Nuclear structure of ¹⁴⁶⁻¹⁵⁴Sm in the dynamic pairing-plus-quadrupole model

J. B. Gupta

Ramjas College, University of Delhi, Delhi-7, India (Received 28 February 1983)

The changes in the nuclear structure of ${}^{146-154}$ Sm isotopes have been studied in the dynamic pairing-plus-quadrupole model. The overall variation in the energy of levels of g-, β -, and γ -vibrational bands; shape parameters; absolute B(E2) values; E0 moments; and E2 branching ratios is given correctly. The effect of the change in the nature of the 2_2 (2_3) state at $N \leq 86$ on various transition moments is discussed. Increased asymmetry in lighter Sm isotopes is placed in the proper perspective. Comparison is made with other nuclear models.

NUCLEAR STRUCTURE Dynamic pairing-plus-quadrupole model, $^{146-154}$ Sm, calculated level energies, static moments, B(E2) values, and E0 moments. Triaxiality.

I. INTRODUCTION

The shape transitional region of rare earth elements continues to provide a challenge for nuclear theory. The Sm isotopes have been studied extensively experimentally¹⁻⁶ and theoretically.⁷⁻¹¹ The pairing-plus-quadrupole model was used to predict the equilibrium shapes of nuclei and to study the transitional region of W-Os-Pt isotopes.¹² Later Kumar studied the transition at N=88-90 in Sm but reported divergence of certain B(E2) ratios in β -g and γ -g transitions in ¹⁵⁰Sm and noted the apparent breakdown of the PPQ model,⁷ as is also cited in Refs. 4 and 8–11.

The interacting boson model (IBM) provides an alternative approach in terms of s and d bosons. Scholten et al.⁸ studied the ¹⁴⁶⁻¹⁵⁶Sm isotopes in the IBM and simulated the transition from the SU(5) to SU(3) limits of SU(6) by using symmetry breaking terms. Tamura et al.⁹ questioned the justification of the order-of-magnitude variation,⁸ with even a change of sign, of the parameters ϵ , k, and k' of the IBA-1 for Sm isotopes. They applied the boson expansion model (BEM) for ¹⁵⁰⁻¹⁵⁴Sm and used sixth order expansion to improve the agreement of B(E2)values with experiment.⁹ Recently, Casten compared PPQ, BEM, and IBM results for Sm isotopes¹⁰ and again noted the inconsistent results⁷ of the PPQ for ¹⁵⁰Sm.

Since the dynamic PPQ model had succeeded well for transitional nuclei W-Os-Pt,^{12,13} and the B(E2) ratios for γ -g and β -g transitions in the N=88 isotone ¹⁵²Gd showed no such divergence,¹⁴ we restudied ¹⁵⁰Sm in the DPPQ model and noted¹⁵ a delicate balance between pairing and quadrupole forces of H_{PPQ} in ¹⁵⁰Sm. However, even the rigid asymmetric rotor model (ARM) values were recently cited¹¹ to be better than the DPPQ ones.⁷ As the B(E2) values for γ -g and β -g transitions in Sm show some systematic variations with the neutron number N, we extend our study to the ¹⁴⁶⁻¹⁵⁴Sm isotopes and test how far the DPPQ model succeeds in reproducing these variations.

In Sec. II we briefly discuss the DPPQ model and the input parameters of the calculation. The DPPQ results are presented in Sec. III and compared with other models. In Sec. IV we discuss the conclusions from this study.

