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Two-pion-exchange three-nucleon force and the 3H and 3He nuclei
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We have derived a two-pion-exchange three-body force and calculated its contribution to the

trinucleon ground state. The hyperspherical harmonic method has been used. Coulomb and the
three-body forces have been treated nonperturbatively. Results show sensitivity to the short range

part of the force. A comparative study is made with other forms of three-body forces found in the

literature.

NUCLEAR STRUCTURE Trinucleon systems, three-body force. 1

I. INTRODUCTION

A better understanding of nucleon-nucleon interaction
requires a deeper study of three-nucleon systems, such as
H and He. A few realistic two-body potentials exist

which can fit well two-nucleon data. ' However, they fail
to reproduce experimental data for H and He, although
binding energies, charge form factors, rms radii, etc. ,
reach basically a common set of values when one considers
various "realistic" two-body forces (2BF) and distinct cal-
culation techniques. ' For instance, the experimental bind-
ing energies (BE) for H (8.482 MeV) and He (7.718 MeV)
fail to be reproduced by about 1.5 MeV and 2.0 MeV,
respectively. The charge form factors

~
F,h(q )

~

show a
striking disagreement with experiment: The theoretical
momentum transfer at the first minimum is too high and
the height of the second maximum (F,„)too low. Those
discrepancies between experimental data and theoretical
calculations with realistic 2BF seem to indicate that some-
thing is still missing. One can certainly expect that meson
exchange current (MEC) would play an important role in
the calculation, as well as other effects (recoil effect, rela-
tivistic corrections, etc.). Recent works conjecture
that the inclusion of the three-body force (3BF) should ac-
count for part of the above discrepancy in the data. The
nature of this force supports this argument; namely, in-
clusion of the 3BF strengthens the potential minimum
around the equilateral triangle configuration, and de-
creases the attraction in the collinear configuration. A
three-body correlation should appear in such a way that
F,h(q ) should be improved. But so far all the calcula-
tions are still in an initial stage, suffering from either a
lack of consistency (arising from the problem of how to
incorporate these effects to 2BF, choice of Feynman dia-
grams, approximations, etc.), or calculational limita-
tions.

In this work we perform an essentially exact calculation
for trinucleon systems, using the hyperspherical harmonic
(HH) method. '3 The Afnan-Tang S3 (Ref. 14) potential
which is reasonably realistic, although quite simple in
structure, has been chosen to represent the 2BF. The
forces due to Coulomb and proper three nucleon interac-

tions do not alter the structure of the equations in the HH
method and are taken into account nonperturbatively.

In the first part of this work we derive in a pedagogical
way the 3BF due to the exchange of two pions (mm.E-3BF)
using effective Lagrangians which are approximately in-
variant under transformations of the group
SU(2) XSU(2). ' Calculations of the trmE-3BF using
chiral symmetry implemented by means of current algebra
have already appeared in the literature. ' ' The motiva-
tion for implementing it by means of effective Lagrang-
ians is that we achieve a much better understanding of the
dynamical origins of the various contributions, making it
very easy to compare our results with other existing forms,
such as the classic Fujita-Miyazawa result. ' Another ad-
vantage of a calculation based on Feynman diagrams is
that it can guide us in the evaluation of the contribution to
3BF of other diagrams, involving the exchange of heavier
mesons. In this work we consider the two terms of the
3BF which are generated by the s and p waves of the vir-
tual pions, and their relative importance.

The 3BF due to the exchange of heavier mesons or more
than two pions, have shorter range and should be, to some
extent, shadowed by the two-body repulsive core. This
core is also required in the case when the form factor of
the m.NN vertex is taken to be unity because in this case,
the 3BF is extremely singular at short distances and this
would generate unphysical nodes in the physical radial
wave function. These nodes can be prevented either by
means of a phenomenological cutoff parameter or pion
nucleon form factors, and both possibilities are discussed
here.

The potential corresponding to the mm.E-3BE is derived
in Sec. II, the calculation method is introduced in Sec. III,
and our results and conclusions are presented in Sec. IV.

II. THREE-BODY FORCES

A. Introduction

The properties of three nucleon systems such as the H
or He are determined by the interactions of their constitu-
ents. The forces among three nucleons are due either to
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FIG. 1. Some diagrams corresponding to three-body forces.
FIG. 2. Diagram corresponding to the m.m.E-3BF.

pair interactions or proper 3BF. By proper 3BF we mean
processes corresponding to diagrams which cannot be
separated into two pieces by cutting forward propagating
nucleon lines only.

Three nucleon forces are due to exchanges of bosons
and some of the corresponding processes are shown in Fig.
1. The first diagram represents the pion-pion exchange
(arm. E)-3BF, the only one to be discussed in detail in the
present paper. The other diagrams correspond to forces of
shorter range and represent either the exchange of heavier
mesons or the exchange of more than two pions.

In order to evaluate the +ATE-3BF, we calculate the con-
tribution of the exchange of two pions to the elastic
scattering of three unbound nucleons. This process corre-
sponds to permutations of the diagrams of Fig. 2. In this
figure the broken lines represent pions, the unbroken ones
nucleons, V„N is the m.NN vertex, and T N is the ampli-
tude for the process ~N~mN. The pions participating in
these interactions are off shell and hence the evaluation of
these amplitudes can only be performed with the help of
some theory.

The most successful theory describing pion processes is
based on the assumption that their interactions are ap-
proximately invariant under transformations of the group
SU{2))& SU(2). The corresponding approximate symmetry,
known as chiral symmetry, becomes exact when the four-
momentum of the pions vanishes. There are two main ap-
proaches for applying this symmetry to processes involv-
ing pions. One of them uses the so-called current algebra
whereas the other is based upon effective Lagrangians.
They are physically equivalent, but correspond to rather
different calculational techniques. The former approach
has, as pointed out by %einberg, ' the disadvantages of re-
quiring much algebraic effort when the number of pions is
not small, and of hiding the dynamical implications of the
soft pion limit.

These problems are not present in the alternative ap-
proach which is based on effective or phenomenological
Lagrangians which are built in such a way as to reproduce

the results of current algebra when used in lowest order in
perturbation theory. ' It is important to stress that these
Lagrangians, which constitute the basis of the so-called
chiral dynamics, are different in spirit, for instance, from
those appearing in quantum electrodynamics. Rather than
being fundamental objects, they are quick and efficient
tools for implementing chiral symmetry. The use of effec-
tive Lagrangians should not, therefore, be seen as an at-
tempt to apply ordinary perturbation theory in calculation
of strong processes.

