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The predictions of the interacting boson approximation are studied in the consistent Q formalism
in which the same parametrization of the boson quadrupole operator is used in both the Hamiltonian
and in the E2 operator. In this scheme, wave functions, relative energies of states of the same spin,
and all relative B(E2) values depend on only a single parameter, g~, which appears in the internal
structure of the operator Q. This feature allows a number of simple results to be obtained, principal-
ly through the construction of contour plots of various observables in terms of P~ and the boson
number N. The entire SU(3)—O(6) region, including both limiting symmetries, can be treated by al-

lowing P~ to vary between its respective limiting values for those two symmetries. For deformed
nuclei, a number of characteristic features are obtained, involving the predicted decay of the y band
and the energy and decay of the first 0+ excitation. It is shown that the dominance of the P~y
over P~g matrix elements and the near equality of P~y and y~g E2 matrix elements are inherent
features of the model. The automatic inclusion of band mixing in the interacting boson approxima-
tion is discussed in terms of the mixing parameter Zz and it is shown that the interacting boson ap-
proximation reproduces the empirical systematics in Z~. The concepts of the intrinsic state formal-
ism are reviewed in the context of the consistent Q framework and shown to imply vanishing P~g
transitions, for any boson number, in the absence of K mixing effects. The O(6) limit obtained with
the consistent Q formalism is shown to be a special case of the general limit. Finally, transition re-

gions are discussed, particularly the SU(3)—O(6) case, in terms of "trajectories" in p~ between its
limiting values. A number of qualitative parameter-free predictions for the evolution of energy or
E2 branching ratios are thus obtained.

NUCLEAR STRUCTURE Consistent Q formalism of the ISA. Energy and
B (E2) predictions, contour plots, g~ trajectories, intrinsic state formalism.

I. INTRODUCTION

One of the distinguishing features of the interacting bo-
son approximation' (IBA) is its ability to describe the
changing collective properties of nuclei across an entire
major shell within the framework of a single, simple Ham-
iltonian. This feature stems from the fact that the analogs
of limiting geometrical descriptions (vibrational, rotation-
al, y unstable) appear naturally within the framework of
the IBA Hamiltonian, in terms of the symmetries SU(5),
SU(3), and O(6) associated with its group theoretical foun-
dations. Thus, for example, both the vibration-rotation
transition in the Sm and Gd nuclei ' and the deformed-
y-unstable transition in the Os-Pt nuclei have been repro-
duced with considerable success in the IBA-1 basis. In
these earlier calculations, the three limiting symmetries of
the model each corresponded to the dominance of a partic-
ular term in the Hamiltonian, and the transition between
two symmetries was generated by adjusting the relative
sizes of the appropriate terms. However, more recently,
studies in the region of deformed nuclei have suggested a
somewhat different approach.

Calculations in deformed nuclei require the use of a
Q.Q interaction coupling the IBA basis states, where the
boson quadruwiole operator consists of two terms, of the
form (s d+d s)' ' and (d d)' '. The appropriate limiting
symmetry in this case is SU(3) which arises in the Hamil-

tonian when the two terms are in the specific ratio of
—u 7/2. In addition, the complete symmetry, incorporat-
ing transition rates, necessitates the use of the same ratio
of terms in the quadrupole operator describing E2 transi-
tions. The predicted energy spectrum in the limit involves
degenerate P and y bands, while the E2 selection rules for-
bid, for instance, transitions between y and g bands. Since
the first of these features is seldom realized in deformed
nuclei, and the second never, the symmetry must be bro-
ken in realistic calculations.

In the earlier calculations the perturbation introduced in
the Hamiltonian ' was a P.P term which, when dom-
inant, generates the O(6) symmetry. However, it has been
shown in a recent study that the breaking of the symme-
try in the Hamiltonian alone is not sufficient to provide an
adequate description of relative B (E2) values. The repro-
duction of these latter data requires, in addition, the use of
a very different ratio of terms in the quadrupole E2
operator than the SU(3) ratio. Thus, to date, the success-
ful reproduction of the empirical properties in deformed
nuclei has necessitated the use of different forms of the
quadrupole operator in H and T(E2).