II. THE DPPQ MODEL

In the dynamic pairing-plus-quadrupole model¹³ used here, the seven parameters $[V(\beta,\gamma), \mathscr{I}_k, B_{k1}]$ of the collective Hamiltonian

$$H_{c} = V(\beta,\gamma) + \frac{1}{2} \sum_{k=1}^{3} \mathscr{I}_{k}(\beta,\gamma)\omega_{k}^{2} + \frac{1}{2}B_{\beta\beta}(\beta,\gamma)\dot{\beta}^{2} + \frac{1}{2}B_{\gamma\gamma}(\beta,\gamma)\beta^{2}\dot{\gamma}^{2} + B_{\beta\gamma}\beta\dot{\beta}\dot{\gamma}$$
(1)

are derived from the time-dependent Hartree-Bogolyubov (TDHB) treatment of H_{PPQ} . Limiting ourselves to small amplitude, quadrupole motion of the nucleus, a generalized rotational basis (GRB)

$$\psi_{\alpha IM} = \sum_{K} A_{\alpha IK}(\beta, \gamma) \phi^{I}_{MK}(\phi \theta \psi)$$
(2)

(ϕ 's are the symmetrized sum of rotational matrices D_{MK}^{i}) is employed. The GRB is valid in both the rotational and vibrational limits of H_c , corresponding to SU(3) and SU(5) limits of the SU(6) group. Complete freedom in β , γ space is allowed not only for the potential $V(\beta,\gamma)$, but also for the moments of inertia \mathscr{I}_k and the mass coefficients B_{k1} , so that the oblate, prolate, triaxial, and γ -unstable [=O(6) symmetry] shapes are allowed in a natural way.

Limiting ourselves to only J=2, T=0 types of p-h coherent admixtures and J=0, T=1 types of p-p and h-h pairs treated by quadrupole and pairing forces, respectively, a large configuration space of 36 single particle orbits for protons, and 49 for neutrons, each spread over two oscillator shells, is used. The Z=40, N=70 inert core contribution is taken into account through a core renormalization factor F_B for the mass coefficients (see Table I). Slight variation has been allowed also in the quadrupole force constant X_0 . The nucleon effective charge e_n (e_p) was kept constant.

28 1829

TABLE I. Parameters of the DPPQ model calculation for Sm isotopes.

			A		
Parameter	146	148	150	152	154
Quadrupole	75.5	70	70	70	69
force X_0 in					
$X = X_0 A^{-1.4}$					
Inertial	3.0	3.0	2.0	2.2	2.25
renormalization					
factor F_B					
Effective			1.65 Z / A	1	
charge					
en					
$(e_{p}=1+e_{n})$					

III. RESULTS AND DISCUSSION

A. Potential energy surface parameters

The potential energy surface (PES) $V(\beta,\gamma)$ and its $V(\beta,\gamma=0)$ cuts for Sm isotopes (Fig. 1) exhibit the change in nuclear shape with N. The equilibrium deformation β_0 for $V = V_{\min}(\beta,\gamma=0)$ falls to zero at N = 86, but $\beta_{rms} \neq 0$ (Table II), even at N = 84 in ¹⁴⁶Sm, which has a tendency towards prolate deformation [e.g., see the V=2 MeV curve in Fig. 1(a)], as does ¹⁴⁸Sm. Similarly, $\gamma_0=0$ for all N, but not γ_{rms} , which increases to almost 30° for lighter isotopes. Symmetry of equipotential lines in the γ direction about $\beta_0=0$ in the (β,γ) plane causes γ softness and leads to large γ_{rms} 's for lighter isotopes. This asymmetry is also reflected in the moments of inertia \mathscr{I}_k at $\beta = \beta_{\min}$. While $\mathscr{I}_{1} \simeq \mathscr{I}_{2}$ (for \mathscr{I}_3 small) for deformed isotopes, $\mathscr{I}_1 > \mathscr{I}_2 \simeq \mathscr{I}_3$ (all \mathscr{I} 's being small) for light anharmonic vibrators (see Table II).

The values of γ_0 used¹¹ in the ARM for ¹⁵⁰⁻¹⁵⁴Sm derived from $E_{2_{\gamma}}/E_{2_g}$ or $Q(2^+)_{exp}$ are close to our γ_{rms} values, but these are not β -rigid asymmetric rotors at all, as assumed in ARM, and taking $\gamma_0 = \gamma_{rms}$ is rather a simplification. The asymmetry is not in the equilibrium shapes, but instead is due to γ vibration about small or zero β_0 .

