Kanada et al. , specific distortion ef-
fects in the H + a system are taken into consideration by
the introduction of an H + a channel. This resulted in
an improvement of 0.76 MeV for the ground-state energy.
The important point to note is that, in these three calcula-
tions where apparently different cluster structures are con-
sidered together with the H + a configuration, the energy
gain in the L = 1 ground state is approximately the same
and equal to about 0.7 MeV. ' At first, this inay seem to
be a surprising finding, but is actually rather to be expect-
ed. It is merely a demonstration of the fact that the pro-
cedure of antisymmetrization has the effect of reducing,
to a large extent, the differences between apparently dif-
ferent nonorthogonal cluster functions.

For the L =3 resonance state, the situation is somewhat
different. Our present investigation shows that the intro-
duction of channel coupling improves the energy by 0.72
MeV, which is significantly larger than the improvement
of 0.33 MeV obtained by Kanada et al. This indicates
that, in a state where L is large, a better description can be
obtained by adding into the formulation n+ Li and
n + Li configurations rather than the H + a configu-
ration. Evidently, the reason must be that the important
n+ I.i* aligned configuration cannot be properly taken

into account in a calculation involving only H+ a and
H* + a channels.

C. Effects of channel-coupling on S-matrix elements

The results for the phase shift 5r r, the reflection coef-
ficient g~ I. , and the transmission coefficient gII I in
states with L =0—7 are shown in Figs. 2—8 as a function
of E, the relative energy of the H and a clusters in the
c.m. system. For the phase shift, we show the values ob-
tained in the single-channel case (SC, dashed curves), the
coupled-channel case (CC, solid circles), and the full cal-
culation (Full, solid curves), while for the reflection and
transmission coefficients, only the values obtained in the
full calculation are plotted. Also, for clarity in presenta-
tion, we shall not show the transmission coefficient for
transition into any weakly coupled (Il) state where its
value is smaller than 0.1 in the entire range of relative en-

ergy considered (i.e., 0—35 MeV).
The salient features in each of these L states are as fol-

lows.
(i) L =0 state (Fig. 2). The most notable feature is that

the phase-shift curve has a cusp at the n+ Li threshold.
This is an expected phenomenon, ' and arises from the
fact that the H + e configuration is coupled rather
strongly to a neutron channel with /=0. ' At present,
there is some experimental evidence for this behavior.
Empirical H + a phase-shift values in the L =0 state (see
Fig. 3 of Ref. 8) do seem to deviate from a monotonically
decreasing trend at the n + Li threshold of 4.78 MeV. It
would indeed be interesting to reanalyze the experimental
data by specifically keeping the presence of an L =0
phase-shift cusp in mind. Such a precautionary measure
may very well lead to a more successful phase-shift
analysis of the measured results.

The calculation of Kanada et al. suffers from the fact
that specific distortion effects are taken into account by
the introduction of a fictitious H" + a cluster configura-
tion. This latter configuration consists of charged clusters
and has a high energy threshold of 18.42 MeV. As a re-
sult, no phase-shift cusp appears in their investigation
which covers an energy range up to about 15 MeV and the
influence of specific distortion was found to be quite
minor in the L =0 state. Thus, even though their calcula-
tion is technically more convenient and the result obtained
for the L =1 ground state is quite satisfactory, our
opinion is that a better way to study specific distortion ef-
fects in all L states is by introducing realistic cluster con-
figurations according to energetical considerations.

From Fig. 2, one readily sees that, especially at lower
energies, the H+ a channel is coupled more strongly to
the n+ Li channel than to the n+ Li* channel. Evi-
dently, this is related to the fact that the relative orbital
angular momentum l is equal to 0 in the n+ Li case but
equal to 2 in the n+ Li* case; hence the coupling be-
tween the H+ a and the n+ Li* channels is reduced be-
cause of centrifugal-barrier effects.

(ii) L = 1 state (Fig. 3). With the full three-channel cal-
culation, the result shows that there appears at about 0.6
MeV above the n+ Li threshold an L =1 resonance lev-
el which does not show up in a SC calculation. From the
dispersionlike behavior of the phase shift, one can con-
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FIG. 2. Calculated phase shifts, reflection coefficient, and
transmission coefficients for L =0 in the H+a channel. The
dashed curve, solid circles, and solid curve represent results ob-
tained with the SC, CC, and full calculations, respectively.

FIG. 3. Same as Fig. 2, except that L = 1.

elude that the partial width for the decay into the H + a
channel is much smaller than the total width of this level.
In fact, by studying the energy-dependent behavior of the
S-matrix elements, it can be easily determined that at this
resonance the nucleus Li has mainly a n+ Li* cluster
configuration with 1 = 1.

