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Microscopic calculations for the interacting boson model
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The parameters of the interacting boson model are calculated in a shell model framework, using a
generalized seniority basis. The effect of the neutron-proton interaction on the s- and d-boson struc-
ture is explicitly considered. The renormalization due to the truncation of the full fermion space to
the S-D subspace is considered by taking the effects of the 6-pair state into account using perturba-
tion theory. It is found that this effects mainly the single boson energies and introduces a Majorana
force that favors states symmetric in neutron and proton degrees of freedom over antisymmetric
ones.

NUCLEAR STRUCTURE Microscopic calculation of interacting boson ap-
proximation parameters. Shell model calculations in the generalized seniority

basis.

I. INTRODUCTION

The interacting boson inodel (IBM) (Ref. 1) has been
very successful in explaining the properties of low lying
collective states in heavy and medium heavy nuclei. ' In
the phenomenological calculations, the IBM parameters
are usually adjusted so as to give a best fit to a series of
nuclei, with smoothly varying parameters. In this way pa-
rameters have been obtained for the majority of nuclei
with mass A & 100. In general the observed variations in
the parameters, as a function of N and Z, agree qualita-
tively with a zeroth order estimate based on the seniority
scheme.

Several attempts have been made to calculate the model
parameters from a more detailed microscopic approach.
The first and probably most extensive one was by Otsu-
ka. One of the largest deviations from the simple
seniority estimate, the sharp decrease in the energy of the
d-boson energy when going away from the closed shell,
was explained in these calculations as coming from the
coupling of the S Dsubspace to the fu-ll shell model space.
In these and subsequent calculations ' the effects of the
neutron-proton interaction on the microscopic structure of
the bosons have not been considered. Furthermore, the
structure of the bosons has been obtained from a two fer-
mion calculation and thus neglects the influence of the
Pauli principle on the boson structure. This is not true for
the calculations in the broken pair model presented in Ref.
8, where, as in the present approach, the structure is cal-
culated as a function of the number of particles in the
valence shell. Calculations for deformed nuclei, using the
Hartree-Fock-Bogoliubov (HF8) instead of the shell
model, indicate that the microscopic structure of the bo-
sons is strongly affected by the neutron-proton interac-
tion. It is, however, not completely understood how one
should relate the results of the HFB calculation to the
IBM; the effect of the Pauli principle in the mapping pro-
cedure is especially not well formulated.

In this paper a detailed calculation of the parameters
will be presented. It is based on a shell model calculation,
but in order to keep the shell model calculations simple
the model space is truncated on generalized seniority, as
will be discussed in Scc. II. This truncation decreases the
size of the model space while not affecting the calculated
low lying states in which we are interested.

II. THE GENERALIZED SENIORITY SCHEME

and

S 1
———,'&2j+1(asaj)' ',

Soj———,
' [S+J.,S s]= —,

'
[nj —(2j+1)/2],

(2.1)

where nz is the fermion number operator. It can easily be
verified that these three operators close under commuta-
tion and that they form the generators of a SU(2) quasi-
spin algebra. " Different representations can be labeled
using the seniority quantum number v which counts the
number of particles not pairwise coupled to angular

A inajor problem in shell-model calculations for heavy
nuclei is the size of the model space. Even if the calcula-
tion is restricted to semiclosed shell nuclei where only par-
ticles of a single kind (neutrons or protons) are considered,
the dimension of the model space is easily of the order of
several thousands in the J=2 subspace. However, it has
been pointed out by Talmi' that for semiclosed shell nu-
clei the generalized seniority (g.s.) scheme is valid. Bind-
ing energy systematics and a constant excitation energy of
the 2i+ level show that the breaking of the g.s. scheme is
only slight.

The g.s. scheme as it was proposed by Talmi is a gen-
eralization of the usual seniority concept"' to the case of
several nondegenerate single particle (s.p. ) orbits. The
seniority scheme can be introduced via the operators

S+J———,
' &2j+ 1(aj aj )' ',
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momentum J=0. The tools of group theory can now be
used to obtain reduction formulas that relate matrix ele-
inents of operators between states of nonmaximal seniority
to those for maximal seniority. ' This formulation is,
however, only valid for single-j configurations. In most
problems in the description of medium heavy nuclei
several single particle orbits enter. To generalize seniurity
to these cases one introduces the operators

and

S+ ——g aJS+J.
J

S—= gaJS

(2.2)

~ J "w =OJ =0)=S+
~
0)/~, (2.3)

where j " denotes n particles in a multi-j shell and ~ is an
appropriate normalization factor, which of course depends
on n and az. A w =2, n =2N state can now be defined as

~ j "w =2,J)=(S+ '
( j J))i/~', (2.4)

where l denotes that the state is orthogonalized on the
~

w =O, n =2N ) state in the case that J=0. The need for
an explicit orthogonalization is a result of the absence of a
group structure. Proceeding in this way one can define
states of higher g.s.; in this paper we will deal with w &2
states.