The energy of deformation (E_{def}) , the prolate-oblate

FIG. 1. $V(\beta, \gamma)$ in MeV for ¹⁴⁶⁻¹⁵²Sm isotopes in the $(\beta, 0 \le \gamma \le 60^\circ)$ plane. The cuts $V(\beta, \gamma = 0)$ are also given.

difference V_{PO} , and the zero point energy W_0 (Table II) also reflect the shape changes with neutron number N.

B. The level energies and K structure

The fast decrease of the energy of 2_1^+ and 4_1^+ states at N=88-90 representing a spherical-deformed shape change is reproduced here (Table III). Even at N=84, the second excited state is 4^+ , followed by 0^+ and 2^+ . This feature of the rotation model is also reproduced. On the other hand, the energy of the $0_2^+ \beta$ bandhead first falls with an increase in neutron number, is minimum at N=88-90, and then rises again. This variation is also given from theory, though not the full lowering at N=88-90.

The K-component structure [see Eq. (2)] for the lowest 2^+ states shows the increased band mixing for softer light isotopes, and a change in the nature of 2^+ states (Table IV). The 2_2 (2_3) state is β - (γ)-vibrational $K^{\pi}=0^+$ in $^{150-154}$ Sm, but in 148 Sm the 2_2 state becomes predominant-

	A						
Quantity	146	148	150	152	154		
β_{\min}	0.0	0.0	0.205	0.236	0.267		
$\beta_{\rm rms}$ (g.s.)	0.142	0.146	0.20	0.258	0.283		
$\beta_{\rm rms}$ (2 ⁺)	0.171	0.173	0.22	0.265	0.285		
$\gamma_{\rm rms}$ (g.s.)	28°	26°	20°	15°	13°		
E_{def}^{a} (MeV)	0	0	1.0	3.4	5.4		
PO difference (MeV)	0	0	0.85	2.8	3.8		
Zero point energy (MeV)	2.35	1.77	1,92	2.0	2.0		
\mathcal{I}_1 at V_{\min} (MeV ⁻¹)	0.97	1.9	23.1	40	44		
I2	0.27	0.5	19	33	37		
I 3	0.24	0.44	0.32	0.44	0.43		

TABLE II. Potential energy surface parameters, and moments of inertia at $\beta = \beta_{\min}$.

^aValues for $^{150-154}$ Sm of $E_d = 0.8$, 2.5, and 4.3 MeV obtained by Ragnarsson *et al.* (Ref. 27) using the improved Nilsson model are close to ours, as are also their values of 0.6, 1.4, and 2.6 MeV, respectively, for V_{PO} .

			A		
State	146	148	150	152	154
$2_1^+ \exp^a$	0.747	0.550	0.334	0.122	0.082
th	0.756	0.564	0.338	0.121	0.086
4_1^+ exp	1.381	1.180	0.773	0.366	0.267
th	1.375	1.134	0.747	0.361	0.270
0' exp	1.452	(1.120)	0.740	0.685	1.100
th	1.430	1.242	1.049	1.00	1.096
2^+_2 exp	1.648	1.454	1.046	0.811	1.178
th	1.725	1.487	1.460	1.211	1.198
2^+_3 exp	(2.156)	1.663	1.194	1.084	1.440
th	2.310	2.13	1.782	1.556	1.537

TABLE III. The energy (keV) of low lying states of Sm isotopes.

^aThe energies are from a compilation in Ref. 16.

ly $K^{\pi}=2^+$, and 2_3 is $K^{\pi}=0^+$. This is in contrast to Ref. 8 but agrees with Ref. 16. The K structure is less relevant in ¹⁴⁶Sm. Although $K^{\pi}=0^+$ is 66% in 2_2 , 2_3 is also $\sim 50\% K^{\pi}=0^+$, consistent with Ref. 16.