Although there is little doubt that such a resonance lev-
el exists, one should be careful about the quantitative as-
pects of the result. In our calculation, the nucleus Li' is
described by a simple (ls) (lp) configuration which does
not allow for a sufficient degree of d+ a clustering. As
has been found in a recent single-channel study of the
n+ Li system, ' an adequate allowance for such cluster-
ing can increase the l =1 resonance energy by about 2.5
MeV. Thus it is reasonable to expect that this level may
actually possess an excitation energy of around 12 MeV.
Experimentally, ' only scant information concerning the
level structure of Li is known in the excitation-energy re-
gion beyond 11 MeV and, hence no identification with ex-
periment can be made for this level at the present mo-
ment.

(iii) L =2 state (Fig. 4). From Fig. 4 one notes that, in
the L =2 state, both the n+ Li and the n+ Li* chan-
nels contribute in modifying the phase-shift result of the
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H+n
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0.4—

0.2—

00 10 15 20
E(MeV)

25 30 35

FIG. 4. Same as Fig. 2, except that L =2.
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SC calculation. With the n+ Li channel taken into con-
sideration, it is seen that the very broad L =2 state at
about 10 MeV, discussed previously in a SC H+ cx

study, becomes somewhat more evident.
As expected, there appears a prominent cusp in the

L =2 phase-shift curve, due to the coupling of the H + a
channel with the n+ Li* channel in the l =0 state. At
present, we can find no definitive evidence for the ex-
istence of this cusp, because the existing L =2 empirical
phase-shift values are not refined enough to serve this pur-
pose.

(iv) I- =3 state (Fig. 5). In the low-energy region
around the sharp L =3 resonance, it is noted that the
H+ a phase shift is mainly affected by the coupling to

the n+ Li aligned configuration. The presence of the
n+ Li cluster configuration in the calculation seems to
have little significance.

At higher energies above 12 MeV, the situation is some-
what changed. Here one finds that the n+ Li channel
does seem to have some infiuence. In addition, it is seen
from Fig. 5 that, of all the transmission coefficients, ilio 3
has the largest value, and for the n+ Li" channel the
coupling of the H+ a channel to the l =3 configuration
is even stronger than that to the l =1 aligned configura-
tion. To understand these findings, one needs only to note
that, in the Pauli-favored I =3 state„a SC n + Li calcula-
tion yields a broad resonance behavior in the energy region
around 15 MeV above the n+ Li threshold. ' The pres-
ence of such resonance structures in the n + Li and
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FIG. 6. Same as Fig. 2, except that L =4.
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n+ Li* channels is responsible for the features of chan-
nel coupling mentioned above.

(v) L =4 and 5 states (Figs. 6 and 7). In these orbital
angular momentum states, the phase-shift and
transmission-coefficient results show that the H + a
channel couples rather strongly to the aligned configura-
tions (i.e., l =L —2) of the n+ Li* channel, but very
weakly to the n+ Li channel. This is quite definitely a
consequence of the different centrifugal barriers in these
respective configurations.

As is seen from Figs. 6 and 7, the effect of channel cou-
pling on the H + a phase shifts is fairly substantial in the
energy region considered here. This is related to the fact
that, at energies around 22 MeV, there exist broad L =-4
and 5 resonance levels which have predominantly a
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FIG. 5. Same as Fig. 2, except that L =3. FIG. 7. Same as Fig. 2, except that L =5.



28 CHANNEL-COUPLING EFFECTS IN THE RESONATING-GROUP. . . 1875

Zo-

0
(g
'O -Zo

0.6—
cO 0.4—

H+u

~6,6
I

6$'
6,6

0.2—

00 10 15 20
E(MeV)

25 30 35

FIG. 8. Same as Fig. 2, except that L =6 and 7.

H+ a cluster structure. In the L =4 state, one further
notes that there appears a wavy behavior in the phase-
shift curve obtained from the full calculation. This can be
understood as resulting from the presence of a broad l =2
resonance with a n + Li* cluster configuration.

At energies higher than 35 MeV, the channel-coupling
effect becomes progressively weaker. In the L =4 state,
for example, the phase shifts obtained at 50 MeV with the
SC and the full calculations are equal to 73.6' and 74.6,
respectively, a difference of only 1'.

(vi) L =6 and 7 states (Fig. 8). For completeness, we
show in Fig. 8 the I.=6 and 7 results obtained with the
full calculation. Because of high centrifugal barriers, the
coupling between the channels is weak and the aligned
configurations of the n+ Li channel yield again the
most significant contributions.