Shell model calculations can be done in the g.s. basis as
outlined above; the matrix elements of the Hamiltonian
can be calculated in the g.s. basis and the resulting matrix
can subsequently be diagonalized to yield the energies and
eigenvectors. The results will depend, however, on the
coefficients aj that enter in the definition of the S pair.
One way of' determining the aj- is to minimize the energy
of the w =0 state and thus make it the ground state. In
the calculations presented in this paper a somewhat dif-
ferent approach has been taken. In order to minimize the
coupling to states outside the w & 2 basis we are consider-
ing, the ground state should have w =0 [Eq. (2.3)]. In
lowest order the bw =2 terms have thus been eliminated
from the Harniltonian. For an arbitrary choice of the aj- a
diagonalization of the Hamiltonian in the J=0, w (2
basis will, however, not give rise to a w =0 ground state.
In the calculations presented in this paper the aj coeffi-
cients have been determined in an iterative procedure, irn-
posing as a self-consistency requirement that indeed the
ground state in a w &2 basis has g.s. w =0. A diagonali-
zation in a J=0, w &2 basis yields in general a ground
state of the form S'+S'+ "

~
0) where the coefficients az

that enter in S'+ are different from the aj that define S+

However, it is not possible to introduce an operator
So ———,[S+,S ] which closes the algebra for arbitrary
coefficients aj. As a consequence, g.s. is not related to a
group algebra and reduction formulas are therefore more
complicated to derive, but it can still be done. ' In spite
of the lack of an underlying group symmetry it is possible
to introduce a g.s. quantum number, here denoted by w.
In analogy to the case of normal seniority one can define a
w =0; n =2N fermion state as
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FIG. 1. The spectrum of '~Sm calculated in the generalized
seniority scheme is compared with a shell model calculation
(Ref. 14) and the experimental spectrum (Ref. 16).

[see Eq. (2.2)]. The values az', which replace aj in the
next iteration step, are taken as a weighted average of aj.
and aj where the weighting factors are the number of par-
ticles,

uJ"——[(N —1)a~+aj ]/N .

In the case that some of the orbits under consideration are
almost filled, the weighting factors should be taken as the
number of particles in the valence orbits to ensure a fast
convergence. This procedure has been preferred since it
has proven to be very fast. In most cases the self-
consistency requirement is fulfilled in less than five itera-
tions, if even the starting values of aj differ by more than
a factor of 2 from the self-consistent ones.

Qnce the aj have been determined, the states with J&0
can be obtained by diagonalizing the Hamiltonian in a
J=J, w =2 basis. In principle one can readjust the uJ for
each J, but this has not been attempted.

In this paper the g.s. scheme has been used for two
reasons. There exists a very clear and simple relation be-
tween the g.s. scheme and the IBM. The S-pair operator
can be regarded as the microscopic equivalent of the s bo-
son while the lowest J=2, w =2 state corresponds in the
IBM to the ~s 'd) state. A second reason is that due
to the truncation on the g.s. rather than normal seniority,
the size of the dimension of the matrices to be handled in
the shell-model treatment is decreased by one or two or-
ders of magnitude, while it does not affect the calculated
properties of the low lying states, as is shown below.

In order to check the validity of the scheme outlined
above, calculations have been compared with the results of
an extensive shell-model calculation for the N =82 iso-
tones. ' Excitation energies as a function of the number
of protons have been compared in Ref. 15. In Fig. 1 the
calculated levels for ' Sm are compared with experiment.
The interaction has been taken from Ref. 14 (see Table I)
where it has been optimized so as to give a best fit to the
even- and odd-mass N =82 isotones in a full shell-model
calculation. In the present calculation the largest matrix
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TABLE I. The proton single particle energies used in the cal-
culation (from Ref. 14).

will be admixed in the ground state where the collective
fermion pair state D is defined via

087r2
1d5'
16(3'
2s
0~ 11/2

—9.596
—8.676
—6.955
—6.928
—6.838

to be diagonalized was 9&9 in the J =2+ subspace. In
spite of this extremely small basis, the agreement is re-
markable.