The 4_2 (4_3) state is $K^{\pi}=0^+$ (2^+) in all five isotopes, with the largest mixing in ¹⁴⁸Sm. The nature of the fourth 4^+ state changes substantially with n^0 number. While it is 2β vibrational in ^{152,154}Sm, it is $K^{\pi}=2^+\beta\gamma$ in ¹⁵⁰Sm and a $K^{\pi}=4^+2\gamma$ state in ¹⁴⁸Sm, again reflecting a change from a β -soft to γ -soft nuclear core.

C. The deformation parameters

The quadrupole moment

$$Q(2^+) = \left(\frac{16\pi}{5}\right)^{1/2} \langle 2 | M(E2) | 2 \rangle$$

which is a good measure of deformation, varies smoothly with n^0 number [see Fig. 2(a)], and is given correctly from the calculation. The gyromagnetic ratio $g_I = \mu_I / I$ is equal to Z/A in the rotational model. The small variation of $g(2^+)$ from Z/A is a measure of the relative density distribution of protons and neutrons. The $g(2^+)$ in Sm seems to increase as N increases. This is also indicated roughly in our calculation.

The isomer shift

$$(IS) = \delta \langle r^2 \rangle / \langle v^2 \rangle$$

between 0_1^+ and 2_1^+ states is indicated to be constant up to N=88 and falls at N=90 and 92, showing rigidity to centrifugal stretching in deformed nuclei. This trend agrees with experiment and IBA results, although numerically DPPQ values are almost twice, and IBA values half, of the experiment.

The monopole matrix element $\rho_{if}(E0)$ $(I_i = I_f)$ is proportional to off-diagonal matrix elements of r^2 . In the vibrational limit SU(5) $\rho(E0)=0$, but is allowed in the rotational limit SU(3), and increases as $n^{1/2}$ (*n* is the number of boson pairs).⁸ Without normalization our results agree with the available data and reproduce the smooth increase with N for 0_2 - 0_1 and 2_2 - 2_1 transitions [Fig. 2(b)]. For $(\gamma$ -g) 2_3-2_1 E0 is expected to be small, and predicted variation with N agrees with the IBA (Ref. 8) except in the position of maximum at N=86 in the DPPQ, which reflects the change to the β state in ¹⁴⁸Sm.

D. Absolute B(E2) values

The Coulomb excitation and lifetime measurements provide accurate B(E2) values of collective states at low energy. The sharp increase of $B(E2;2_1-0_1)$ and $B(E2;4_1-2_1)$ with increasing neutron number, reflecting increased deformation, is given correctly without varying

TABLE IV. The relative contribution (in %) of the $K^{\pi}=0^+$ component in 2^+ and 4^+ states of Sm. The $K^{\pi}=2^+$ percentage is given in parentheses. The balance is $K^{\pi}=4^+$.

			A		
State	146	148	150	152	154
21	91.1	93.7	99.2	99.9	99.96
22	66.3	40.4	65.4	98.0	99.5
23	50.0	55.7	37.0	3.1	0.6
41	89.4	93.3	98.9	99.7	99.9
	(8.4)	(5.8)	(1.0)	(0.3)	(0.1)
4 ₂	81.2	48.6	80.4	97.5	98.8
	(13.2)	(40.9)	(17.9)	(2.5)	(1.2)
4 ₃	42.7	41.0	23.4	5.0	1.7
	(49.3)	(57.8)	(73.0)	(94.4)	(98.1)
44	38.4	22.5	23.3	92.7	91.1
	(57.2)	(21.2)	(38.8)	(6.9)	(8.4)

FIG. 2. (a) Calculated DPPQ values (full lines) are compared with IBM values (dashed lines) and experiment (data points). Quadrupole moments $Q(2^+)$, gyromagnetic ratio $g(2^+)$, and isomer shift data are from Refs. 17, 18, and 19, respectively. $Q(2^+, {}^{154}Sm)$ is deduced from B(E2, 0-2); $g(2^+)$ values are weighted averages (Ref. 18). (b) Data points are from Ref. 20.