While there is no reason a priori to assume that a mul-
tipole operator in a Hamiltonian should have the same
parametrization as that used in the description of elec-
tromagnetic transitions, in many models such a relation-
ship is frequently assumed in the case of the quadrupole
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operator, particularly in deformed nuclei where it can be
related to the equilibrium nuclear shape. In fact, in the
IBA-2 framework, where neutron and proton degrees of
freedom are treated separately, this constraint has always
been applied. Moreover, it has already been suggested
that, in the IBA-1 framework, the adoption of a similar
constraint might obviate the need for an additional term
in the Hamiltonian for deformed nuclei since the symme-
try breaking induced by changing the parametrization of
Q in the Hamiltonian, in the direction indicated by the
empirically determined E2 operator, should be of a simi-
lar nature to that produced by the P.P term.

The current study, therefore, is aimed at investigating
the utility of an IBA-1 formalism which uses a consistent
parametrization of the quadrupole operator in both the
Hamiltonian and E2 operators. Some of the principal re-
sults have already been briefly reported elsewhere. It will
be shown that this approach indeed produces the perturba-
tion to the SU(3) symmetry required to reproduce the
properties of deformed nuclei without, in many cases, the
need for an additional symmetry breaking term. The new
framework then involves one less free parameter than the
earlier one but, as will be seen, provides equivalent or im-
proved agreement with the data. The three limiting sym-
metries of the model can still be attained and, in fact, a
description of the overall structural characteristics of the
nuclei spanning the SU(3) and O(6) regions (e.g., Gd to Pt)
can be attempted in terms of a single free parameter. An
important consequence of this simplification is that effects
stemining specifically from the changing boson number
across this region are more easily identified, thus
highlighting the importance of the inclusion of finite bo-
son number in the IBA basis.

H = —~Q Q —a''L.L,
with the quadrupole operator being spec'ified as

Q=(s d+d s)"' +( Xg /~5)( dd)"' (2)

so that the ratio of the two terms in the operator is defined
by the parameter Xg. The calculation of E2 transition
probabilities in the model involves the use of an operator

T(E2)=aQ,
where a represents the boson effective charge.

As pointed out in the Introduction, the basis of the
current approach is to employ a variable X& in the Hamil-
tonian, but to demand the same value in the description of
E2 transitions. The SU(3) limit of the model thus appears
when X~ ———~35/2 (so that th'e ratio of the two terms in

Q is —v 7/2) while, when X~ ——0, Q in Eq. (2) becomes a
generator of O(6) and hence the formalism yields a specif-
ic form of the O(6) limit which, it will be seen, corre-
sponds to that found empirically in ' Pt. The gross
structural changes involved in the transition between
SU(3) and O(6)-like structure can then be predicted simply

II. THE CONSISTENT Q FORMALISM

The Hamiltonian employed in the current approach is
of the form

as a function of X~ and the boson number N. This feature
stems from the particularly simple structure of the Hamil-
tonian of Eq. (1). The L L term is always diagonal, and
therefore has no effect on the final wave functions. The
IBA basis states are those of SU(5), and since no term in
end appears in the Hamiltonian, they are initially degen-
erate and are therefore mixed solely by the Q.Q interac-
tion. The relative sizes of all the matrix elements are thus
specified entirely by Xg, for a given boson number N. The
parameter ~ acts simply as a scaling factor, which deter-
mines the overall energy splitting of the states. In addi-
tion, the relatiue energies of states of the same spin will
also depend only on X~ and N. Finally, since the E2
quadrupole operator is defined to be identical to that in 8,
its structure is also given by X~, so that all relative 8 (E2)
values are uniquely determined by 7~ and X. A single
8(E2) ratio can thus be used to determine Xg for a given
nucleus, which then determines the wave functions, rela-
tive excitation energies, and all other 8 (E2) values.

