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Need of repulsion in form factors for separable two-nucleon forces
in conjunction with the two-pion-exchange three-nucleon force
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Institut fiir Theoretische Physik, Ruhr Un-iuersitiit Bochum, Federal Republic of Germany

(Received 29 November 1982)

The bound state Faddeev equations in the well-known simplified form for separable two-
nucleon forces are extended to include a three-nucleon force. A numerical study for the
two-pion-exchange three-nucleon force in conjunction with commonly used spin dependent
s-wave NN forces is presented. The violent short-range behavior of the two-pion-exchange
three-nucleon force requires the choice of form factors for the two-nucleon forces which
have a repulsion built in.

NUCLEAR STRUCTURE Triton calculation, interplay of two- and
L three-nucleon force.

The solution of the three-body Faddeev equations
is greatly simplified by using separable potentials.
Also, useful physical insight has been gained from
studies based on that type of interaction. Therefore
it may also be useful to study possible effects of the
two-pion-exchange three-nucleon force (TPTNF)
within that framework. This paper describes the
rather straightforward extension of the Faddeev
equations incorporating a three-nucleon force and
presents as a first example for this type of study tri-
ton binding energy calculations based on commonly
used s-wave NN interactions. Some time ago Phil-
lips' undertook a related study, restricted, however,
to a separable three-body force, which was chosen in
an ad hoc manner.

Let us consider the triton with a three-nucleon
force included. The Faddeev decomposition of the
bound state

0 =(1+P)/+$4,

where P denotes the two cyclical peiixiutations

P =Pi2P23+Pi»2»
leads to the Faddeev equations

Q=GotiPQ+Got, P$4,

A=Got4(1+P)4 .

Eliminating the fourth component lb4 one gets

Q= Got i PQ+ Gpt, Got4(1+P)g .

Here ti and t4 are the two- and three-body t ma-
trices linked to the two- and three-body forces
Vi

—= V23 and V4, respectively. We restrict this
study to pure s-wave forces Vi and rank 1 separable
ti matrices. The standard reduction turns (4) into a
coupled set of one-dimensional integral equations

F.(q)(= g f de e'(&(:.v~
l
&GD I(('. q'~'&+&g. q~

l
GO&4((+&~GO l(( e'~'&(~. (&——.q')r. (q') .

a'

Here q is the Jacobi momentum of the "spectator"
particle, g~(p) the form factor defined by

(p
~
ti, (z)

L

p') =g (p)r (z)g (p'),

and a stands for the discrete quantum numbers of
LS coupling:

~

pqa)—:
~
pq( IA)L(s —,)S( LS)g (t , )T) . —

Because of our restricted choice of Vi there are only
two channels a. The orbital angular momentum l in
the 2-3 subsystem is zero, therefore the angular
momentum A, linked to q is equal to the total orbital
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angular momentum L. For the 2-3 subsystem spin
s=O the total spin S is S=—,, which requires L=0
to match with g = —,. This is the first channel.

1

The second channel arises choosing s = 1, S= —,, and
L=0. Clearly these two channels belong to t = 1 and
t=O, respectively, and of course to total isospin

T= —,. Finally, there is a third possibility L =A. =2,
s = 1, and S= —,, which, however, is not connected to
the first two channels in our case, as will be shown
below.

The standard transition potential in (5) is given as

g. (
I

—, q+q'I )g (
I

-, q'+q
I

)

&~.e l&golg. ~'~'&=~.". f—1 E q' q—' —qq'x—

with

a' 1

4

(9)

(g~qa I
Go(1+P)u4(1+P)Go

I g~ q'a') . (l2)

In the spirit of pure s-wave interactions (no tensor
force), and because of simplifications, we replace V4
by the following force

That potential is diagonal in L and therefore does
not couple L =0 to L =2. Thus without t4 one ends
up with the familiar two coupled equations.

The two-pion-exchange three-nucleon force is be-
lieved to be on a relatively firiri theoretical basis.
From the experience gained up to now with that
force, it is to be expected that it can be treated in
perturbation theory. Therefore we restrict ourselves
in this qualitative study to

t4 - V4 —u4+ P12P23 v 4P13P23

+P13P23v 4P12P23 (10)

V4(1+P)=(1+P)v4(1+P),
and the new teiiri in (5) will be

The second equality describes the decomposition of
V4 into three cyclical tefnls as shown in Fig. 1.
Therefore one can write

where
I

g' ) is the totally antisymmetric state in
spin-isospin space (to S=T=—,). Thus V4 acts only
in that part of the wave function which is totally
symmetric in the space part. For the triton this is
known to be about 90%%uo of the wave function. That
spin-isospin averaged three nucleon force was stud-
ied recently. 4 It is easy to see that choosing V4 [Eq.
(11)]simplifies to

V (1+P)=
I g. )(I+P.,»'P(1+P.p) & k. I

(14)

where the operators with the index sp act only in
noriual space and

(15)

The spin-isospin matrix element in expression (12)
can therefore be finally evaluated, and one gets

g qa
I
Go V4(1+P)Go

I g 'q'a')

c p g p p g

with

x (Jtlq(00)L =0
I
Go(1+Psp)v4 (1+Pgp)Go

I
p'q'(00)L =0),

1

2

1

2

1

2

Also the restriction to V4 brings up the scalar u4p which excludes a coupling between L=0 and L =2 and we
end up again with two coupled equations.