(vii) Summary. The purpose of this investigation is to
examine, in the incident H + a channel, the effects aris-
ing from the coupling with the n + Li and n + Li chan-
nels. In spite of the fact that both the H and the a clus-
ters have comparatively low compressibilities, the result
shows that channel-coupling effects are important and
should be properly taken into consideration. With the full
three-channel calculation, we find that there appear in-
teresting cusp behavior, additional resonances, and a sub-
stantial modification of the phase-shift and binding-
energy values.

Both n+ Li and n+ Li* channels are found to make
important contributions. At higher I. values, it is shown
that the aligned configurations of the n+ Li' channel are
particularly important. This indicates that, in any future
investigation where one wishes to improve the single-
channel results by introducing additional 3+8 cluster
configurations, it is important that all states of A or B
arising from the same intrinsic structure must be included
in the calculation.

The importance of the n+ Li channel is further
demonstrated in Fig. 9 where we plot the calculated cross
sections oz and o.~ for the He( H,n) Li and
He( H,n) Li' reactions, respectively. Here one sees that

150-

E

b 100-
b

50—

0
10 255 15 20 30 35

E(Mev)

FIG. 9. Ca1culated cross sections oz and o.z for the
He( H,n) Li and He( H,n) Li* reactions, respectively.

o.z is generally much larger than a~. For instance, at
15.95 MeV, the ratio o~/oz is equal to 2.33, which is in
good agreement with the measured value' for the
He( He, p) reactions leading to the ground and first excit-

ed states of Li.

D. Effects of channel-coupling on exchange contributions

Antisymmetrization effects have been extensively stud-
ied by investigating the general characteristics of the
exchange-kernel function which appears in a SC
resonating-group formulation. The main findings were
(i) the one-exchange terms are generally important in all
nuclear systems and over a wide energy range, and (ii) the
core-exchange terms make important contributions when
the nucleon-number difference of the interacting nuclei is
small. A number of SC resonating-group studies in
specific systems have subsequently been performed to
quantitatively examine the contributions from various
nucleon-exchange terms, ' and the results obtained have
fully supported these general findings.

In the H+a case, the nucleon-number difference is
small and, hence core-exchange effects are very signifi-
cant, as has been verified in SC resonating-group studies
of this system. zo These exchange effects clearly manifest
themselves through a zigzag pattern in the phase-shift re-
sult as a function of L, ' and through a characteristic
rapid rise of the differential cross section in the backward
angular region at a relatively high energy. From a macro-
scopic viewpoint, the main consequence of such effects is
that, in constructing an effective local internuclear poten-
tial, one must take care by including at least the freedom
of having an odd-even l-dependent or parity-dependent
component. In this investigation, our purpose is to deter-
mine whether the presence of channel coupling can sig-
nificantly modify the extent of the nucleon-exchange con-
tributions. To achieve this purpose, we shall compare the
results obtained with the SC and full calculations.

In Fig. 10, we show such a comparison for the phase
shifts 51 I (abbreviated as 51 ) calculated at 35 MeV. Here
the crosses and open circles represent results obtained with
the SC and full calculations, respectively. As is seen, the
difference is rather small; in comparing with the SC re-
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FIG. 10. Comparison of the H+ a phase shifts at 35 MeV,
obtained with the SC (crosses) and full {open circles) calcula-
tions.

suit, the full calculation yields slightly larger phase shifts
in even-L states and slightly smaller phase shifts in odd L-
states. This indicates that, for the H+ o, system, the
coupling to the n+ Li and n+ Li* channels reduces
slightly the core-exchange contributions but has almost no
effect on the one-exchange contributions.

More detailed information is contained in the Argand
plot of the 35-MeV S-matrix element SI L (abbreviated as
Sl ) shown in Fig. 11, where the symbols have the same
meaning as explained in the preceding paragraph. En such
a plot, the odd-even effect shows up through a bunching
of the odd-l and even-/ points. By examining this figure,
one can clearly see that this effect is still very strong in
the full calculation.

0 20 40 60 80 100 120 140 160 180
8 (deg)

FIG. 12. Comparison of H+a differential cross sections at
35 MeV, obtained with the SC (dashed curve) and full (solid
curve) calculations.

To complete the discussion, we show in Fig. 12 a com-
parison between the differential cross sections at 35 MeV
obtained with the SC (dashed curve) and full (solid curve)
calculations. Here one sees that, because of reaction ef-
fects, the solid curve lies generally below the dashed curve,
which is an expected finding. However, it is also noted
that the feature of cross-section rise in the backward an-
gular region is equally prominent in both calculations, in-
dicating again that core-exchange effects in the H+ u
system are not greatly influenced by the coupling to other
channels.