T (2)
Dp 2 XIJJ+ + JJ ~J~J P (3.1)

and is the microscopic equivalent of the d boson. In order
to allow for this admixture and still keep the dimensional-

ity of the basis small, we will assume while calculating the
microscopic structure of the proton fermion pair states
that the microscopic structure of the neutron fermion pair
states is known and can be represented by boson degrees of
freedom. Since there is also an appreciable hexadecupole
component in the neutron-proton interaction, we will also
include explicitly the 6-pair state in the calculation,

III. THE COUPLING OF NEUTRONS AND PROTONS (3.2)

In the procedures outhned in the preceding section only
the interaction between like particles was considered. In
this case the generalized seniority scheme was extremely
powerful since the interaction to a good extent conserves
g.s. The neutron-proton force is dominated by a
quadrupole-quadrupole interaction which strongly ad-
mixes states with different seniority. If we limit ourselves
to nuclei with only a few neutrons or protons in the
valence shell (vibrational nuclei), the admixture of higher
seniority components in the ground state and first excited
state can still be treated in lowest order.

The method proposed here is based on an iteration be-
tween a microscopic neutron and proton calculation, using
the results of one to calculate the other. Owing to the
quadrupole character of the neutron-proton force, com-
ponents of the kind

(3.3)

where ao, a2, a4 and aJ. ,gzz, and yJJ' as they enter in the
definitions of the fermion pair states, Eqs. (2.2), (3.1), and
(3.2), still have to be calculated.

In the basis outlined above, the Hamiltonian is written

H =E~&g +E~ns +~~+&2q'„'Q~" +&4q'„'Q~ ',

where

(3.4)

Representing the neutron degrees of freedom by bosons
the ground state can be written as

i0+)=ao is„"S )+a2 i(s„" d S D )(0))

and

' '=A "(s d +d s )' '/+5K„+B2(d„d„)' '/v 5+C2(d„g„+g„d„)' )/v 5+D2(g„g, )' )/v 5,
q'„'=A4(s„g„+g„s )' )/3+%„+B4(d„d„)' 'l3+C4(d„g, +g, d„)' 'l3+D4(g„g„)' 'l3,

(3.5)

(3.6)

Q(2) g (P i&2+(2)~
~

~ )(at~ )(2)

JJ
T

Q(4) g (J ~

~&4@(4)~ ~J. )(a aJ )(4)

JJ

(3.7)

(3.&)

The coefficients that enter in the neutron quadrupole
operator can be calculated from the structure of the neu-
tron fermion pair state. H is the shell model interaction
for the protons. The Hamiltonian is diagonalized in the
space that iiicludcs 111 thc plotoll scctolall (J =0', w (2),
(J =2, w =2), and (J =4, w =2) states, appropriately cou-
pled with neutron s, d, or g bosons. By imposing as a
self-consistency condition that in the ground state no
(J=0, w =2) components are admixed, the coefficients
aJ and the other unknowns in Eq. (3.3) can be determined. E =(S D iH~iS D~~) . (3.10)

In the next iteration step the protons will be dealt with as
bosons and the parameters in the proton boson quadrupole
operator, Eq. (3.5), can now be calculated, as, for example,

A2 ——(s "i[q' )]id s )

(3.9)

and
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The iteration is repeated until the parameters in the boson
multipole operators are converged to within 1%, which in
general takes no more than four iterations.

The effect of the neutron-proton interaction has been
calculated for the case in which the protons occupy the
50—82 shell and the neutrons the lower part of the
82—126 shell. The interaction for the protons is taken
from a shell model best fit to the N =82 isotones. ' For
the neutrons a surface-delta interaction (SDI) (Ref. 19) has
been taken with a strength of A i

——0.13 MeV. In order to
improve the agreement with experiment for the lead iso-
topes, an enhancement factor for the quadrupole com-
ponent, Fq, in the multipole expansion of the SDI was in-
troduced, Fq ——1.4. The neutron single particle energies
were taken linearly dependent on the number of proton
pairs (N~) outside the Z =50 closed shell,

ej (N~) =epj +b JN~ .

l.5—

g 7/2

d 5/2

d5/2 ~s(/2

The values used for epj and bj are given in Table II. The
neutron proton interaction is written as

(3.11)

The strengths were taken as the average of the quadrupole
and hexadecupole components in the neutron-neutron and
proton-proton interaction, giving az ——0.084(m cop/A')

MeV and a4 ——1.62X10 (mcop/A') MeV. In the calcula-
tion of the radial matrix elements, harmonic oscillator
wave functions were used. The strength of the quadrupole
force is in between the values given in Refs. 9 and 20.