There are at least two possible ways of constructing ef-
fective Lagrangians which are approximately chiral in-
variant. The first one corresponds to the linear o. model,
containing four spinless boson fields, three of which are
pseudoscalar and associated to the pions, the fourth being
scalar and called o. This model, although adequate for
implementing chiral symmetry, has problems in providing
a reasonable description of nature, since no serious candi-
date for the o. seems to exist among the known particles.
Moreoever, this model predicts that the nucleon mass
should vanish in the limit of exact symmetry. Hence,
drastic changes in the nucleon mass would be due to a
small breaking term in the Lagrangian. It is important to
notice that the linear a model prescribes the pseudoscalar
coupling between pions and nucleons.

Chiral symmetry can also be implemented by means of
nonlinear effective Lagrangians containing only physical
fields. In the present work a nonlinear Lagrangian is used
in the evaluation of V N and T N which contribute to
mmE-3BF. The m.N system has been extensively studied by
means of chiral symmetry and agreement with experiment
is good both below threshold and for pion energies up to
350 MeV. In the nonlinear Lagrangian approach the n.N
coupling is of the pseudovector type and the amplitude for
the process m.N —+~N is assumed to be given by the dia-
gram of Fig. 3.

The vertices in these diagrams are extracted from the
following terms of the effective nonlinear Lagrangian:

I&1'I.)'sr N I 8"P,
2m

L Ng =gg I Z "[g„„—(Z + —,
'

)y„y„]MN j 8 p +H. c. ,

LI,NN=
2

(Nl'„& N)p "+ N iver„„rX (8"p" d"pI'), —7o — 'Vo — P p
—Pn

(3)

I. „=y p„(P XB"P)+ (5—1)(B„p„—B„p„)(8"P XB"P) . (4)4m'

The symbols P, N, 5, and p denote, respectively, the pion, nucleon, delta, and rho fields, whose masses are p, m, M~,



1814 H. T. COELHO, T. K. DAS, AND M. RQBILQTTA 28

and m&. The matrices ~ and M combine two nucleons, and a nucleon and a delta into isospin 1 states. The parameters

pp and p„represent the proton and neutron anomalous magnetic moments whereas 5 can be measured in the decay
p~m. n. The parameter Z appearing in Eq. (2) represents the possibility of spin —, components into the off-pole delta
wave function. This form of the m.NA coupling corresponds to the delta propagator given by

r

. (@+Ma} ( 'Yppv PpYv &5'trav
EGpv(P) ~ 2 2 gpv 3 YpYv 3M + 3M 2 (5)

p ~~ 3M' 3M' 3~~
The interaction I,agrangians allow us to evaluate the amplitude T N, describing the process mN~m. N. %'hen the nu-

cleons are on shell, this amplitude can be parametrized as

lg' Ig' Ig'

ab 2
(6)

The first two diagrams of Fig. 3 correspond to nucleon poles in the s and u channels. Their contribution to T N is
given by

+ g
P?l

B+
m (k.k'/2m) —v

—g' g' (k k'/2m)
2m m (k k'/2m) —v

where v is defined as

v=—(p )+p ( )(k +k')/4m .

The diagram corresponding to rho exchange yields the following values for 3 +—and B—+:

(12}

1+(5—1)t/4m~
A~ = —

2 (pp —p„)vI
&

1 —t/m&

Yo 1+(5—1)t/4m'
Bp ——

2 (1+pal —p„)
p?I p 1 —t /pal p

The contribution of the delta pole to the amplitude T N is given by
T

A —m
9m

B+ g~ v B ™~Z22 2

, va —v Mg

v 8mv3+, [(m+M~}Z+(2Ma+m)Z'], ,9m

(13)

(16)

(m +My) k.k'
(2M~+mMa —m +k +k' )+4m 2 [(M~+m)Z+(2M~+m)Z ], (15)

Mg Mg

2
gg ' Vg

Bg ——— B—m
9m va —v

(m +Ma)
Mg ~ (2m +2mMg —k —k' )Z —

2 (4mMa+2m +k k')Z, (18)
3fg Mg

Mg —m —k k'
(19)

(2M —m)(M& —m ) —3(m +My)k k + 2 (m +Ma)(M~ —m )+ 2 ™a™7

(m +My) k2+k' k k'

2M' 2M' 2M'

(20)
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8= (m +Ma) k'+k' k k'
z (Ma+m —4mMa) —3k k'+

2 (2M' —m +mMa)+
2M' 2M' 2M'

(21)

The last contribution to T„N comes from the cr term. This term is produced in the current algebra approach by the
commutator between the axial charge and the pion field. In the present calculation we consider it as a correction to the
amplitude and parametrize it as follows ':

and

A+ =a +P k k' (22)

8+ =A~ =8 =0, (23)

where a and P are constants that can be extracted from experiment. They are related to the so called nucleon o term
by22

j 2
ONN J ncr ~ (24)

where f is the pion decay constant.
The preceding results allow us to evaluate the amplitude T3N, describing the contribution of the mwE to the three-

nucleon interaction,

Irt

J 2 p2 2 ab 2

k'2— (25)

In the above expression the amplitudes A —+ and 8 —+ re-
ceive contributions from the nucleon and delta poles and
the p and o exchanges. In order to write down the expres-
sion for the potential in momentum space one has to sub-
tract the part of the amplitude representing an iteration of
the two nucleon potential and to perform a nonrelativistic
reduction of Eq. (25).

8. The potential in momentmn space

The mornenta of the m. are

P2 —P2
~P2 P2LPl

k'=(co', k ') —=

/

P3 —P3
~P 3

—P3 ~

2m

The covariant variables v and s are approximated by

(27)

(28)

~2
p =(E,p)= m+, p2m

{26)

The potential in momentum space is expressed in terms
of nonrelativistic nucleons and therefore we neglect terms
of order (p /m ) in Eq. (25), where p is a typical nucleon
momentum which we assume to be of order of p, the pion
mass. The approximate expressions for the dynamical
variables appearing in the elastic three nucleon amplitude
are given below. The momentum p of a nucleon is

r

v—: [2m (co+co') —(p)+. p ') ) (k+ k ')],
4m

s —=m +2mv —k.k ' .

%'e use the following form for the Dirac spinors:

E+m
u(p)= x

(29)

(30)

{31)

i K,0(.
/K'.P /

/

o' a —ao
(32)

where o. and X are Pauli matrices and spinors, respective-
ly. The y matrices are such that

FIG. 3. Diagrams contributing to ~N scattering.

When the above approximations are used in Eq. (25)
and only leading terms are kept, we obtain the nonrela-
tivistic reduction of the three nucleon amplitude,
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g
(

~(2).k)( ~(3).k i) (2) (3)

k +p k +p
X I[2mf++io (k 'Xk)b+]5,b+[2mf +i cr (k 'X k)b ]ieb T'I (33)

where o. "' and ~ '" indicate expectation values,

f+ ++b+ (34)

t

In this expression forward propagation in time is
represented by the term proportional to uu, which can be
written as

and a —+ and b-+are the nonrelativistic reduction of the am-
plitudes A -+ and 8-+.