IV. CONCLUSIONS

r9 Re SL
8

FIG. 11. Argand plots of the 35-MeV S-matrix element SL,
obtained with the SC (crosses) and full (open circles) calcula-
tions.

In this investigation, a three-channel resonating-group
calculation, consisting of H+ a, n+ Li, and n+ Li*
cluster configurations, has been performed. The main
purpose is to study the effect of channel coupling on the
properties of the energetically most-favored H+ a con-
figuration. To achieve this purpose, we have carried out a
systematic examination by completing not only the full
calculation involving all three channels, but also a single-
channel calculation with the H+ e channel alone and a
coupled-channel calculation consisting of H + e and
n+ Li channels.

In comparing with the single-channel result, the full
three-channel calculation lowers both the I. =1 ground-
state energy and the I.=3 resonance state energy by about
0.7 MeV. The ground-state energy is improved mainly by
the inclusion of the n+ Li channel, with the addition of
the n + Li channel yielding a smaller gain. On the other
hand, for the I. =3 resonance state, the opposite turns out
to be true.
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Both the n+ Li and n+ Li' channels are significant
in modifying the H+ a single-channel scattering result.
With the full calculation, we find such new features as
cusps in the L =0 and 2 phase shifts and dispersionlike
resonance behavior in the L =1 phase shift. In addition,
it is noted that, in states with larger L values, the n + Li*
aligned configurations make particularly important con-
tributions.

Characteristics of nucleon-exchange terms have also
been briefly investigated. Here one finds that, as far as
the H + 0; system is concerned, the important one-
exchange and core-exchange contributions are both only
weakly affected by the inclusion of other channels. This
is a very significant finding, since it indicates that the gen-
eral conclusions ' ' about exchange effects, reached previ-
ously by examining the properties of the kernel function
in a single-channel resonating-group formulation, are
valid and can be used to predict the importance of ex-
change contributions in complicated systems.

At this moment, we wish to make some comments
about the types of cluster configurations which should be
included in a multichannel resonating-group study. Al-
though the Pauli principle has the effect of reducing the
differences between apparently different many-nucleon
configurations, it would still be important to have some
guide as to the most appropriate choice in an approximate
calculation. From a practical viewpoint, this will certain-
ly be useful, since it is well known that multichannel
resonating-group calculations are complicated to formu-
late and, hence the number of cluster configurations
should be chosen as small as possible in order to make the
investigation computationally feasible. Based on the
knowledge gained in present and previous ' calculations
in the seven-nucleon system, it seems to us that the selec-
tion criteria should be as follows: (i) cluster configura-
tions should be chosen according to energetical considera-
tions, and (ii) all states of the constituent clusters with the
same intrinsic structure should be taken into account. In
the calculation of Kanada et al. , the cluster configura-
tions adopted are the H+ cx and H* + a configurations
and the above criteria are not met; hence although their
results for the ground-state energy and for the phase shifts
in the low-energy region are quite reasonable, certain de-
fects do show up, as has been pointed out in the preceding
section.

In conclusion, we have learned from this investigation
the essential features of channel coupling. As our future
project, we plan to carry out the difficult task of extend-
ing our present calculation to include target-clustering,
Coulomb, and absorption effects, with the hope of eventu-
ally explaining the main features of all the low- and
medium-energy experimental data which exist in the
seven-nucleon system.

APPENDIX A: COUPLING KERNELS
IN GENERATOR COORDINATE SPACE

En this Appendix, we show the expressions of the kernel
functions derived with the generator-coordinate method
(i.e., GCM kernels). Both the kernels for the n+ Li sys-
tern and the coupling terms between the H+ a and
n + Li channels will be given. For the derivation of these
kernels, the internal wave function of Li is assumed to be
a simple shell-model wave function with SU4 label (20)
and a common harmonic oscillator width parameter n is
used for all the constituent clusters.

For our purpose, we introduce an Li, SU3 coherent
state by the expression

4'&zo)( Li)—:~(~)0(2o)a( Li)
' 1/2

4m

»+' &1M(~)0(2o)IM( Li)

(Al)

( 1 )()v I)/2—N!(2I + 1)
(N —I)!!(N+I+ 1)!! (A2)

Also, we define a localized Gaussian function

Ar(r, z)=
' 3/4

exp[ —y(r —z/v y) +z /2], (A3)

which is a coherent state of harmonic-oscillator wave
functions if we take z to be a complex variable. In the
following, we further denote by X(n) the spin-isospin
function of the incident neutron and use a factor e (S),
with e( —,

'
) = ——, and e( —', ) =1, to represent the effect of

spin-isospin coupling in each spin angular momentum
state S [see the expressions of n+ Li(20) kernels given
below].