In Fig. 2 the effects of the neutron-proton force on the
calculated values of aj are shown for Z =62. Changing
the number of neutron pairs from 0 to 5 changes ag and

a~ by less than 5%. For the higher lying orbits, the

change is larger, but still much less than what was deter-
mined in Ref. 9 from a HFB calculation. This difference
could simply come from the fact that the single particle
energies were taken constant in the present calculation,
while they are taken X dependent in Ref. 9. Another ex-
planation could be that in the present calculation only a
single D-pair state is considered, while nuclei with more
than four neutron and four proton pairs in the valence
shell are deformed and thus have several D pairs admixed
in the ground state, which makes the validity of the
present approach questionable beyond X =4 for the Sm
isotopes. This objection does not apply to the HFB calcu-

I I I I I I

I 2 3 4 5
N~

FIG, 2. Calculated values of aj for the Sm isotopes as a func-
tion of N„, the number of neutron pairs in the 82—126 shell.

lations where a deformed intrinsic state is considered.
Calculations in Sec. IV show, however, that the results ob-
tained from the present calculation for the deformed
samarium isotopes reproduce the main features.

Figure 3 shows that the coefficients aj depend strongly
on N~. The main origin of this strong dependence is in
the subshell closure near Z =64. The qualitative depen-
dence of az on N is independent of whether a best fit or
a simple SDI interaction is used. The coupling to the neu-
tron degrees of freedom leaves the qualitative features in-
tact but smooths the X dependence.

In Table III, the influence of the neutron-proton in-

2.0-

l.5-

TABLE II. The relative neutron single particle energies,
ej.=epj+EJX, as used in the calculation {from Ref. 18).
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FIG. 3. Calculated values of aj" for the N =82 and X =86
isotones as a function of X, the number of proton pairs in the
50—82 shell.
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TABLE III. The determined values of E, A2, and 82 as defined in Eqs. (3.4)—(3.10) for neutrons
and protons.

Ed
AV

gV
Ed 1.74

7.05
—1.61

1.35
5.63

—4.42
1.98
7.99

—0.93

1.41
7.61

—3.96
1.99
8.09

—0.87

1.44
8.99

—3.34
2.00
8.16

—0.84

1.42
10.04

—2.78
2.00
8.21

—0.81

1.39
10.89

—2.34
2.01
8.25

—0.79

2.0-
x N=82

N=86

teraction on the properties of the d boson is shown. It can
be seen that the ratio Bz+X /A 2, which is the lowest or-
der estimate for the parameter X in the boson quadrupole
operator, varies by more than a factor of 2 owing to the
coupling of the neutrons. This shows that for determining
the structure of the d boson the consideration of effects
from the neutron-proton interaction is crucial. The same
also follows from Fig. 4, showing that its effects on the
properties of the proton d boson are more important when
a system with only a few protons is considered. As a re-
sult of the neutron-proton force, the changes in 82 as a
function of X„are smoothed out.

IV. THE BOSON MODEL PARAMETERS

H =F.vrtg +E~g +KQ„Q +F,M (4.1)

Unlike many other boson models (as, for example, Ref.
21), the mapping from the fermion space to the boson
space is not done by mapping operators but rather by
equating matrix elements between equivalent states in the
two spaces. As was mentioned before, the fermion space
and the IBM space can be related via seniority. The state
of Eq. (2.2) corresponds to ~s ) and the tU =2 state of
Eq. (2.4) to

~

s 'd). Similar relations exist for higher
seniority states.