FIG. 3. Comparison between calculated (full line) and experimental (points) (Refs. 21 and 22) B(E2) values in the Sm isotopes.

FIG. 4. Absolute B(E2) values for $2_2^+ - 0_1^+$ and $2_3^+ - 0_1^+$ transitions in Sm isotopes. The data points are taken from Refs. 9 and 22. The full line represents DPPQ values, the broken line the IBM (Ref. 8), and the dashed-dotted line the TWK (Ref. 9) BEM values.

				A		
I'	Ig	146	148	150	152	154
02	21	exp ^a		0.26 (3)	0.176(11)	
		th 0.34	0.38	0.43	0.166	0.094
		BEM		0.42	0.120	0.054
2 ₂	01	exp	0.010(2) ^c	0.004(2)	0.0046(3)	0.0060(14)
		th 0.0073	0.009	0.0074	0.0022	0.0055
		BEM		0.020	0.007	0.001
2 ₂	2 ₁	exp	0.16(4) ^c	0.043(20)	0.026(3)	0.012
				0.27(15) ^b		
		th 0.143	0.192	0.108	0.029	0.021
		BEM		0.181	0.025	0.010
2 ₂	4 ₁	exp		0.17(10)	0.091(11)	0.024
				0.55(30) ^b		
		th 0.083	0.074	0.10	0.089	0.062
		BEM		0.077	0.07	0.008
4 ₂	21	exp			0.0053(35)	
		th 0.0017	0.006	0.00035	0.0006	0.003
		BEM		0.007	0.005	0.018
4 ₂	4 ₁	exp			0.037(23)	
		th 0.078	0.123	0.063	0.026	0.020
		BEM		0.105	0.016	0.003

TABLE V. Absolute B(E2) values (e^2b^2) for 2_2 and 4_2 states to g-band transitions in Sm isotopes.

^aExperimental values are taken from Ref. 9.

^bReference 4.

^cReference 22.

the effective charge of the nucleons (see Fig. 3).

The $B(E_2;2_2-0_1)$ value decreases slowly with neutron number up to N = 90, but is enhanced in ¹⁴⁸Sm. (Note the effect of the change of the nature of the 2₂ state to γ vibration.) While the IBM values⁸ are generally smaller and the BEM values⁹ diverge at N = 88, the DPPQ values give the required variation (see Fig. 4).

The $B(E2;2_3-0_1)$ value shows a maximum at N=90 in 152 Sm (see Fig. 4). In 154 Sm, the value is smaller due to less β -g mixing, while in 148 Sm the natures of the 2_2 and 2_3 states interchange (see Sec. III B). The DPPQ values vary as in experiment, while BEM again diverges at N=90. IBM values are somewhat smaller. Note that in the IBM a β_2 parameter of the symmetry breaking term was used

for obtaining the small $B(E2;2_3-0_1)$ values,⁸ while no fitting is resorted to in the present approach. Also note the factor of 100 variation between 2_1-0_1 and $2_2(2_3)-0_1 B(E2)$ values reproduced here. Further comparison of B(E2)values for other β -g and γ -g transitions is made in Tables V and VI. There is a fair overall agreement of the theoretical values.

E. Reduced interband B(E2) ratios

Interband B(E2) ratios are sensitive to band mixing effects, deviating widely from rotation model values, and thus provide stringent tests of the wave functions and their relative phases and also of E2 operators used in the model.

TABLE VI. Absolute B(E2) values (e^2b^2) for 2_3 and 4_3 states to g-band transitions in Sm isotopes.