III. APPLICATION TO THE DEFORMED REGION

In determining the values of X~ appropriate to the re-
gion of well deformed nuclei, the most suitable empirical
quantity is the ratio

8 (E2;2r+ ~0g+ )/8 (E2;2s+ +0s+ ), —

which is usually well known. This quantity is zero in both
the rigorous SU(3) and O(6) limits of the IBA, and its
variation in the intermediate regime can be studied in the
form of a contour plot versus X~ and N, as shown in Fig.
1. The hatched area in the center of the plot corresponds
to the empirical range of the 8(E2) ratio in the deformed
region, where N varies between 12 and 16, and yields a
range of Xg values of = —0.9 to —1.4 for these nuclei.
The fact that these values are not those of SU(3) ( —2.958)
reflects the fact, mentioned earlier, that y~g transitions
in well deformed nuclei are of collective strength whereas
they vanish in the rigorous SU(3) liinit. The narrow range
of X~ values is a consequence of the remarkable stability
of the y mode throughout this region.

The fitted hatched region of Fig. 1 can now be
transferred to other contour plots of 8 (E2) ratios or ener-
gy ratios, and thus used to predict the properties of other
excitations within this simple framework. This raises an
important point, in that, in the IBA, the properties of all
the intrinsic excitations are "coupled, " in the sense that
the gross characteristics of all are determined, in this for-
malism, by X~ and X. Thus, in particular, the properties
of the low lying K =0+(P) mode in deformed nuclei are,
in effect, determined by those of the y mode, and can now
be predicted. The appropriate contour plots are shown in
Fig. 2. Note that the energy ratio plotted eliminates the
rotational contribution to the y band head energy, while
the Clebsch-Gordan coefficients in both numerator and
denominator of the 8(E2) ratio are identical in magni-
tude, so that the chosen ratios compare the properties of
the intrinsic excitations in each case.

The hatched regions in Fig. 2 yield the prediction that,
relative to the y band, the X"=0+ mode should be
1.4—1.7 times higher in energy and have a 8 (E2) strength
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FIG. 1. Contour plot of the ratio 8(E2 2y +Og }/8(E2 2g ~Og ). The hatched area in the center denotes the range of p~ and N
values appropriate to well deformed nuclei, while that in the lower left corresponds to O(6) (Pt) nuclei. The dashed line represents a
linear interpolation of gg values between the two hatched regions. The 2y state has been taken as the second excited 2+ state in all
cases.
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to the ground band 50—300 times weaker. Empirically
these properties are at least qualitatively verified since the
first 0 excitation is found at energies of 1—2 times that
of the y band in the majority of deformed nuclei, while the
8 (E2) strength to the ground band is 10—100 times weak-
er. The empirical systematics of these quantities in de-
formed nuclei have been discussed in detail elsewhere. As
pointed out in these earlier studies, the weakness of the
ground state 8(E2) branch can be contrasted with the
geometrical concept of the 13 mode being a collective quad-

rupole excitation built on the ground state, with conse-
quently enhanced E2 transitions between these two bands.
A further essential characteristic of the P mode in the
IBA is the prediction of collective E2 matrix elements to
the y band; the relevant contour plot is shown in Fig 3.
Again, the range of Xi2 and N values appropriate to de-
formed nuclei is indicated by the hatched area, and it can
be seen that the P~y branch is expected to be of compar-
able strength to y~g transitions, and thus to dominate the
P~g branch. Again, this represents a notable departure
from previous geometrical concepts, where P~y transi-
tions would only arise from band mixing effects. Empiri-
cally, there is little information available to date on these
transitions, since the E