Generating functions for Eqs. (2)—(4) are defined by

@'{'H+a)=M,' [Ar (R(, z)$( H)P(a)],

4"' (n+ Li) =M'+6„,[A), (R2, z)4'(2o)( Li)X(n)],
{A4)

where (()(2o)H( Li) is the highest weight state defined by the
internal wave function of the (1s) (lp, ) configuration,
A(co) is a rotational operator with Euler angles specified
by a unit vector co, and

This research was supported in part by the U.S. Depart-
ment of Energy under Contract No. DOE/DE-AC02-79
ER10364.

where y'=6a/7 and y=3a/7 are harmonic-oscillator
constants for the relative motions in the H+ o. and
n+ Li channels, respectively, and M3 and M'8+a 6Li
are normalized antisymmetrization operators. The
nucleon-nucleon potential used to derive the kernel expres-
sions is assumed to have the form
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V(r)= Voexp( ar—)(W+BP HP—, M—P P, ) .

In addition, the following constants are defined:

Vc ——Vq[a/(a+2m)], rl=a/(a+2m),

(A5) 2 W —B H—+M/2
4 28 +28 —H —M,

W/2 B—H—~2M
—8' —B ~2H +2M,

(A7)

a =7q/6, 2'=7il/12,

and

(A6)

Xd 8F +4B 4H 2M~ X~ 8M +4H 4B 2 S
for

1

2S=
2

1. n / Li(20) kernels

The normalization kernel is

(@' ' (n+ Li)
~

4''"(n+ Li)) =exp(z'*. z)(co' co) —exp( —z'* z/6))&[(co' co) + 6 e(S)(co' co)(z'* co)(z co')] .

The kinetic energy kernel is
7(4* '"(n~ Li)

~ g T; —T, m ~

4*'"(n~ Li))

=E„[exp(z' .z)(co'.cu) I
—', ——,

' (z"—z) J

—exp( —z".z/6)I(oi' co) [—' ——,
' ((z'*) ~z )——,

' z'* z]
4- —', e(S)(co'.co)(z".~)(z ~')[8——,'((z") +z ) ——,

' z'* z]I],
where E„=3A' a/(4M„) with M„being the nucleon mass.

The interaction kernel is

7
(4* "(n~ Li)

~ g VJ ~

4''"(n+ Li)) = VcIexp(z'* z)[G'"'+ G' '] —exp( —z" z/6)&C[GI'~e(S)G2']I,

where

G'"'=(co' co) [(2 i1)Xg~(1+i—l)X, ~(l —2' ~2il )Fi]+q Fi,
G'" =expI —k(z'*~ z) /2I [—,

' (co' co) Xd

~FBI�(1

g)(co'—ci)) ~ 6
. rI (co' co)[(z'*.co')(z co) ~(z' co)(z.co')

+(z'* ~')(z'".o~)+(z.Q')(z oi)]J],
6'i' ——(co' co) I ( —, —rj)Xd 4-( —,

' ~il)X, ~(1 2rl~2rl )Fi ——(1 rl)F4 rlF5 I——

+rl Fi +[exp( k(z'*) /2)+ex—p( kz /2)](co'. co—) [—,
' (Xd+X, )+(1 rl)F4+ilF5]—

+[exp( —a(z'*) /2)(z" co')(z'* co)+exp( a. z /2)(z. co')(z c—o)](oi' co) 6 g[i1Fq+(1 g)F5]—
—expI —a( z"—z ) /2] (co'.co) j (co' 9)(—,

' X, +vgF5 )+—6F5[(ilz'*+(1—vy)z) co'][((1—vg) z"+viz). co]I,
G2' ———,(co'.co)(z" co)( z.co') I [—,

' (3—i1 )Xd q(1+ 2 i1)X,]+[exp( —a(z'*) /2)+exp( —Ir z /2)]

X[—,((1—il)Xd+ilX, )~(1—2r1~2il )F, ]I

~ 6 il Fi {exp( —k(z'*) /2)(z' .co')(z co')[1~ 6 (1—i1)(z'".co) ]

~exp( —a z /2)(z'*. Q)(z co)[1+.—', (1—il)(z'9') ]] .