The final form of the nonrelativistic three nucleon am-
plitude is determined by the contributions of the various
diagrams of Fig. 3 to f+ and b+--. These contributions are
displayed below.

Nucleon. The iteration of the one-pion exchange two-
nucleon potential corresponds to intermediate nucleons
propagating forward in time. In order to subtract this
contribution from the amplitude T N it is convenient to
decompose the numerator of the nucleon propagators as
follows:

(p+m)F = , 1+——u(p)u(p)Po

1+ (p+m),

where the four vector p is given by

p=(E, p) .

Thus backward propagation in time is represented by

(@+ m)s = (p+ m) (it(+ m—)F

(3&)

(p+m) = —,
' 1+ u(p)u(p) 1+ (p —p)+ —, 1 — (p+m) .PO l PO

Po
U( —p)U( —p)

(m 2+ p
2)1/2 (36)

where po is the energy component of p, the four-
momentum of the propagating nucleon, and

(39)

The contribution of a backward propagating nucleon to
the direct n.N amplitude is given by the nucleon pole dia-
grams with the numerator of the propagator replaced by
Eq. (39). When the terms proportional to p are ehminated
by means of the Dirac equation, we obtain (where DB
stands for direct and backward)

~ DB 2 (b b+tebac+) 2E

2 kXu(p', ) —2m(s —m )+(s+3m ) (E+po)it'yo)h' u—(p1) .
2

(40)

The nonrelativistic limit of this equation is

~DB O ~

ab (41)

Rho. The contribution of the p exchange is given by Eqs. (12)—(14). When writing their nonrelativistic limits, we use
the equality

y()/m p
———,

' f
Thus we obtain

(42)

1
P 2f2

1
bp ——

2 (1+Pp Pn) . —
2f

Delta. The nonrelativistic reduction of Eqs. (15)—(18) produces

(43)

(45)

fa ——
2 [4M' —mMa+m —4(Ma —m )Z —4(2M' —mMa —m )Z ],+ ga k k'

2 2 2 2 2 2

9~2~ M& —m
(46)

(47)
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2

bt), ——
2 [(2Mt), +mM4 —m )+4(Ma —m )Z+4(2M' —mMs —m )Z ] .

9~~ Mg —m
(48)

The value of the parameter Z can be extracted from the subthreshold mN amplitude. The analysis of Olsson and
Osypowski has shown that the experimental results are compatible with the value Z = ——,', which will be adopted in
the present work. Thus Eqs. (46}—(48) become

(49)
9(Ma —m)

4gpm
bg —— (50)

g (Ms —m)

Sigma. Finally, the nonrelativistic contribution of the o. term is

f+=a —P k k',
b+ =f =b =0.

(51)

(52)

Using the above results in Eq. (30) we obtain the final form for the nonrelativistic three-nucleon scattering amplitude
in momentum space,

g
k +p

27tl (o ' 'k)(o ' 'k ')
k' +p

8 2

, & (2).& (3) & + Po (k.k r) jr ()).(r (2) + r (3)}
9(Ma —m) 2f2

( I+ — ) 2"'( ' 'Xr' ') o '".(kXk')
2f 2m 9(Ma —m)

(53)

The part of the amplitude proportional to v is velocity
dependent and corresponds to nonlocal terms in the poten-
tial. Besides, as will be seen later, its coefficient is smaller
than those of the other two terms. Hence, we will not
consider this term in the present work.

At this point, it is convenient to discuss the introduc-
tion of form factors, which are not predicted by chiral
symmetry used in tree approximations. Rather, they can
be understood as phenomenological corrections to the ver-
tices and must be considered in realistic calculations.
Their formal inclusion in Eq. (53) is very simple, since it
would correspond to allowing the coupling constants to
become dependent on the four-momentum of the pion. In
the present work the mNN form factor for a pion of four
momentum k is included in the following form:

A —p,g g(k')=g&& (54)
A —k

This parametrization is such that the form factor be-
cornes equal to the coupling constant when the pion is on-
shell. The value of the parameter A can be determined if
we assume that g(k ) satisfies the Goldberger-Treiman~
relation when k =0. This would mean that
g(p ) =(1+006/n)g (0) . (Ref. 28) and therefore
A 4V n p-This val, u. e of A shows that relativistic correc-
tions are of the same order of magnitude as the ones aris-
ing from form factors. For instance, in the assessment of

I

=—(2~) 8'(pf —p;) t3N . (55)
Sm

The factor 1/Sm has been introduced because the
momentum space states are normalized as

(p'l p)=(2~)'&'(p' —p) . (56)

C. The potential in coordinate space

The potential in coordinate space is obtained by Fourier
tranforming the momentum space one. Thus

I

the delta contribution to Eq. (53}we have neglected terms
of order p, /(Mt, —m ), which are comparable to )M /A .
Thus it would seem to be an inconsistent procedure to
keep the form factors while neglecting relativistic correc-
tions. Nevertheless in this work we do keep the correc-
tions to the mNN coupling constant. This is done in order
to ensure the convergence of the Fourier transforms of the
amplitudes for any values of the relative distance between
two nucleons, as we will discuss in the next subsection.

Before proceeding to the transition to coordinate space,
however, it is convenient to establish the relationship be-
tween the amplitude t3N and the three-body potential.

The three nucleon potential in momentum space is de-
fined as"

&P'P'P'I~'"lP P P &

dA i dA~ ~t ~f-~ i ver)23 i- 3 ~' ~' ~' ~ ~ ~ &P1 &1 P3r3 I
~

( r] r2 r3/=-
(2m ) (2n. ) (2n. )

~ (P )+P2+P3 Pl P2 P3) e 3N
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Using the expression for t3N given by Eq. (53) we have

~r ) r z r 3 I

W'"
I
r) ~z r3~=—5 (r) —r ) )5 (~~ —r ~)t) (r3 —r 3)W(&)

where

(58)

&2g(k ' )/2m
(

(Q) k)( (3) k p)

k' +p

dk' dk ik'. r3) ik ~ r(& g(k )/2m
3e e

(2m) (2n )

8 2

x —~"'~(" a.+ ' —p. (k k )
9(M4 —m)

+ 7"'(r "'xF"')o "'(k k ') (&+ — )

2f ~ 2m 9(M4 —m)

The variables r,j are defined as

Iij = Ii —rj
and E', j, and k correspond to cyclic permutations of the integers 1, 2, and 3.