Two versions of the IBA model exist, but here we will
discuss only the IBA-2 (Refs. 2 and 3) since it is closest to
a microscopic formulation. In the IBA-2 model neutron
and proton degrees of freedom are taken into account ex-
plicitly. The Hamiltonian, as it is generally used in a
phenomenological calculation, can be written as

MeV

~X
X

~X
X

x
X

dE~

I I j t t a ~

I 3 5 7 9
N~

FIG. 4. Calculated values of E~, A2, and Bz tsee Eq (4.1)]as.
a function of N . The difference in the results for the N =82
and N =86 calculations shows the influence of the neutron-
proton interaction.

where

Qp (sp~dp+dp~p——)'")+Zp(d p~d, )"', p= v, m. (4.2)

and M is the Majorana force that shifts states according
to their symmetry with respect to interchange of neutron
and proton degrees of freedom (I' spin).

In most phenomenological calculations, e„and e, the
neutron and proton d-boson energies are taken equal; how-
ever, in a microscopic treatment one should distinguish
them. In the IBA-2 model the interaction is taken as a
pure neutron-proton quadrupole force. One of the reasons
is that an important part of the interaction between like
particles is taken into account by the energy difference be-
tween the S and D pair states (E), and the remaining force
is thus the neutron-proton interaction which has predom-
inant quadrupole character. Furthermore, an additional
hexadecupole component in the neutron-proton interac-
tion will not contribute much to the collectivity in the (s-
d) boson space since it conserves the number of d bosons.
From the spectra of semiclosed shell nuclei there is also a
strong indication that there is at most a small quadrupole
interaction between like bosons; see, for example, Talmi in
Ref. 2. For deformed nuclei one could expect such an in-
teraction coming from the truncation of the full shell
model space to the S-D subspace, but this mill not be
considered here. In numerous phenomenological applica-
tions2 3 the Hamiltonian (4.1) has proven to be adequate.
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To obtain the boson model parameters, the matrix ele-
ments between equivalent states of the boson operator and
the fermion operator in the two spaces have to be set
equal. The equivalent of the one-d boson state is defined
as the (J =2, w =2) component mixed in the ground
state as defined in Eq. (3.3) and is calculated using the
procedure outlined in the two preceding sections. The cal-
culated parameters for the case corresponding to the Sm
isotopes (Z =62) are shown in Fig. 5. Also shown in the
figure are the parameters obtained from a best fit in the
IBA-2 model. In the microscopic calculations the ener-

gy of the d boson is constant at about 1.5 MeV, while in
the phenomenological calculations, where the neutron and

I

proton boson energies have been chosen equal, the d-boson
energy drops sharply with increasing neutron number.
This problem was also recognized in the work by Otsuka,
where it was solved by considering the renormalization of
the parameters as a result of the basis truncation from the
full shell-model space to the S-D pair subspace.

In the present calculation two sources for renormaliza-
tion were considered, the coupling of the G-pairs state to
the S-D subspace via the neutron-proton quadrupole and
the hexadecupole force. The renormalized parameters
were obtained by calculating the matrix elements of the
operators in fermion states between perturbed states, i.e.,
the equivalent of the one d„boson state is taken as

~

s "s„" d„&=~„[|S S~" D~&+5(
~
S~ S„" (D G )"'&

+&PS S„" (G D, )"'&+giS iS„" (G G )"'&] (4.3)
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FIG. 5. The calculated values of the IBM parameters for the
Sm isotopes are compared with those obtained from a best fi.t
(Refs. 2 ao.d 4).

instead of Eq. (2.4). The coefficients 5 are calculated us-

ing standard perturbation theory; for example,

S",=(S. S." D. i
0

i S. S„" (D.G„)"'&r'aZ, ,

(4.4)

5E =E +E —E —E

The matrix elements for the coupling to the G-pair state
were calculated using the microscopic structure of the G-
pair state that enters in the description of the ground
state, Eq. (3.2). This approach is equivalent to second or-
der perturbation theory for diagonal matrix elements. The
advantage of the present approach is that there is no am-
biguity in the choice of energy denominators in the calcu-
lation of off-diagonal matrix elements. The effects of
coupling to S' or D' states, collective (w =2, J =0,2)
states different from the ones considered, have not been
taken into account. This is expected to give only a small
effect since "ontrary to the case of the G-pair state —by
construction these states do not couple to the ground state.