The normalization kernel is

2. (3H ~ a) + [n + 6Li(20)] coupling kernels

(4* ( H+u) ~4*'"(n+ Li)) = ——,', (
—', )' (z'*.co) exp z'*.z —exp

3
vZ
4
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The kinetic energy kernel is

(N' ( H+a)
i g T, —T, i

@''"(n+ Li))

7
(

3 )$ j2E (~gy ~)2 ~ig
12 2 Q

3
' 22 1 ((~ig )2 ~

)

V2—exp — z z 22 1 ((~qy }2 -+
3 3

The interaction kernel is

7(4* ( H+. a)
i g VJ i@' (n+ Li)) = —( —', )'i Vo exp z'" z G' ' —exp

i &J

~2-,.- -(.)Z Z
4

where

G' '= —,', (z'* co) (Xd+X, +Fi)+2gFi

+exp( —pc'(z'*) /2)I —,', (z'*.co) [(1—g)Xd+gX, —2r)(1 —g)Fi] 2riFi j—

+exp( —kz /2) —,', (z'*.co) + ri(z'*.co)(z co) [—,'(Xd+X, )—Fi]6 2

+exp( —a'(z'*) /2 —2 z /2 —(kV)' z' z)

X —„(z"co) I —,'Xd —g[ —,
' (Xg+X, )—Fi] j — (z'* co)(z.co)rj[ —,(Xd+X, )—Fi]

G~"= —,'2 (z' .co) (Xd+X, )+2riF&+exp( —F(z' )2/2)I —,'z(z' co) [(1—g)Xd+gX, +(1—2rj+2rl )Fl] 2gFi j—
+exp( —kz /2) ,', (z'* co} (X—d+X,) — rj(z' co}(z co)[ ,' (Xd+X—,) —F|] .

+exp( —F(z") /2 —a. z /2+(K'K) z z)

—,', (z" co) [ ——,'X, +(1—q)[ —,'(Xd+X, ) —F~]j+ g(z'*.co)(z 9)[ 2 (Xd+Xe) —Fi]
6 2

APPENDIX B: NE%' CALCULATIONAL METHOD
OF RGM MATRIX ELEMENTS %PITH GAUSSIAN

BASIS FUNCTIONS

In this appendix, we describe a new method to calculate
RGM matrix elements with Gaussian basis functions,
starting from GCM kernels directly. Although we consid-
er here the simplest case for clarity in presentation, it
should be emphasized that this method is suitable for
more complicated RCxM kernels such as the coupling ker-
nels shown in Appendix A and the three-cluster kernels to
be discussed in a planned future publication.

Consider a particular term of the GCM kernel for an
operator d', which has the form

I(z";z) = (A (R, z')P
i

WP
i
A (R, z)P)

m (r '; r) =—(5(R—r ')P
i

d'P
i
5(R—r)P)

=fdp(z')dp(z)A&(r ', z')Ar(r, z)*

XI(z";z), (B2)

where dp(z) is the three-dimensional Bargmann mea-
sure defined by

In the above equation, p is a product of internal wave
functions, P represents a certain permutation term, and
the coefficients p, cr, and r are determined by the interac-
tion type and the number of nucleons interchanged be-
tween the clusters. ' As is now well known, the RCiM
kernel m (r ', r) corresponding to this term is obtained by
the so-called Bargrnann transformation which connects
the Bargmann space (the Hilbert space of complex GCM)
with the real space. Namely, one finds

=exp[ ——,'p(z' ) —T'crz +rz' zj . (Bl) dp(z)=n. exp( —z*.z)d (Rez)d (Imz) . (B3)
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We wish to calculate the matrix element

M((A),'A2) = (Xg~(R, A))P
~
PP

~
X(~(R,Az)!{})

= f dr 'drX~~(r ', A, ~)'X~~(r, k,2)m(r ', r),
where

P~—E'gO,

0~—620',

r-[(—e, )'"]*(—.,)'"~,
(84) with

(810)

]./222(1+1)lt(2g)1+3/2
X( (r,&)= re "Y~ (r)

(2l +1)!

1 —o.
Xexp —2 —1 yr '

D

2 —1 yr +4—yr'r
D D

(86)

with D =(1—p)(1 —o)—H. Instead of using this stan-
dard procedure, however, we propose here to use the fol-
lowing method which is even more convenient.

Suppose I(z) is a GCM function of Gaussian form in
the Bargmann space and m ( r ) is the corresponding RGM
function for I ( z ); i.e.,

m(r)= fdp(z)Ar(r, z)*I(z) .