				A		
I'	Ig	146	148	150	152	154
2	0	exp ^a	0.006 ^b	0.009(2)	0.016(1)	0.013(3)
		th 0.0009	0.00045	0.014	0.023	0.022
2	2	exp		0.039(14)	0.042(4)	0.02
		th 0.059	0.010	0.027	0.048	0.039
		BEM		0.024	0.053	0.047
2	4	exp		0.019(10)	0.004(3)	0.0008
		th 0.023	0.110	0.054	0.006	0.0046
		BEM		0.087	0.006	10^{-5}
4	2	exp			0.0035(1)	
		th 0.0005	3×10 ⁻⁶	0.009	0.009	0.0093
		BEM		0.022	0.026	0.021
4	4	exp			0.037(1)	
		th 0.057	0.010	0.035	0.047	0.043
		BEM		0.032	0.076	0.040

^aThe experimental data values are taken from Ref. 9.

^bReference 22.

FIG. 5. B(E2) ratios for 2_2 g-band transitions. Filled circle data points are calculated values using branching ratios (Ref. 23), unfilled circles are from Ref. 8, and squares are from Ref. 4. Also see the caption to Fig. 4.

88

90

92

The variations in the B(E2) ratios for β -g and γ -g transitions with neutron number are given correctly in the present calculation. The order of magnitude deviation observed previously^{4,7-11} for $B(E2;2_2-0_1/2_1)$ and $B(E2;2_2-4_1/2_1)$ ratios for N=88 is now removed, and the decreasing values right up to N=84 are reproduced (see Fig. 5). Note the wrong maximum in $B(E2;2_2-0_1/2_1)$ of the boson expansion model calculation.⁹ Similarly the variations in the $B(E2;2_3-0_1/2_1)$, $B(E2;2_3-2_1/4_1)$, and $B(E2;3_1-2_1/4_1)$ with neutron number are reproduced closest in the DPPQ model in comparison to the BEM or the IBM (see Fig. 6).

Calculated B(E2) ratios for several other β -g, γ -g transitions are presented in Tables VII and VIII. The decreas-

ber are in most cases best reproduced in the DPPQ compared to the BEM or IBM. The maximum deviations occur for those ratios in which one or both transitions are weak. Slight variation of input parameters $(X_0 \text{ or } F_B)$ produces a large increase or decrease (by a factor of 10^2 or more) in these cases, especially in softly deformed nuclei.

IV. CONCLUSIONS

The validity of the dynamic pairing-plus-quadrupole model¹³ is tested for the full range of Sm isotopes with a single set of parameters, except the X_0 and F_B factors, which were varied slightly (see Table I). The large value

					A		
I_i	$I_f/I_{f'}$		146	148	150	152	154
22	0′/0	exp ^a			181(56)		
					28(4) ^b	<4300°	
		PPQ	30	150	41	291	159
		BEM			9.5	69	616
4 ₂	2/4	exp	$< 0.25(5)^{d}$	> 0.03(1)	0.0024(5) ^b	0.13(5) ^e	0.9(5)
-		PPQ	0.02	0.05	0.0056	0.023	0.16
		BEM			0.056	0.32	6.48
4 ₂	$2_2/4$	exp			5.9(9) ^b	45(3) ^c	
		PPQ	5.4	2.5	9.1	43	66
		BEM			3.36	39	318
4 ₂	$2_2/3$	exp			2470(850) ^b	350(170)	
		PPQ	256	51	1622	1831	415
		BEM			60	123	49

TABLE VII. The B(E2) ratios for β -g transitions in Sm.

^aExperimental values deduced using branching ratios from Table of Isotopes (Ref. 23), assuming pure E2.

^bReference 9.

^cKonijn et al. (Ref. 24).

^dLarge M1 is indicated in the 4_2 - 2_1 transition (Ref. 23).

^eCorrected for 16% M1.