&
dependence of the overall transi-

tion rate greatly reduces the observed intensity of these
low energy transitions. However, in three cases, ' Gd,

Er, and ' Er, data do exist' ' and imply values of

8 (E2;2r+ ~Op )/8 (E2;2r+Og+ )

of unity or greater.
While the simple Hamiltonian of Eq. (1), with appropri-

ate choice of X~, represents a much improved starting
point in an IBA description of a deformed nucleus, in gen-
eral, it wi11 be necessary to introduce additional terms to
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FIG. 2. Contour plot showing the relative predicted proper-
ties of the P and y bands. The upper portion gives the ratio of
intrinsic energies, and the lower the ratio of 8(E2) strengths to
the ground band. The Op+ level has been taken as the first excit-
ed 0+ state throughout, and the 2p+ level is that which is con-
nected to the 0~ level by a 8(E2) strength of enhanced magni-
tude. The hatched region in each case shows the g~ and N
values for well deformed nuclei.
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FIG. 3. Contour plot of the relative strengths of the y~g
and y~P transitions. (See Figs. 1 and 2 for details. )
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TABLE I. Relative y~g 8(E2) values from the y band in ' Er.

0,0
2,0
4,0
2,0
4,0
2,0
4,0
6,0
4,0
6,0
4,0
6,0
8,0

Exp'

54
100

7
100
65
20

100
14
81

100
12

100
37

Alaga

70
100

5
100
40
34

100
9

175
100
27

100
11

66
100

6
100
48
30

100
12
72

100
23

100
17

IBA'
(Xg)

54
100

8
100
69
18

100
16
80

100
9

100
20

'Data from Ref. 11.
IBA results from calculations of Ref. 5

'IBA results from calculations in current formalism, with

gg ———1.1.

describe more accurately, for instance, the characteristics
of the 0+ band. The obvious choice for such a purpose is
the P P term, which has been shown to affect the 0+
band significantly, but to leave the properties of the
ground and y bands essentially unchanged. Nevertheless,
the gross relative characteristics of the low lying excita-
tions will remain the same. Moreover, in the case of ' Er,
for example, it has already been shown that the simple
treatment discussed here in fact results in improved agree-
ment with the data, when compared to the earlier ap-
proach employing an SU(3) form of Q in the Hamiltonian
as well as a P.P term, and using a different structure of Q
in the E2 operator. This improvement is evident, for ex-
ample, in the predicted y—+g transition strengths, which
are compared in Table I, and is particularly impressive
when it is recalled that the current calculation involves
one less free parameter than the earlier one.

In considering the general properties of the y band in
the current framework, the energy and intrinsic
y~g 8(E2) strengths are used to determine the parame-
ters ~ and 7, and hence cannot serve to test predictions
of the model. However, a more subtle effect can be stud-
ied, namely, that of ddsc =2 band mixing. In a geometri-
cal framework, the relative strengths of all the y~g tran-
sitions in a particular nucleus are simply given by the
squares of the appropriate Clebsch-Gordan coefficients.
Empirical deviations from these values, such as those
shown in Table I, are usually ascribed to a mixing of the
(geometrical) ground and y excitations, and used to extract
the degree of mixing, which is commonly described' by
the parameter Z&. Aside from their absolute values, the
empirical Z& values display an interesting systematics;
they are large at the edge of the deformed region, and
minimize at midshell. In the current framework, it might
be hoped that such effects would automatically result
from the chosen formalism, by virtue of its dependence on

X~ and N. Figure 4 presents the empirical Zz values,
plotted against N, and compares them with the IBA calcu-
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lations. ' It is evident that the empirical systematics are
indeed well reproduced; in particular, the distinct depen-
dence on boson number. Although there is also some
dependence on the chosen g~ values, it has been demon-
strated' that for the well deformed nuclei in Fig. 4, with
N = 12—16, the narrow spread in g~ values implies that
the dominant origin of these systematics in the IBA
framework is indeed the changing boson number. This
feature has been dealt with in detail in a separate publica-
tion.