Equation (59) may be rewritten as

(59)

(60)

W'(I(:)= (v "'~'j')((T "V'k;)(a 'j'Vjk)U(rk;)U(rjk)
p

+ 4 (r 1 )(0 'Vki)(O 'V jk)(Vki'Vjk)U(rki)U(rjk)
p

I

(~")Xr(j)~ ~(k))(2"V' )(~(j'V' )(~"'Vk;XV',k)U(rk;)U(rk) .
p

(6&)

In this work we adopt the above form for the potential. However, for the sake of completeness, it is worth noting that
the usual properties of Pauli matrices allow us to cast this expression in the form used by Fujita and Miyazawa'8:

C,~ (&~(i) &(j))(&~. (i).V )(p(j).Vki jk
p

+ I'(C +g~ )( ~(j).~(k))( & ( ).k& (i))+(g C~ )( ~(k) ~(i))( ~(.j).~(k))]
P P

x(~"'V j„)(~(k'Vj„)(~(k) V„)(~"'V„)

+ [(C C~ )(~(j).~(k))(~(k) ~(i))+(C. +C' )(~(k).~(i))(~(j) ~( ))]k.1

4 4 P P

X ( "('rV )(k'"i'rV )(k'"i'rV j )( k"('r& jk ) U(rk; ) U(rjk ) .

2
1 RP

4n.
,

2m
2

gp
4m 2m

8g
2

p 9(Ma —m)
'2

4 1 1+Pp —Pn

2f 2m

+
9(Mg —m)

The function U(x) is given by

The strength parameters in the potential are given by
2 ' 2

SL PQa~
4m 2m

(63)

U(x) = 4m. dk e '"'" g(k )

P (2n)' k~+ ~ g

4m.

y
dk e '"" A' —p'

(64)

The integrals on the variables k and k ' are the Fourier
transforms of the pion propagator multiplied by the ~N
form factor. As we have mentioned before, these form
factors have been kept in order to ensure the convergence
of the integrals for high momenta when x is close to zero.
Therefore, the form factor is effectively used as a cutoff in
the momenta. By performing a power counting, one notes
that the integrals are convergent for values of n greater
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than 1. In this work we adopt the value n=2, and the
function U(x} becomes

ter, xp (in coordinate space), which can be defined as fol-
lows:

—Pz A
—Az

U(x) =
px p Ax 2A p2

U(x, ), x ~xp
U(x) =

U(x), x &xp (66)

(65)

In the literature ' other procedures for dealing with the
mathematical short distance problem can be found. For
instance, the short distance repulsion between nucleons
can be simulated by the introduction of a cutoff parame-

I

with A= 00. It is worth pointing out that form factors
[Eq. (54)] and the short distance repulsion are due to dis-
tinct physical mechanisms and hence are not mutually ex-
clusive.

The form of the function U(x) given by Eq. (65) allows
us to rewrite the potential as follows:

C~(&)=C,(&"'r'j')(cr "'rk;)(a 'J'r k)U (rk;)U, (r k)+ —(r"'r'j')

X [a"a"'Uo(rk;»o(rjk)+I 3(a "rjk)(a "' rjk) a"—'a "'1Uo(rki) Ui(rjk)

+ [3(o "rk;)(cr ' 'rk;) —a" a ' ')U2(rk;)Up(rjk)

+[9c os8 k(cr "rk;}(cr'j'rjk) —3(a "rjk)(o ' 'rjk) —3(a "rk;)(a ' 'rk;)+cr "'a ' ']U2(rk;)U2(rzk)I

C'
+ ( ()Xr(j)' (k))IN(')Xa(j). (k)U (r )U (r )

+[3(a(k)Xa( ).r, )(a(j).r ) a( IX a(j).a(k)]U (r )U (r )

+[3(a (j)X g(k). r~„)(a~(i).r~ ) a (i)X y(j)a~(k)]U (r )U (r )

+[9M(k) (w Xw )(
m( )iP )( (j) p. } 3( m(k) ~(i) ~

)( (j)

—3(a 'j'Xo' 'rk; )(ir "rk; )+ a "Xa 'j'o'"']U2'(rk;)Ui(rjk) J,

cosOk = rk( rgvc

~gg ~jk
(68)

e &" Ae 1A
Up(x) =

px p Ax 2 p
(69)

and

—PZ
Ui(x) =— 1 A 11+ + , 1+

px p Ax

—Az
1 A2 —AZ

Ax 2 I
2

e —Px
( 3 3 A2 —Ax

U2(x) = 1+
px px p x p px

3 3 1 A A A 11+ + e —AZ

Ax A x 2 p p Ax
(7l)

In the remainder of this work we assess the importance of this three-body force to the properties of H and He. In or-
der to do this we consider only the leading contribution to the trinucleon wave function, which is given by the totally
symmetric S wave. ' This choice makes our results not fully realistic, since D waves can produce significant effects.
This fact does not prevent, however, the usefulness of a detailed study of the S wave, because these results can provide a
reliable point of departure for the inclusion of other effects. %"ith this purpose in mind, we evaluate the expectation
value of Eq. (67) between totally antisymmetric spin and isospin states ' which are given by

(72)

where T and S are the isospin and spin of the system, while t and s are the corresponding quantities for the two-nucleon
pair. This expectation value is the following:
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3
W'= g W (k) =Cp Uo (1'k& ) Up (1J'k ) +C& cosek U& ( r«) U, ( rjk )

k=1

+Cz(3 cos Hk —1)Uz(rk; ) Uz(r/k )+ (cyclic permutations) . (73}

The coefficients of the potential are given by

Co ———(C~ —4C~ )/3=—
4m

2

2fPl

'2 '2gp, 2 (1+p~ p)—p
2m 3f 2m 3

(74)

(75)

(C 2C )/3
1 gp 4 1 ( +Pp P(1+ — ) 4 '

s+ t
= p z +4m. 2m 3fz 2m 9(M~ —m )

p
3

(76)

In order to complete the evaluation of the 3BF we use
the following values for the parameters appearing in the
above equations: g= 13.39, I=938.28 MeV,
p = 139.57 MeV, 0 f =93 MeV, a = 1.05p
P = —0.80p 3, p„—p„=3.706, g~ ——1.84p
M~ ——1220 MeV. Thus we obtain

Co ———(0.46 —0.23) MeV= —0.23 MeV,

Ci ———0.92 MeV,

Cz ——(0.23+0.65+0.23) MeV=1. 11 MeV .

The figures, within parentheses, correspond to partial
contributions in Eqs. (74}—(76},and are displayed in order
to indicate the relative importance of the a, p, and 6 con-
tributions to the intermediate m.N amplitude in Fig. 2.

D. Comparison saith other results

In this subsection we compare our results with the his-
torical Fujita-Miyazawa' potential as well as with some
more recent ones. There are two main reasons for the
differences found among the various works. The first one
regards the values of experimental quantities such as
masses, coupling constants, and scattering lengths that
have been used as input in the calculations. Differences in
the 3BF due to these values reflect the experimental situa-
tion at a given time and will not be considered here.