Then, we can easily prove that

Mg (A, )=—fdr X( (r, A, )m(r)
3/4

(1—e
(2l + 1)!!,

2y 4.
1/2

(87)

where

'1

lim fd r Y( (r)m(r),r~o 2 pr

(88)

(85)
is a Gaussian function with a width parameter A, . The
Gaussian integral of Eq. (84) is, of course, straightfor-
ward to evaluate, if we use the well-known formula

3/2

m(r', r)= 2y 1

m D

(811)e;= (i =1,2)
7+~i

in the expression obtained by using m (r ';r) of Eq. (86)
instead of m(r) as in Eq. (88). The final result is

. I

Mg(A, ),A2)=[(1—ef)(1 e—2)]"+ ~ '~

D D

with
D =(1 +e&p)(1 +e2o) —e&e&r

(812)

(813)

In this appendix, we give explicit expressions of RGM
coupling matrix elements with Gaussian basis functions,
obtained by applying the method described in Appendix
B. In this particular case, it is necessary to classify each
term of the GCM coupling kernels not only by the in-
teraction type and the number of interchanged nucleons,
but also by a number of different angular momentum
types.

Suppose that one term of the GCM kernel for the
n+ Li(20) system has the form

(Cl)

where I(z";z) is given by Eq. (Bl) and f(z**,co', z, co)
represents various polynomials composed of the inner
products of z", co', z, and co. The angular momentum
projected matrix elements for If(z",co ', z, co) with Gauss-
ian basis functions can be written as

3/2
1

X = M [f],
D

(C2)

The matrix elements for the kinetic energy kernel can also
be easily obtained in a similar way.

APPENDIX C: MATRIX ELEMENTS
OF RGM COUPLING KERNELS

and

m(r)= fdp(z)Ar(r, z)*I(V ez)—(89) where the index i = (l;,I;)I. specifies a—channel, and e~, e2,
and D are given in Eqs. (811) and (813). For the
( H + a) + [n + Li(20)] GCM coupling kernels, we simi-
larly write their matrix elements as

with

—ice, 1&e)0
&(ei, 0&e& —1 .

This formula is valid as long as the Gaussian integral in
Eq. (88) is absolutely convergent.

If the limit formula (88) is used twice in Eq. (84), it is
easy to see that, to obtain M&(A, &, A2), one merely needs to
make the following replacements:

Mf(X X ) =[(1—')'+'"(1—e')"""]'"
3/2

Mi [f],
D

(C3)

where we now take e&-——(y' —A&)/(y'+A, , ).
The angular momentum types, which show up in both

normalization and interaction kernels, are listed below in
the normalization-kernel case by assuming an arbitrary
choice of p, o., and w. As an angular momentum function
in the n + Li(20) coupled-channel problem, we introduce
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LGJ(P, , . . . , P, )= d p d 1'd co d co[Xi (&. ) Yy, (~ )]L,M
2Pi+1 I;I

(4m) A2i, A2i

X[&j(r)Y,q(co)],L~Pr, (r '.r)Pr (r '.co)Pp (r co.')Pz (co'co)Pp (r '.co')Pp, (r.co)

(2Pi+ 1)I;IJ f.+j.+T+T AAA Ag( —1)' ~ STST
2Ii 2Ij STS T

XC(PiPzs)C(PsP4T)C(PiPss')C(PzP4T')

XC(Pgsl; )C(Pss'li)C(P5TI; )C(P6T'I).
/; P5 S'

T L Iq

P] P2 Sj 6

P, P4 V.

S' T' L
(C4}

with a=(2ci+1)', C(abc)=(aOb0Ie0}~ and &2s given by Eq. (A2). For the ( H+ a)+ [n+sl.i(20)] ease, we define
the quantities

LH) ——

1 /2
(L +1)(L +2)(2L +5)

(2L +1)

H2 (I =0)= 2L
3

'

I /2
2L(L +1)(2L +3)

3(2L —1)
H2(I =2)=

Also, we use the following notation to make the expressions compact:

j+&]p 1 —6') —62+ 6(62~2

'T=
~ P=, g =

D D D

1+e2Cr

D

1. n+ Li(20) matrix elements

The normalization kernel is

M;~[(co'"co) ]=5,z7. ',

+5(,, i, 2[(21J+1)(2tj—1)]' ei7' pGJ(l;01101) .