Given the narrow deduced range of X~, which leads to a
small predicted spread in many of the various empirical

quantities, it is worthwhile to summarize this section by
suggesting a "deformed limit" for the ISA, illustrated in
the upper part of Fig. 5 and corresponding to "average"
values of X& and N of —1.1 and 14, respectively. As
mentioned above, this limit actually corresponds very
closely to the low lying structure of ' Er, and some addi-
tional examples of nuclei close to this structure are shown
in the lower portion of the figure. The energy scale
denotes the relative energies of the low lying excitations,
on a scale in which the y band intrinsic energy is unity,
since this quantity can be fixed by the parameter a in Eq.
(1). As mentioned earlier, the lack of any empirical infor-
mation on the P~y transitions in the cases shown, except
for ' Er, reflects the need For more sensitive spectroscopic
studies, rather than the confirmed absence of such
branches.

Although many other deformed nuclei may be amenable
to a treatment incorporating a small additional P.P term
in the Hamiltonian of Eq. (1), there are some notable ex-
ceptions, specifically, the Yb nuclei where, in ' ' "Yb for
example, the y band is well aboue the first excited 0+ exci-
tation. However, these nuclei show a number of other

FIG. 4. Empirical and calculated Z~ values as a function of
boson number X, taken from Ref. 14. The points with error
bars, joined by solid lines, are the data. The dashed lines con-
nect the calculated values.
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The equilibrium value of p which corresponds to a given
g~ and X value in the Hamiltonian can be obtained by
mininiizing, with respect to P, the expectation value of
Q.Q in the ground state (4), thus yielding' a relationship
between X~ and p, viz.

1 —kP —P =0, (7)
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where k =&2/35Xi2. The intrinsic state of the first excit-

ed 0+ band is obtained by replacing one of the conden-
sate bosons by the orthogonal combination of st and do

~P) =N-'"bP, ~g), (&)

1.0—

WIOO

l,7

&0,02

f IOO

2.2

& 0.05

0100

0.09 (6)

where

btt ——(1+P )
'

( —Ps +do) .

The intrinsic matrix element of the E 2 operator of Eq. (2),
between P and g bands, is then given by '

(g I
To(E2)

I P) =ON'~ (1+P2) '(1 —kP —P~) .

FIG. 5. The upper left shows the average predicted structure
of a deformed nucleus in the current IBA formalism (see the
text). The remainder shows four empirical examples which cor-
respond closely to this prediction. The numbered arrows give
the relative B(E2) strengths between the bands. The data are
from Refs. 12, 15—17.

features which suggest a significant difference in structure
from their neighbors. The most obvious of these are the y
band energies themselves, which are 1466 and 1634 keV in

Yb and ' Yb, respectively, compared to a "normal"
range across the deformed region of =800—1200 keV.
Moreover, the y~g 8 (E2) strength is about a factor of 2
lower than the other nuclei in this region.

IV. THE INTRINSIC STATE FQRMALISM

It is by now evident that the IBA predicts properties of
the first 0+ excitation in deformed nuclei which differ
substantially from those expected of a p vibration. These
differences become particularly apparent if the intrinsic
state formalism, introduced in Refs. 18—20, is used to
simulate the Hamiltonian of Eq. (1). In this formalism,
the IBA intrinsic ground state for an axially symmetric
deformed nucleus, in the limit of pure K values, is written

with

~g) =(N!)-'"(b,') ~O),

(1+P2)—i/2(~t+Pdt )

(4)

The parameter p takes the value ~2 in the pure SU(3)
limit of the IBA, and can be related' to the corresponding
deformation parameter in the geometrical framework by
recalling that in the latter, the deformation applies to the
total nuclear volume, while in the ISA, it applies only to
the 2X valence nucleons. Thus we can expect that, very
roughly,

ps„=(2N/A)p, B~ .