The second source of divergence among the various
works is a much more serious one, since it is due to the
theoretical treatment of the intermediate mN scattering
amplitude. In any realistic calculation we must require
this amplitude to reproduce on-shell m.N data as well as to
be suitable for off-shell extrapolation. It is the failure of
meeting one of these requirements that makes some of the
potentials discussed below different from the one derived
in this work.

In the work of Fujita and Miyazawa, ' for instance, the
mN amplitude was assumed to be dominated by the excita-
tion of the 4 resonance. Besides, they also assumed that
the background amplitude could be properly represented
by the isospin symmetric scattering length. In hindsight
we realize that both assumptions are not free of problems.
First, we note that the 5 dominance of the ~N amplitude
occurs only when the total center of mass energy is close

I

to the mass of the resonance, which is clearly not the case
in the present problem. Our calculation, for instance,
shows that the contributions due to o. and p exchanges are
as important as the one coming from the b pole.

The use of scattering lengths poses problems of a dif-
ferent nature. Nowadays it is well known that mN scatter-
ing lengths and volumes receive contributions from the
nucleon and delta poles besides the cr and p exchanges. '

Therefore, when scattering lengths are used we must sub-
tract the contribution of the nucleon pole and be careful
not to double count the delta. A further problem associat-
ed with the use of scattering lengths and volumes comes
from the fact that they are on-shell amplitudes evaluated
at threshold whereas 3BF's require off-shell amplitudes
below threshold. This region can be reached either by
means of dispersion relations ' or chiral symmetry ' and
both methods show that these amplitudes can differ ap-
preciably. We can see, thus, that the smallness of the iso-
spin symmetric scattering length does not mean that the
corresponding s-wave amplitude for off-shell pions is
small. In order to illustrate this point, we consider the
case of the isospin even scattering length, which is given

a 0+ —— C+(p, 0),
4m.(m +p

where the function C+(v, t) is related to the nN ampli-
tudes A+ and 8+ by '

(77)

C+(v, t)=A+(v, t)+ B+(v,t) .
(1—t/4m )

(78)

We now define a new function C+(v, t) by subtracting the
nucleon contribution from C+(v, t) This new fu.nction
can be expanded in a power series of v and t, '

C (v, t)=(c~ +cz t)+{c3 +c4t)v +(c5 +c6t)v

(79)
In Ref. 30 we find the following values for the on-shell
coefficients:

c, = —1.50P ', c2 ——1.14P

c+3 ——1.12P, c4
——0.15@

c5 ——0.20@, c6 =0.03@
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C+(v:p /—4m, t) =(c i )' +(cp+t)' (81)

where the superscript "off" stands for off-shell pions.
Thus C+(v=pl4m, t) is quite different from C+(p, O) and
hence the use of this amplitude in the appropriate
kinematical region is very important. Thus, the potentials
derived by the Tucson group' and by ourselves show that
the contributions of both s and p waves to the intermediate
m.N amplitude, represented by the coefficients C„C~, and
Cz, should be considered.

The above comments show that the m.N amplitude
which serves as the basis for the Fujita-Miyazawa (FM)
potential' does not reproduce on-shell data and is not
suitable for off-shell extrapolation. These limitations
cause this potential to be only partially realistic. It is in-
structive to note that the FM potential formally follows
from Eq. (73) when we consider only the 6 contribution in
Eqs. (74}—(76). For comparative purposes we also include
in this work an evaluation of the contribution of the FM
force to the properties of trinucleons.

Attempts to increase the dynamical content of the inter-
mediate mN amplitude can be found in the works of
Loiseau and Nogami, where the o-exchange contribution
has been considered explicitly, and of Loiseau, Nogami,
and Ross, who treated the e exchange. These authors
did so, however, assuming that the cancellations that
make the isospin symmetric scattering length small do
persist for off-shell pions. Besides, they assume that o. or
e exchanges contribute only to s waves, whereas in the
present work we show that the o contribution to p waves,
represented by P, has an important role in the final result.
Also, they do not consider the p exchange, which con-
tributes as much as the 5 to the isospin odd amplitude.
Thus, the refinements introduced by these authors were
not enough to make the 3BF fully realistic.

The intermediate m.N amplitude used in the work of
Yang" is based on chiral symmetry and is therefore ap-
propriate for off-shell extrapolation. It has the problem,
however, of not reproducing well the on-shell ~N scatter-
ing data, since he treated the p exchange as a contact in-
teraction, which is equivalent to disregarding the nucleon
magnetic momenta. He also did not consider the o. term
and hence his results can be formally obtained from ours
by making a =P =@~=@„=Ointo Eqs. (74)—(76).

The potential derived by the Tucson group' and by
Coon and Cilockle' is based on an off-shell mN amplitude
which was constructed by means of chiral symmetry and
reproduces mell on-sheH data; this is the reason why our
expressions are essentially the same as theirs. So, the main
difference between both works is not in the expressions,
but rather, in the method employed to obtain them. The
Tucson group has used a ~N amplitude derived by means
of current algebra whereas we have used effective La-
grangians. As we pointed out before, both methods are
equally appropriate for implementing chiral symmetry,
the advantage of the latter being that it is much simpler

The value of this amplitude at threshold is

C+(p, O)=c+i+c+3p +c+qp =0.18@

The 3BF, on the other hand, requires the use of this am-
plitude in a different kinematic region, namely, one in
which v-p /4m. In this region we have

and makes explicit the dynamical implications of the
model.

It is worth pointing out that the term of the potential
which appears in Refs. 9 and 17 proportional to C, has
one more term than ours, since their authors used a dif-
ferent parametrization for the o. term. This term arises
from the mN form factor, and it is associated with the
relativistic inconsistencies mentioned above. Our numeri-
cal results are slightly different from those of Refs. 9, 16,
and 17 due to the "experimental" input. The accuracy of
this input is about 10% if one assumes it to be of the same
order of magnitude as that of the o. term determined in
Ref. 30.

Knowledge of dynamics is crucial in the few-body prob-
lem. For instance, exchange currents, which play impor-
tant roles in electromagnetic form factors, and scattering
amplitudes are due to processes in which the external
probe is able to "see" the vertices and propagators of the
interactions corresponding to the potentials. Therefore,
the description of virtual processes by means of effective
Lagrangians is a very convenient one.

For the purpose of this work we consider the 3BF given
by Eq. (73) and compare our result with previous works.