The kinetic energy kernel is (p =o =0 only}

M,z I (co '.co) [ 1 ——,(( z" ) + z ) + —,r z' .z ]] =5,J7. '(1+ —,
'

1; )Q,

M"[(co' co)(z" co)(z co')]=5cJEiE27 +5ii (21&+1)1 [po'G&J(t, —111100)+EiE2T G~J(t; —100111)]
lJ E j

+5,. „[(21,+1)(2t, —1)]'"e,r" VG,', (t, lo»0)

(C5)

(C6)

1; —1

,'5;~eie27 —' [1+(1;+—,
' )Q]+ —', 5i i (21;+1)7'

-2

[e,+e,—1+(1,+ —,
'

)Q]G,, (t, —111100)
D

+ eiezV [1+(1;+—,
'

)Q]GJ(1;—100111) .

+ 35' 2, i [(21&+1)(2.1—; —.1)] &2& ' —[&2+(t + —,)Q]G; (1~.10110)
j 9 j D

+ 35' (i[(2tj.+1)(2tj—1)]. e)7' —[e,+(tg+ 2 )Q]G~(tc01101) .J D
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The interaction kernel is

M~j[1]=5;j5I p37. ',
M;j[(cgg

' cp)(z'*.cgg ')(z cgg)]

=5gje, @27' . +5l l (21;+1)7' [poGI(l; —100111)+E,f27 Ggl(l; —111100)]
l J

-'t+'-
+51. 2 l [(21;+l)(21;—1)]' 62T 1 oGlLI(ljlpl 10)+51 1 2[(21I+1)(21j—1)]' E11 pGI(l;01101),

Mij[(cgg
' co)(z'*.

egg
')(z' .co)]

'cT+ 5l l(2lg +, 1)@17'o[GljL('1 —100111)+G I (1 —111100)]

+51 1 [(21;.+ 1).(21;—1)]' v 'o GI(l 10110)+51 1 [(2lj+ 1 )(21I —1)]'I2e,~ ' G; (1;01101),

Mll [(z'*'co')(z cgg ')]

35'j51,0~1e2r +5l.l.(21'+ 1 H (p a+&1&2& )G&(l; —101010)l,.+1 I; —1

+ 35l. 2 l [(21;+1)(21;—1)) @27 crGgl(lj00020)+ —,51, l, 2[(21 +1)(21 —1)] I air ' pG; (1()2pp()) .

Mlj [(z'*.
cgg ')( z.co ')( z'*.cp)2]

I;+1
=5gle, e2~ ' o.(35I p+2)

+5l, 1,(21g+ 1.)&. 1cTI&
' (pcJ+~1e2r )[2Ggl(ll —111100)+G,"(1,. —1()1()1())]

+2&1&2& ' [2GljL(1; —100111)+GljL(l; —110001)]j

+5l,.—2, l.f(21'+ 1)(21.—1)] &1&27 O' I4GI(ll 10110)+ 3 [G;.(1 00020)+G; (1.200QQ)] j

+51 12[(21I+,1)(21I—1)]' e1'r ' I2(Po+e, e2r )GlLI(1;Q11Q1)+ 3 [pcTG, ( ,.102000) +z, ~ r G, (1 000.02.)]

+5l l (21 +1)(21 —1)~1& ' cr[2(pcr+E Er)G (1'—211"011)

+ 9 [p&Ggl(lg 222000)+—&1e27GlLI(lg —20. 0022)] j

+5l; —2, I (21j+1)[(21l+1)(211 1)] & o' [ 3 (pgT+t1E2v )Ggl('lj —121010)+ 3
E' + 712G; (1 —11QQ21)]

+51. l, 2(21;+1)[(21I+1)(21I—1)]' e1 w
' [—,(pcr+e1e2r )G; (1;—101()12)+—,poG; (1,. —112ppl)]

+ —,5l, 41,[(2lg + 1)(21;—1)(2ll —3)(21; 5)]'I e—27 ' oGg (lj2.0020)

+ 9 5ll4[(2ll + 1)(2l,j 1)(21I—3)(21I—5)] I @1' pGgjL(1'02002)

The normalization kernel is

2. ( H + a)+ [n+ Li(20)) coupling matrix elements

MI[(z' .co) ]=~'[ 5L l Elo(W35I p+H—2(Ij))+5I.2I5L 21.[(iI+1)(iI+2)]' o +5L 1 2e1H1 j) . —

The kinetic energy kernel is (p=cr=0 only)

5L, l.~l —[~~5I,O+H2 (II )][—', + —', @2+—', (lj+ —,
'

)Q]

r

+ 5L 2 l 5I,2[(lj+1)(lj+2—)]:[5+ 3 &2+ 3 (lj+T)Q)+5L I 25I,2&1Hl [ 3 +—3 (I'+ T)Q)
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The interaction kernel is

Mj[1]= ~35L t 5t p7
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