(10)

It is immediately evident that the function in Xg and p on
the right of this equation is identical to that of Eq. (7) so
that the p~g transitions are predicted to be identically zero
in this consistent Q framework, for any N. Small, but
nonzero P—&g 8 (E2) values are, however, seen empirical-
ly, and also result from numerical IBA calculations be-
cause the intrinsic state approach presented here neglects
certain higher order effects included in the full IBA treat-
ment. For instance, it assumes pure X values while the
IBA automatically incorporates X mixing. The corre-
sponding p~y matrix element has been given in Ref. 21,
and is nonzero under the condition (7). Thus the IBA p
band, in this intrinsic state approximation, is seen to be
characterized by enhanced transitions to the y band and
zero strength to the ground band, the exact inverse of the
pattern of decay expected from a "pure" p vibration.
Moreover, while it has become widely accepted that the
IBA and Bohr-Mottelson Hamiltonians become equivalent
when the former is taken to the limit of infinite N, the re-
sult described above would seem to indicate that this
equivalence does not hold for all E2 matrix elements.
Hopefully, this feature may prove useful in establishing a
geometrical counterpart to the IBA p band.

V. THE 0(6) LIMIT

As pointed oui in the Introduction, when X& is taken as
zero, the quadrupole operator in H becomes a generator of
0(6) and hence a level scheme with O(6) symmetry results.
The predicted properties of such a symmetry have been
found to correspond closely to the empirical situation in

Pt, and are described in detail in Refs. 4 and 9. Howev-
er, in this earlier study, the symmetry was generated by
the use of terms in I'.P and L, I., as well as an "octupole"
term [=(dtd)' ']. The resulting eigenvalue expression
was given by

E=(—, )A (N o)(N+o+4)+B—7(r+3)+CL (L +1),
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where A, B, and C are constants related to the strengths
of the three interactions employed. In the current study,
only two interactions are used, namely, Q.Q (with X~ —=0)
and I I., and the corresponding eigenvalue expression
necessarily contains only two constants, i.e.,

E =A'[(N+o)(N +o+4.)+r(r+3)]+C'L (L +1),
(12)

where A'=2' and C'= —~'. Thus the current approach
represents a special case of the earlier one, in which
A/4—:8. Remarkably, in the earlier study, the parame-
ters deduced for ' Pt were A =185 keV and 8=42 keV,
and thus very close to the required 4:1 ratio. The current
formahsm will therefore produce equivalent agreement, in
terms of both energy and B(E2) data, for ' Pt, and it will
be interesting to see whether future empirical examples of
the O(6) symmetry correspond to the specific form of Eq.
(12). Moreover, recent work in the IBA-2 basis shows
that it is possible to generate the O(6) symmetry in that
framework also, and, interestingly, the eigenvalue expres-
sion which emerges is again that of Eq. (12).
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0.06—
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VI. THE SU(3)—O(6) TRANSITION
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FIG. 6. Values of gg, extracted from B(E2) ratios, for nuclei
in the Gd-Pt region.

It is now evident that the transition in structure between
the O(6) limit in ' Pt and the well deformed region can be
represented by varying X~ between its corresponding
values of 0 and ——1.1. The simplest assumption of a
linear interpolation between these two regions would cor-
respond to the dashed line on the contour plot of Fig. 1.
In fact, as shown in Fig 6, th.e actual behavior of the Xg
values, deduced from 8(E2) ratios, for the nuclei in this
transitional region is remarkably close to this simple
dependence. Note that the sign of the quadrupole moment
of the 2i+ state depends on the sign of X&, and hence small
positive X~ values have been ascribed to the Pt nuclei, to
reflect the negative quadrupole moments observed empiri-
cally. Also, the range of X~ values for the majority of de-
formed nuclei is seen to be even narrower than suggested
originally, from —0.9 to —1.2, the extension to larger ab-
solute values being necessary only for the Gd nuclei.
Thus, an inescapable prediction of Fig. 1 is that the plot-
ted B(E2) ratio should peak in going from the O(6) limit
to deformed nuclei, and this prediction is compared with
the data in Fig. 7. It can be seen that this ratio indeed