III. THE HYPERSPHERICAL HARMONIC APPROACH

In this work we use an HH expansion of the wave func-
tion for solving the nonrelativistic Schrodinger equation
for three nucleons of mass m,

=E+(x;,y;), (82)

written in terms of the Jacobi coordinates (not unique)

(83)

where r; are the particle coordinates while V&23 is the in-
teraction between the three nucleons. This interaction
consists of a sum of a two-body force (2BF) V (which is
the sum of three pairwise interactions}, and a three-body
force (3BF) W (constituted by three terms). Equation (83)
defines three equivalent sets of coordinates (i =1,2, 3) for
the description of the three-body problem [cyclic permuta-
tions in the indices (i,j,k}= (1,2, 3)]. Equation (83) can be
solved using, for example, the hyperspherical harmonic
approach' in which the wave function 4 is expanded in a
complete orthonormal set of hyperspherical functions in
the following way:

(84)

where

[at~1„., ly. ,L,M]
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and

2 2 2 2 2 2 2r =&1+3'1=&2+3'2=&3+73

x;=r cosP;, y;=r sing; 0&/; &—

respectively. The complete orthonormal set

[Y2», I„ I «;)]' x. y.

The notation x; and y; means

x; =(8„—,$„),, y.;—= (Hy. ,fy.),

is the angular part of homogeneous harmonic polynomials
of degree 2E (E =0, 1,2, . . . , ~) in the six-dimensional
space. Substitution of Eq. (84) into Eq. (83) leads to a sys-
tem of coupled differential equations, '

d' ~»(~»+1}+, +»' ~'», (r)+ 2 «~
I ~+3 IE'~ '&~'». (r}=o,

dr r Kt I
I

where W» E+—,', —»—=—m lfi E (E &0 for bound states ), U, 23 ——m IR V&23, and (U f23 }is integrated over the five an-

gles, resulting in a function of r. The elements of the angular basis with total angular momentum (L,M), related to the
angular coordinates (x;,y;,P; ), are

Y2»~ ~ (0;)= g (1„1&m,„m, z ,I Lllf) Y(2»)(Q;)
l m„m

C

where

l I„
Y(2»)(fl }=~(„„(x)Y~, , (y")'"Per'c '(4 )

f

(86)

(87)

-l l„
' 'Pz» '(P;)=

1/2
4(E+1)n!(n +I„+1,+1}! (l„+1/2, 1 +1/2)

(cosP; ) '(sing; ) 'P„' ' (cos2$; )
I (n+l„+ —, )I"(n+I, + —, )

(88)

where n is the integer

,' (2E —/„—ly )—
and P„""'(x) is the usual Jacobi polynomial. Since the
hyperspherical basis Y2K l l forms a complete orthonor-LM

x- y ~

mal set for any i, we can choose this index arbitrarily. For
the sake of simplicity, we will drop from now on the sub-
scripts in the quantum numbers and variables. When U123

contains spin, isospin, etc., operators, the associated quan-
tum numbers are included into the a label and in the sum
in the matrix elements of Eq. (85).

A. Matrix elements of the interactions

where

~ 2»IC2», v 2I + 1Sp(' 'P2»(p) }

the operator So defined by

Sp (f(4 ) }= [f(0)+f(2m. I3 ) +—f( —2~/3 ) ]

and the norma1ization coefficient

(C2») = g (21+1)[SQ( Pp»(P))]'
l =0
even

(91)

In this work we restrict ourselves to the space symme-
trical S state (for which

L =M =0 ~l„=ly ——I; Ia) ~ IO, O, l, l I )

Let
I
A (S, T) ) be the fully antisymmetric spin-isospin

state for total spin (isospin) S=—,
' (T= —,

' ). The wave
function of the completely space syrnrnetry S is given by

%(x,y)= IA(S, T)} g [r ~ N»(r)]P2»(Q), (89)
K=0

To reduce the number of coupled differential equations
to a smaller number of significant coupled equations we
restrict the angular basis to the "optimal subset. "' The
optimal subset is defined as the subset of angular basis
that is directly connected through the potential to Hp '(0)
which has the predominant contribution to the ground
state, i.e.,

(93)

where the normalized symmetric HH's are

~&»(+)= X ~z», i Yes', r, i«)
l=O

(90)

In practice we are obliged to consider two separate ex-
pansions, one for the 2BF and another for the 3BF. The
expansions should be in terms of the same basis. They are
given by'
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Uig ~sJ'

l (J
(A (,

g w(k)

v2K(r)
~A)=31r' ' y ( —) (O~K ) K)w'2K(n) '

K=0
(94)

The matrix element of 2BF between two HH's is given by

«~IUI&'~'&=(&~ X'J~"u& «'~' =3«~IUd*i&I&'~'&&"=3 X ~
—&" «I&" I&'&»x ~~&,

l (J K"=0

where

(95)

V2K" (r) =(&)

2K!I 3+—
2

f V(rir)P2, +(1/2), (1/2&(1 2ri2)(1 ri2)1/2rii. +2drt
1

K (96)

are the so-called potential multipoles. ' Here A. refers to the rank of the tensor character of the force (for central forces,
A, =O) and

(&) m (k)
g2

The factors (K
~

K"
~

K') are geometrical coefficients independent of the shape of the interaction' and are given by
min(K, K')

C2KC2K' P2K" (0) $ (21+1)~0( P2'K(4)+0( P2'K'(4))( P2sK
f

PZK"
I

P20K')
16 1=0

The last 3P matrix element in Eq. (97) is defined as'
tt tl I I /2 tt tt

P2K
~

P2K
~
P2K' ) f0 dy sin y cos y P2sK(y) P2K" (y) P2K' (y) (98)

The effective potential v(xi ) is half the sum of the singlet and triplet even central potentials, for the space symmetric S
state.

A similar procedure is used to obtain the matrix elements of 3BF. It is given by

(Ka
~

w
~

K'a') =3 g ( —) (K
~

K"
[ K')w2K-(r)

K"=0
(99)

where the potential multipoles are calculated for each term of w. In order to do this we should notice that in Eq. (73) the
tensor characters of the first, second, and third terms correspond to A, =O, 1, and 2, respectively. The corresponding mul-
tipoles are

1/2
1

K"
A, =O~W2K-(r)=C0 „g(21+1)A2K g ( —) ' 'FK, K, (1,1)U2K, (r)U'2K, (r)

256 EC'+1 l=o K)K~
(100)

where U'2K(r) is given by Eq. (96) with V(r'r)~U0(r'r);
Ktt

1&,= I~W2K-(r)=C1( —,', ) m
' „g(21+1)A2K g ( —)

' 'U2K, (r)U2K, (r)K"+1 ( K 1,K2

21l' l
)&g (21'+1)(—)

'+
() () () FK +1K +2(1' 1) (101)

1'

where U2K(r) is given by Eq. (96) with V(r'r)~ Ui(r'r);

3/2
1

K"~2W2(Kr)=C, , g v 21+1A2K„
128 K"+1 l=o

lt
X g ( —)