L

3

2

E2) ratios

ğ

0.4

0.2

۵

84

6 2 Sm

→ 0/2)

86

N

(2,

 $(2 \rightarrow 4/2)$

				A		
Ii	$I_f/I_{f'}$	146	148	150	152	154
23	0′/0	exp ^a		4.1(10)		
		PPQ 77	371	6.4	0.024	0.001
		BEM		4.9	0.42	0.80
	$2_2/2$	exp		12(6) ^b	1.2(1)	
		PPQ 3.6	22	19	2.50	1.11
		BEM		12	2.64	0.70
31	23/2	exp		17(6)		
		PPQ 22	16	13	25	33
		BEM		4.34	8.9	34
	$2_2/2$	exp > 5.5(28)		3.6(14)	≤0.06	
		PPQ 10	15	3.5	0.026	0.003
		BEM		1.8	0.40	0.63
4 ₃	2/4	exp	< 0.10(2)	0.060(7)	0.10(5)	0.055 ^b
		PPQ 0.1009	0.0003	0.26	0.18	0.22
		BEM		0.69	0.34	0.51
	$2_2/2$	exp		< 2.95(59) ^{b,c}	0.8(4)	
		PPQ 5.3	10 ³	0.02	0.2	0.18
		BEM		0.08	1.65	2.77

TABLE VIII. The B(E2) ratios for 2₃, 3₁, and 4₃ states to g-band transitions in Sm isotopes.

^aSee note for Table VII.

^bReference 9.

^cOnly an upper limit for $I_{\gamma}(4_3-2_2)$ is given (Ref. 23) (also see text).

of 3-5 for the core renormalization factor F_B used previously⁷ is now reduced to only 2-3. Furthermore, it is interesting to observe that the value of the quadrupole force parameter X_0 is critical only for the N = 88 isotopes of Sm and Nd (Ref. 25), reflecting the softness of these nuclei to shape deformation, but is not critical for the isotone ¹⁵²Gd. This is clearly a shell effect and provides independent evidence for a Z = 64 magic number.²⁶

The calculated values of the PES parameters (β_0 , γ_0 ; $\beta_{\rm rms}$, $\gamma_{\rm rms}$; $E_{\rm def}$, $V_{\rm PO}$, W_0) and $Q(2^+)$, $g(2^+)$, isomer shift, $\rho(E0)$, and energy values present a coherent and varied picture of the changes in nuclear equilibrium shapes and nuclear dynamics with n^0 number in Sm isotopes. The observed maxima/minima or monotonic variations with N of the absolute B(E2) values and B(E2) ratios are also fairly well reproduced.

The use of (β_0, γ_0) and $(\beta_{rms}, \gamma_{rms})$ in distinguishing be-

tween the β -rigid triaxial and γ -soft vibration is illustrated here; it can be of general utility. Thus we have illustrated the P + Q residual interaction to be a good approximation when the average nuclear potential is also treated properly as was done here, and the time-dependent HB technique is utilized in treating the pairing and quadrupole forces adequately. A wide range of nuclear structure characteristics can be predicted without the need of a detailed fit to experimental data in individual nuclei.

ACKNOWLEDGMENTS

I am indebted to Professor K. Kumar at Cookeville, Tennessee, for useful discussions and to Dr. G. P. Srivastava, Chairman, Physics Department of the University of Delhi, for providing the facility for this study and for encouragement. The work was supported in part by the University Grants Commission of India.

- ¹K. R. Baker, J. H. Hamilton, and A. V. Ramayya, Z. Phys. A <u>256</u>, 387 (1972).
- ²H. Yamamoto, K. Kawade, E. Fukaya, and T. Katoh, J. Phys. Soc. Jpn. <u>37</u>, 10 (1974).
- ³C. A. Kalfas, J. Phys. G <u>3</u>, 929 (1977).
- ⁴M. Hoshi and Y. Yoshizawa, J. Phys. Soc. Jpn. <u>42</u>, 1106 (1977).
- ⁵B. Harmatz and J. R. Shepard, Nucl. Data Sheets <u>20</u>, 373 (1977); <u>26</u>, 281 (1979).
- ⁶C. M. Baglin, Nucl. Data Sheets <u>18</u>, 223 (1976); <u>30</u>, 1 (1980).
- ⁷K. Kumar, Nucl. Phys. <u>A231</u>, 189 (1974).
- ⁸O. Scholten, F. Iachello, and A. Arima, Ann. Phys. (N.Y.) <u>115</u>, 325 (1978).
- ⁹T. Tamura, K. Weeks, and T. Kishimoto, Phys. Rev. C <u>20</u>, 307 (1979).
- ¹⁰R. F. Casten, Nucl. Phys. <u>A347</u>, 173 (1980).
- ¹¹K. K. Gupta, Y. P. Varshney, and D. K. Gupta, Phys. Rev. C <u>26</u>, 685 (1982).