0.02—

IQ l2

FIG. 7. Empirical behavior of the B(E2) ratio of Fig. 1 com-
pared with the ISA calculations (solid line) resulting from the
use of g~ values taken from the dashed line of Fig. 1. The data
are from Refs. 23—28.

maximizes in the Os nuclei, although the empirical values
are larger than can be obtained from the simple Hamil-
tonian adopted, indicating the need for additional term(s)
to obtain more precise agreement. Also, the simple as-
sumed behavior of g~ vs N is not adequate for the Pt nu-
clei which appear to require /~values which change more
slowly.

The behavior of other quantities in this transitional re-
gion can, of course, be predicted in a similar manner, and
two additional examples are shown in Fig. 8. On the
right-hand side of Fig. 8, the branching ratio from the 2&
state is plotted, and it is evident that there is no peaking
predicted in this case, and that the data again follow the
calculated trend. Note that in the deformed region, the
curve is asymptotically approaching the rotational (Alaga)
values of 0.7 for this ratio, but does not attain it. This
feature reflects the "automatic" incorporation of band
mixing effects in the IBA Hamiltonian. On the left-hand
side of Fig. 8, the predictions for the quadrupole moments
of the first 2+ states are shown and compared with the
data. In this case, since the prediction involves an abso-
lute E2 matrix element, a value must be chosen for the ef-
fective charge a, and the curves corresponding to two such
values, 0.14 and 0.125 e b, are shown. Since, effectively,
all the data falls within these two curves, it can be inferred
that the effective charge is close to a constant throughout
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FIG. 8. Comparison of the empirical and predicted trends in {left-hand side) the quadrupole moments of the 2& state and {right-
hand side) the B{E2)branching ratio from the second excited 2+ state across the deformed-O(6) region. The data are from Refs. 23,
28—33. The calculated trend is shown by the solid or dashed lines in each case. On the left-hand side, two calculated curves have
been drawn, corresponding to the two different values of the boson effective charge shown.

the O(6)—SU(3) region. Nevertheless, two other features
which may indicate the need for small changes in this
quantity are evident. First, while the data for the de-
formed region clearly exhibit an N dependence, the slope
of Q vs N suggests that a itself may have a small N depen-
dence. In addition, the empirical Q values seem to
separate according to Z indicating, not unreasonably, the
need for a slightly different effective charge for each ele-
ment.

VII. THE SU(5)—SU(3) TRANSITION

In the previous discussions, both the SU(3) and O(6)
limits could be generated by choosing a specific value of

in the quadrupole operator, and nuclei exhibiting
structure close to, or between, these limits could be
described in terms of the changing structure of Q. How-
ever, in considering the transition towards SU(5) (vibra-
tional) structure, the utility of this formalism is not clear.

The rigorous SU(5) limit in the IBA is generated by a
term of the form en~, where e is the boson energy, and in-
volves no contribution from the Q.Q interaction. In the
transitional nuclei between deformed and SU(5) regions,
both terms will be necessary, and the unique and simple
dependence of the wave functions and 8 (E2) values on X&
and N will therefore be lost. Moreover, the question arises
as to the structure of Q applicable to this region, since the
SU(5) limit provides no indication in this respect. Calcula-
tions ' using the SU(3) form of Q in the Hamiltonian pro-

vide good agreement with data for the transitional Sm and
Gd nuclei, but require the use of a different quadrupole
operator for E2 transitions. On the other hand, the use of
a consistent Q approach, with the value of X& appropriate
to deformed nuclei, does not allow the empirical 8(E2)
values to be reproduced.