' 'U2K&(r)U2K2(r)g(21'+1) 0 0 0 FK&+2K2+2(/', 1)
K)K2 l' (102)
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where U'2x'(r) is given by Eq. (96) with V(r'r)~U2(r'r). The expressions for A2x- and F are given by

~2m- =So("'Pox-(4'})~So("'P2x-(4) )

and

+x, +i.,~,+i.(I' I)=&' 'P2&, +i, I
'P2K"

I P2Ki+i, } P2K, +i1(0) P2K, +i.(

(103)

(104)

In an appendix we indicate how to obtain the above 3BF multipoles.
From Eq. (85) we can write the system of coupled differential equations where 2BF and 3BF are taken into considera-

tion:

~x(~x+1}2+, +~' @x(r)+3 g ( —} &It I&"I&'&[U2K"«)+uzi-«)]@a«}=o,
T K', K"=0

(105)

to2ir" (r}= [W2x'"(r) + IV2+"(r}+IV/K' (r }l0 1 Pl

For practical purpose, the set of equations (105) is trun-

cated to a finite number of partial waves (the upper values

of the E quantum numbers are estimated after conver-

gence of the solution is reached. '
) This set can be solved

exactly numerically. However, in order to reduce time
and memory requirements we then solved it using the un-

coupled adiabatic approximation (UAA).

IV. RESULTS AND CONCLUSIONS

The Afnan-Tang S3 potential' has been chosen to
represent the 2BF. The irmE 3BF is giv-en by Eq. (73),
whose coefficients have been obtained by means of effec-
tive I.agrangians that are approximately invariant under
chiral transformations. %'e have argued that this ap-
proach to the problem is a very convenient one, since it al-

lows a clear understanding of the dynamical origin of the
various contributions to the strength parameters C0, C],
and Cz, defined by Eqs. (74)—(76).

Those equations show that these parameters receive
contributions from the 6 pole and p and o exchanges,
there being no reason for the isolated consideration of
some of them. Other forms of 3BF, such as those derived
by the Tucson (T) group, ' ' Yang" (Y), Fujita and Miya-
zawa' (FM), and Loiseau, Nogami, and Ross (LNR} can
be formally obtained from Eq. (73), by choosing con-
venient values for the dynamical parameters. [Notice that
Eq. (73) is an S-wave reduction of Eq. 61]. In the calcula-

tions we have taken 12 rnultipoles of 2BF and 5 multipoles
of 3BF, which give reasonably convergent results. In
Tables I and II we present the main results of the calcula-
tion. In Table I we illustrate the role of the cutoff param-
eter xo defined by Eq. (66), in the case of the FM force.
Results of this calculation show that both BE and P,i, (q )

depend strongly on this cutoff parameter. As shown in
Ref. 6, discontinuities in BE and in the first maximum of

I F,h(q )
I

(called F,„) for He appear at small values of
x0. Those discontinuities are caused by nodes near the
origin in the radial wave function. Since those nodes are
not expected to appear in the ground state wave function,
this somehow sets a criterion for the value of xo, which
should be around the hard core radius of the Reid hard
core potentia1. Thus we cannot take xo as a free
phenomenological parameter to fit experimental
data. ' ' A similar statement can be made for the LNR
potential. For all the above 3BF's, results are quite sens-
itive to the variation of the parameters. Since the accura-
cy of the "experimental" input is of the order of I0%,
Table II shows results of various combinations of the
strength parameters. This table also shows the relative
contribution of the different terms in Eq. (73). We omit
the calculated rms radius since it is well within the experi-
mental error bar. In Fig. 4 we plot

I P,h(q )
I

for He, us-
ing different forms of 3BF.

Some important features should be mentioned about the
calculations. The forces derived by the Tucson group and
by ourselves are more realistic than the FM force.
Nevertheless, the latter seems to be more "effective" in
filling the gap between the experimental values of the
binding energy and the 2BF contribution. A possible

TABLE I. FM force (Cp ——C& ——0) results of the calculation for the bound states of the trinucleon system. (p=0.7 fm ' and no
nodes near origin. ) In this table we have used the regularization scheme at short distances defined by Eq. (66).

Calculation

H (2BF)
H (2BF+ 3BF)

3He (2BF)

He (2BF+ 3BF)

H (expt)
He (expt)

C2
(MeV)

0.9

0.9
0.46

Xp
(fm)

0.340

0.340
0.277

BE
(MeV)

6.489
7.658
5.789
6.922
6.485
8.482
7.718

Value at
q~= I fm

0.590
0.617
0.565
0.592
0.581
0.622
0.576

Position of
first minimum

(fm )

15.98
16.47
15.91
16.39
15.54

11.8

F .„x10+'
1.50
1.94
1.06
1.39
1.58

charge
radius
(fm)

1.817
1.737
1.889
1.810
1.841
1.70+0.05
1.84+0.03
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TABLE II. Increases of binding energy [ABE=BE(2BF+ 3BF)—BE(2BF)], position of first minimum (qo), and F,„generated
by the introduction of 3BF, for the parameters indicated in the first columns. (See note in Ref. 43.) In this table we have used the
regularization scheme at short distances defined by Eq. (54).

Nucleus

H

'He

Description

2BF+ 3BF

2BF+ 3BF

No. of
order

7
8
9

10

Co
(MeV)

—0.23

—0.23

—0.12

—0.23

—0.23
—0.12

C]
(MeV)

—0.92
—0.92
—0.92
—0.92
—0.92
—0.76

—0.92
—0.92
—0.92
—0.76

Cp
(MeV)

1 ~ 11
1.11
1.11
1.20

1.11
1.20

A
(fm )

25
25
25
17
17
25

25
25
17
17

bBE
(MeV)

0.010
—0.203

0.064
—0.087
—0.068

0.067

0.010
—0.197
—0.084
—0.049

qo (fm )

15.80
1S.87
15.83
15.73
15.71
15.80

15.70
15.80
15.69
15.71

I,„~10'

1.59
1.47
1.61
1.55
1.57
1.61

1.55
1.42
1.51
1.52

reason for such a behavior is that different regularization
schemes have been used in both cases. This result shows
that the short distance behavior of the 3BF is important
and that it should be treated very carefully in realistic cal-
culations. Our results allow us to conclude that cutoffs in
the 3BF, in both configuration and momentum spaces, el-
iminate the nodes in the radial wave function. In the
latter case this happens because the mNN form factor is
taken not to be one, as in the case of the FM force. We

IO

2BF
6=m
xo= 0

CX

!0

10 '

~ w ~w Q

5 IO
, cl. l. . ~ t.
I 5 20 g(~ p)

FIG. 4. Calculated charge form factor for He using Eq. (66),
T, and FM forces. For FM force C2 ——0.9 MeV, xo ——0.277 fm
(&= oo). For our work and the T (xo ——0) force the curves are
quite close and for A =17. and 25. fm 2 they are also too close
to be drawn separately. Only the contribution of the p-wave part
of those forces were considered in the plot. For all forces
@=0.7 fm '. The experimental data were taken from Refs. 41
and 37 (closed circles} and from Ref. 38 (open circles).

use values of A ranging from 17. to 25., as suggested in
Ref. 9. The overal1 effect of reducing A from 25. to 17.
is to reduce the effects of the 3BF. The A dependence de-
creases rapidly as the interparticle distances increase. On
the other hand, F,„seems to be of the same order of
magnitude for all 3BF's.