From the calculation it follows that both of the effects
for renormalization that were considered contribute about
equally to the renormalization of e, x., X and X . This is
not true for the Majorana force, which comes completely
from renormalizations due to the hexadecupole force. In
Fig. 6 the calculated spectra, using the renormalization
parameters as given in Fig. 5, are compared with experi-
ment. The decrease in the energy of the 2~+ and 4~+ level
with increasing number of neutrons is well reproduced.
This decrease is closely related to the decrease in e. For

Sm (X„=1) the 4~+ level is calculated too high since the
calculated level is a two-d boson state which corresponds
to a generalized seniority w =4 state. In ' Sm (see Fig. 1)
and ' Sm the 4~+ has a predominant m =2 character and
will thus not be reproduced in the IBA model description
unless a g-boson degree of freedom is included explicitly.
For the heavier isotopes the Oz+ state is calculated too high
in the spectrum. This indicates that the value used for a.

is too large, as can be seen by comparing with the
phenomenological value. This can be seen as an indica-
tion that the strength of the neutron-proton quadrupole
force in the microscopic calculation was chosen too
strong. Weakening this force will directly give rise to a
lower value of a since in first approximation they are pro-
portional. Since this force is at least partially responsible
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FIG. 6. A comparison of the experimental spectra of the Sm
isotopes with the calculation using the renormalized parameters
of Fig. 5.

FIG. 7. The calculated renormalized IBM parameters for
N =84 and N =86 are compared with a best fit for the N =86
isotones.

for the renormalization of e, a reduction will give rise to
increased values of e, which is in contradiction to that
data. In the renorrnalization calculation, however, states
of higher angular momentum (J =6+, for example) and
other multipoles in the neutron-proton interaction have
not been considered. This might very well compensate for
the effect of a reduction of the shell-model neutron-proton
interaction on the boson energies, but is beyond the scope
of this work. It should be noted that the phase transition
from spherical to deformed, which is observed experimen-
tally by the dip in the energy of the 02+ level, is repro-
duced in the present calculation.

In Fig. 7 the calculated parameters for the X =84 and
N =86 isotones are compared with those obtained from
phenornenological fits. ' In the phenomenological calcu-
lations the parameters g (7 ) were restricted to be a func-
tion of the number of neutrons (protons) only, which is
not supported by the present microscopic calculations. In
the present calculations X„varies more than a factor of 2
when changing the proton number from Z =S2 to 66.
Since the ISA calculations have only been done for nuclei
with two or more neutron bosons (N &86), the quoted
values in Fig. 7 are for the N =86 isotones. Some of the
trends in the parameters are well reproduced in the calcu-
lation: e reaches a maximum around N„=7,

~

K
~

de-
creases with increasing neutron number, and 7 shows a
steep increase for larger neutron numbers. The lower
values for g„which are obtained from the fits could find
their origin in neutron excitations across the N =82 she11
closure, an effect which has not been considered in the
present calculations.

V. CONCLUSIONS

In the absence of the neutron-proton interaction, the
structure of the IBM s and d bosons can be calculated in a
generalized seniority basis. Unlike the pure generalized
seniority scheme, the S-pair operator is allowed to change
from nucleus to nucleus so as to give a w =0 ground state.
In the 50—82 proton shell this gives rise to coefficients aj.
that vary considerably owing to seniority breaking terms
in the Hamiltonian. However, for each isotope separately
the g.s. basis provides a powerful truncation scheme. The
neutron-proton interaction can only be treated in a lowest
order approximation in this basis since it strongly adrnixes
states with different seniority. This mixing of different
seniorities is fully considered in the interacting boson
model, where d-boson number and generalized seniority
are closely related. In this paper a method has been
developed for calculating the effect of the neutron-proton
interaction on the microscopic structure of the bosons.
The method is derived for cases near the SU(5) vibrational
limit of the IBM where the admixtures of higher seniority
components in the ground state are small. The successful
application of the model to the deformed samarium iso-
topes can be seen as an indication that, in spite of the fact
that it is derived strictly for vibrational nuclei, it is also
applicable in the deformed region. The differences of the
results of the present calculation with those of a HFB cal-
culation seem to suggest the contrary.

The renormalization of the parameters due to the cou-
pling of the S-D subspace to the full space via the
neutron-proton interaction is crucial in order to under-
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stand the decrease in the d-boson energy. The renormali-
zation also introduces terms in the boson-boson interac-
tion, such as the Majorana force, which do not have a
direct counterpart in the shell interaction. The Majorana
force results from renormalizations due to the multipoles
in the interaction other than the quadrupole.
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