- ¹²K. Kumar and M. Baranger, Nucl. Phys. <u>A110</u>, 529 (1968); <u>A122</u>, 273 (1968), and earlier references.
- ¹³K. Kumar, *The Electromagnetic Interactions in Nuclear Spectroscopy*, edited by W. D. Hamilton (North-Holland, Amsterdam, 1975), p. 155.
- ¹⁴J. B. Gupta and K. Kumar, Nucl. Phys. and Solid State Phys. (India) <u>20B</u>, 15 (1977).
- ¹⁵J. B. Gupta and K. Kumar, J. Phys. G <u>7</u>, 673 (1981); Nucl. Phys. and Solid State Phys. (India) <u>21B</u>, 19 (1978).
- ¹⁶M. Sakai and A. C. Rester, At. Data Nuclear Data Tables <u>20</u>, 441 (1977).
- ¹⁷N. R. Johnson, M. W. Guidry, R. S. Sturm, E. Eichler, R. O. Sayer, D. C. Hensley, and N. C. Singhal, Phys. Rev. C <u>22</u>, 2416 (1980); and see Refs. 5 and 6.
- ¹⁸H. W. Kugel, R. R. Borchers, and R. Kalish, Nucl. Phys. <u>A186</u>, 513 (1972); and see Ref. 6.
- ¹⁹G. M. Kalvius and G. K. Shenoy, Nucl. Data Tables <u>14</u>, 639 (1974); Y. Yamazaki, E. B. Shera, M. V. Hoehn, and R. M.

Steffens, Phys. Rev. C <u>18</u>, 1474 (1978); C. S. Wu and L. Wilets, Annu. Rev. Nucl. Sci. <u>19</u>, 527 (1969); also see the second listing of Ref. 17.

- ²⁰A. V. Alduschenkov and N. N. Voinova, Nucl. Data Tables <u>11</u>, 299 (1972); J. Lange, K. Kumar, and J. H. Hamilton, Rev. Mod. Phys. <u>54</u>, 119 (1982).
- ²¹R. M. Diamond, F. S. Stephens, N. Nakai, and R. Nordhagen, Phys. Rev. C <u>3</u>, 344 (1971).
- ²²E. Veje, B. Elbek, B. Herskind, and M. C. Oslesen, Nucl. Phys. <u>A109</u>, 489 (1968); W. Andrejtscheff, K. D. Shilling, and P. Manfrass, At. Data Nucl. Data Tables <u>16</u>, 515 (1975).
- ²³Table of Isotopes, 7th ed., edited by C. M. Lederer and V. S. Shirley (Wiley, New York, 1978).
- ²⁴Jan Konijn et al., Nucl. Phys. <u>A373</u>, 397 (1982).
- ²⁵J. B. Gupta, in Proceedings of the International Conference on Band Structure and Nuclear Dynamics, New Orleans, edited by A. L. Goodman (North-Holland, Amsterdam, 1980), Vol. I, p. 66.
- ²⁶K. S. Toth, Phys. Rev. C <u>22</u>, 1341 (1980).
- ²⁷I. Ragnarsson, A. Sobiczewski, R. K. Sheline, S. E. Larsson, and B. Nerlo-Pomorska, Nucl. Phys. <u>A233</u>, 329 (1974).