It is an easy exercise to evaluate the effects of the peiinutation operators. Qne finds
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(g qa
I

Gp V4(1+P)Gp
I g q'a')
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sp & ~ ~]
&& (pq(«N
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—,q+qi I
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qi+-, q'I

x (
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qi(oo)o
I UPI I

—, qI+ q
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I q i («)o&
E—q'& —q' —q &q'x'

(18)

As a further simplification in expression (18) only
the Uq~ matrix elements to l=A, =O have been kept
different from zero. The calculation of these matrix
elements can be reduced to a twofold angular in-
tegration, as has been described in the second listing
in Ref. 2. The necessary interpolations were con-
veniently carried through by the spline method in
the manner worked out in Ref. 5.

We used the two-pion-exchange three-nucleon
force of the second listing in Ref. 2 with the strong
m NN foiiri factor parameter A =25 fm

The eigenvalue problem (5) has been solved by
standard routines.

Let us first regard the Yamaguchi foriri factors
which have often been and are still being used.
Since they are purely attractive, they will not keep
two nucleons apart at short distances. On the other

hand, the TPTNF, averaged over the spin-isospin
state

I g, ), Eq. (15), is strongly attractive, especially
at short distances, as has been exhibited in Ref. 4.
So we have to expect that the unrealistic purely at-
tractive nature of the Yamaguchi foriri factors to-
gether with the TPTNF will lead to an unrealistic
increase in binding energy. This is indeed the case,
as is shown in the first row of Table I. The obvious
reason for that overbinding (with and without Vq) is
the missing repulsion, which leads to positive g s
and thus to too attractive transition potentials (8)
and (18).

It is therefore obvious that one should consider
forirI factors based on two-nucleon interactions
which have a repulsion built in. To that aim we
considered the unitary pole approximation (UPA) to

TABLE I. Triton binding energies {in MeV} for various
two-nucleon forces with and without V4.

3 2

FICz. 1. The two-pion-exchange three-nucleon force.

Y

UPA
for MT II, IV

UPA
for MT I, III

Without V4

—11.0

—10.4

—8.50

With V4

—24. 1

—21.6

—8.64
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FIG. 2. The form factors for UPA approximations to the Malfliet-Tjon potentials I—IV in comparison to the Yamagu-
chi ones.

the local Malfliet-Tjon potentials I and III, which
fit the 'So and Si phases fairly well. They have the

TABLE II. Potential parameters for the Malfliet-Tjon
models.

V& (MeVfm) p& (fm ') V& (MeVfm) p& (fm ')

I
II
III
IV

513.968
52.490

626.885
65.120

1.550
0.809
1.550
0.633

1438.720

1438.720

3.110

3.110

V(r)=(Vze "" —Vze "
)—,

T

where the parameters for the various models are
summarized in Table II. It is known from
thorough studies that UPA is quite good for in-
teractions which are both repulsive and attractive.
The corresponding foiiri factors are shown in Fig. 2
in comparison to the Yamaguchi ones. The node is
due to the repulsion. The resulting triton binding
energies with and without V4 are shown in the third
row of Table I. The increase in binding energy due
to that restricted V4 ——V4 is now of the expected
reasonable order of magnitude.

The unrealistic overbinding in the case of the
Yamaguchi forrri factors does not depend on that
specific separable force. One can use, for instance,
the UPA approximation to the purely attractive
Malfliet-Tjon potentials II and IV, which leads also

to purely positive forn| factors as shown in Fig. 2.
The results for the triton (with and without V4) are
given in the second row of Table I.

This numerical study is not meant to provide a
good estimate for the additional binding energy re-
sulting from a three-nucleon force, but only to
demonstrate the relative ease with which the
TPTNF can be included numerically into the well
established framework of solving the Faddeev equa-
tions with separable two-nucleon forces. At the
same time, however, this study shows the strong in-
terplay of two- and three-nucleon forces. The
TPTNF used is strongly attractive for certain
short-distance configurations and therefore neces-
sarily requires two-nucleon forces which have the
short range repulsion built in as enforced by the
two-nucleon system.

Though purely attractive two-nucleon forces,
when used alone, may be useful for certain trend
studies, their unrealistic feature of no repulsion is
dramatically exhibited when combined with the
TPTNF as it is presently understood. The TPTNF
may be modified with further insight in the future,
and certainly at shorter distances additional process-
es become important. Thus the total three-nucleon
force may behave differently, at least at short dis-
tances (for instance, it may behave repulsively), and
the interplay with certain types of two-nucleon
forces may be less disharmonious.

An improvement for the evaluation of the peIirIu-
tation operator in Eq. (18) and the application to the
n + d~n + n+p process is underway.
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