The likely behavior of P& in this region can be deduced
by considering the relationship of this formalism to the
IBA-2 Hamiltonian. In the latter framework, neutron and
proton degrees of freedom are treated separately, and the
parameters of the Hamiltonian can, in principle, be related
to the underlying shell structure. Moreover, the neutron
proton interaction employed is of the form Q .Q„, where
Q and Q have the form of Eq. (2) and are parametrized
by P and 7„. It is possible to project the IBA-2 parame-
ters into the IBA-jk basis, and this procedure yields the
simple relationship

Xg ——(X +X„)/2.

The expected behavior of g and 7„ is such that both
take the large negative values appropriate to SU(3) at the
beginning of their respective shells and become progres-
sively more positive in going across the shell. Thus, X~
can be expected to approach its SU(3) value of —2.958
during the transition to SU(5) structure. Indeed, as point-
ed out in Sec. VI, there is already some indication of this
tendency in the heavier Gd nuclei.
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VIII. SUMMARY AND CONCLUSIONS

It has been shown that the use of a consistent quadru-
pole operator in Hand'T(E2) in the IBA-1 formalism
provides a simple framework which allows the major
structural characteristics of the deformed-O(6) region to
be described in terms of a single free parameter, and the
boson number. It has been emphasized that this approach
may not be adequate to obtain detailed agreement with ex-
periment in all cases, so that additional terms of the origi-
nal Hamiltonian may have to be reintroduced as, presum-
ably, smaller perturbations in any specific calculation.
Nevertheless, in certain cases, such as ' Er, the consistent
Q formalism may provide improved agreement with the
data without any such additional terms. This improve-
ment, resulting from a reduction in the number of free pa-
rameters, gives a clear indication that this approach
represents a preferable starting point, at least for IBA-1
calculations in this region.

The simplicity of the formalism allows the majority of
observable properties to be predicted, rather than fitted.
In the deformed region, the most crucial predictions
center on the decay modes of the P band, which were
shown to be the inverse of those expected of a geometrical
P vibration. The empirical evidence clearly favors the
IBA interpretation, and the intriguing question thus
remains as to the geometrical interpretation of the IBA P
band. The application of the intrinsic state formalism to
this problem further emphasizes the difference in the two
descriptions and shows that, in the consistent Q frame-
work employed here, the IBA P~g E2 matrix element is
identically zero for any N. This result would indicate that
the major differences in the predicted decay of the p mode
stem from differences in the specific operators employed in
the two models. In fact, a recent study suggests that, if
the volume conservation condition is taken to second order
in the liquid drop model, instead of to first order as has
been done in the past, the available operators in the
geometrical framework become identical to those in the

IBA. It remains to be ascertained how this modification
affects the K =0 and 2 vibrational modes in the former
model, and why the latter is so much less affected than the
former.

The overall characteristics of the transition to the O(6)
limit have been shown to be well reproduced as a function
of X~ and N. Moreover, in the preceding section, it was
pointed out that Xg can be obtained from the equivalent
parameters in the IBA-2 basis via the projection tech-
nique, and thus, in principle, from the underlying micro-
scopic description. This feature has some important
consequences. It implies that the values of 7~ obtained in
the current study provide constraints on the values of X
and X„which must be derived from the shell model basis.
In particular, the narrow range of Xg determined for the
deformed region implies an equivalent restriction on the
sign and magnitude of (X~+X„). Moreover, it is clear
from the current study that an eventual theoretical deter-
mination of the behavior of X and X„will allow the struc-
ture of the nuclei spanning the deformed-O(6) region to be
predicted without any parametrization. Thus the crucial
features arising from an IBA-1 calculation, which is nor-
mally regarded as essentially a phenom enological ap-
proach, can in fact be predicted from the underlying shell
model basis. It is, of course, the explicit inclusion of the
finite valence nucleon number in the IBA basis which per-
mits such a connection to be made.
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