In this work we have derived a mmE-3BF. We have also
calculated and compared the contributions of different
forms of 3BF to the trinucleon ground state. However,
the very short range behavior of 3BF's is still uncertain
due possibly to other neglected diagrams. Only the totally
symmetric S part of the H wave function (which is re-
sponsible for almost 90% of the trinucleon ground state)
is kept in the solution of the Schrodinger equation using
the hyperspherical harmonic method. We are aware that
the realistic 2BF plus 3BF strongly couple the S and D
parts of the trinucleon wave function. It seems that the
neglect of this coupling affects directly the calculation of
the binding energy contribution. Computer limitations led
us to consider only S waves in this work. However, we be-
lieve that our results constitute a suitable departure point
for the inclusion of contributions of other effects.
Enhancements of binding energy (BE) and Fd, (q ) are in
the right direction compared with experimental data, al-
though that of F,h(q ) is small. This observation agrees
basically with previous approximate or model calcula-
tions * However, calculations in this direction are still
in an initial stage, and it is too early to draw definite con-
clusions. In order to improve our results one should
consider realistic 2BF s—as well as including the contribu-
tions of the D component to the total wave function—
other dynamical effects such as m-p and p-p exchanges,
relativistic corrections, and MEC's to F,h(q2). Calcula-
tions along these lines are at present being considered by
us.
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APPENDIX A: MATRIX ELEMENTS
FOR THE THREE-BODY FORCE

To calculate the matrix element

&+2»«) I~ I ~2»«)&

of the 3BF between two fully space symmetric HH's, we
must expand the 3BF in terms of the same basis. We no-
tice that there is a single HH in this symmetry for each of
the lowest values 2IC for I[.=0,2,3,4,5 (for I[. = 1, there are
only mixed symmetry states). ' Therefore, the HH
decomposition is unique for E & 6. In agreement with Eq.
(89), the HH expansion of a 2BF is given by

(w
I

U,,(r,, ) I-a &=~'"g g ( —)»~'&»(i, j). . I [(A, +3)/2]
Y[FK+k](4)Y[2»+k]«) U2»(r)A, (A)

I [(A/2)+3] [ K k]
(Al)

where the multipoles u2»(r) are given by Eq. (96), [2' +A, ]=2E+A., ll, m l, l2, rn2 [see Eq. (87)], and A»(i, j) is a coef-
ficient which may include spin, isospin, or other nonspatial degrees of freedom, For the X=O, 1, and 2 terms of the 3BF,
given by Eq. (73), we may expand them in HH by using Eq. (Al).

For instance, for the A, =O terms, we write

Uo(xi) ~ I 3) X ( ) g Y[2»]('(['jk) Y[2k](II)U2»(r)3n I'(3/2) K oo (0)

K =0 [2»]

where

Y[2»](4) I 2» ((['ij)J dP Yoo('ll) Yiimi ( I)Yi2m2(iI)

(A2)

A similar expression holds or U(xj ). After taking the product of both of them and some algebraic manipulation, the re-
sult projected on the basis Y2»- ii(Q) and summed over a cyclic permutation on the indices (i,j,k), we obtain

g & Y2»-, il I
Uo(x;»0(xj) &

cyclic

+ — 2», " 2», r= --- v'2l 1 g ( —)
' 'U' ' (r)U' ' (r)

KIK2

X g (2li+ 1)(2l2+ 1)
E) E2E l E2

r

l1 l2 0 l1 l2 0 l1 l1 l l2 l2 l~
X(211+1)(212+1) 0 0 0 0 0 0 0 0 0 0 0 0

&' 'I'2»l
I

' I'2»-
I

'I'2»2 & g ' 'I'2», (4'ik)' 'I'2»2 ((t'k, )
cyclic

(A4)

where p;k ——0, 2n/3, 2m/3—cor.respond to the interparticle distances r,2, r23, r», respectively, and U2»(r) are the A, =O
tensor multipoles in the six dimensional space, given by Eq. (96). In choosing i =1,j=3, and k =2, which correspond to

(P) 12l
p;k ——0 and pkj ———2m. /3, the above equation is simplified because l l ——0 (due to the nature of ' 'P2'»', ); we then obtain

Co y (AY2»- ll I
Uo(xl)U0(XJ)A &

= Co+21+1 y ( —) U2», (r)U2» (r)
cyc1ic Z56 K)K2

~2»i I
+2»"

I +2» & ~2» (0) +2»2(

For the k= 1 term, we notice that
1

cosOk = g ( —)"Ylp(rik)Yl p(rkj)
p= —1

and from Eq. (73) we get

W'(k)=C, g( —)"[Y,„(rk)U, (x;)][Yl „(lk )Ul(x )]3 p
(A6)
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By expanding the terms between square brackets in HH, with the use of Eq. (Al), and following the same procedure as
for the A, =O case, we obtain

g (&Y2x-- ~ I ~
C~ cos8k U~ (x; ) U(xj )A & =3(—„)mC'~ V21 + I ( —) + ' g ( —)

' ' U2Ir' (r) U2x' (r)
cyclic K)K~

I I'
Xg (21'+ I )( —)'

() () 0 Fx +, x +, (1',1)

For the A. =2 term, we notice that
2

( —)I'Y2p(rrk) Y2, p(rk, ),
p= —2

and from Eq. (73) we get

W (k) =Cz g ( —)"[Yz„(rk)U2(x;)j[Y2 &(r~j ) U2(xj )]
5

(A7)

(A8)

By expanding the terms between square brackets in HH, with the use of Eq. (Al), we finally obtain

X ('4 2K",I, I I
C2(3 cos ~k —I ) U2(x; ) U2(xj )A &

cyclic

=3.2'
2

Cq g ( —)
' 'Uzx, (r)Uqx, (r) g (21'+ I) 0 0 0 Fx, +2x +z(l', 1) . (A9)

K)K2 I' =I —2

The overall factor 3 appearing in Eqs. (AS), (A7), and (A9) has been factorized out in Eq. (99). In order to obtain the
potential multipoles corresponding to Eqs. (AS), (A7), and (A9), we use the following expression':

K
II 2K(r) =~ ' ' g & 21 +~i%2( Y2jC, s&()~ (A lo)+ 1=0 cyclic

even

where W = W + W'+ W .
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