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Deep-lying hole states in nuclei: Microscopic approach
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The strength function for deep-lying hole states in a nucleus is examined from a many-body point
of view. Due to their interaction with the compound state background, such single hole excitations
are interpreted as quasihole states that are not eigenstates of the nuclear Hamiltonian. These states
show up as giant resonances in the strength function, with position and width determined by the
real and imaginary parts of the quasihole energy. A formal theory of the strength and fragmenta-
tion of such states is developed by splitting the self-energy into background and doorway state con-
tributions. The theory is applied to the calculation of the strength function for the isotopes of Sn
using doorway states of a collective nature that consist of a hole plus collective vibrations of the tar-
get nucleus. A microscopic description of both the collective excitations and the hole state that it
dresses is given in terms of a modified random phase approximation procedure that uses Green's
functions for the individual single particle and single hole states that have been dressed by their in-
teraction with the nuclear background. Specific calculations for the isotopes of Sn show good agree-
ment with experiment.

NUCLEAR STRUCTURE Theory of single hole strength function. Green's
function method for optical potential; intermediate structure doorway states.

Pairing, isospin. Calculations for isotopes of Sn.

I. INTRODUCTION

The problem we wish to study concerns itself with the
properties of nuclear excited states that are reached by re-
moving a nucleon from deep inside the Fermi sea. To the
extent that the nucleus can be treated as an assembly of
independent nucleons moving in a common shell model
potential, such hole states continue to be very simple exci-
tations that are created by removing a nucleon from one
of the previously occupied shell model levels. This picture
is of course an extreme oversimplification; if the hole state
has a large binding energy, then its creation leads to an ex-
cited state of the residual nucleus lying anywhere from 5
to 15 MeV above its ground state. This places the single
hole excitation in the vicinity of the much more compli-
cated compound nucleus excitations of the nucleus, which
have an increasingly high density of levels as the excita-
tion energy increases. The interactions present in the full
nuclear Hamiltonian couple the hole excitation to the
many compound states that surround it, and cause its
"strength" (i.e., single hole character) to be redistributed
over the many compound states in its vicinity. A theoreti-
cal and experimental measure of this redistribution of the
single hole character is provided by the strength function,
which measures the probability per unit energy of finding
the single hole state coupled to the compound states at a
given excitation energy.

In this paper, we study the calculation of the strength
function for deep-lying hole states. To this end, we ex-
ploit the important link between the single hole Green's
function and the strength function, which is related to the
imaginary part of the former. The construction of the
Green's function, however, requires an exact solution of

the full inany-body problem. This is clearly a hopeless
task. Therefore, we have to carry out some approximate
construction of the Green's function in a fashion which
emphasizes the main physical features of the problem.
The ideas we describe next are suggested by the well-
known successes of the optical model for particle scatter-
ing by atomic nuclei. In this situation one knows that the
effect of the many degrees of freedom of the resulting
compound nucleus can be approximately accounted for by
introducing an absorptive component into the average
field seen by the impinging nucleon. ' Furthermore, one
knows from empirical evidence from the so-called optical
potentials that the imaginary part of the potential is of or-
der 3% of the real part for low energy incoming nucleons.
This corresponds to an excitation energy of 8 MeV in the
compound nucleus, and shows that at even these excita-
tion energies, the bulk of the (energy averaged) scattering
is determined by the real part of the average nuclear po-
tential. Since our discussion is directed toward the study
of hole states, we have to adapt these ideas to single parti-
cle motion at negative energies. The concept of an aver-
age nuclear field for a hole continues to hold of course,
and we accept that this field determines the main features
of the hole state (binding energy, spin, and parity) in the
spirit of the standard shell model. From Green's function
theory, one knows that the effects of the nuclear medium
on such a hole created in it are incorporated in terms of
the single hole self-energy X(co). The more formal aspects
of the self-energy are discussed in Sec. II. However, it is
useful at this stage to outline the physical ideas which
form the basis of our approach. Consider a single hole
state in the shell model. Its self-energy X(co), excluding
that already accounted for by the average shell model po-
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tential, arises from the polarization effects the hole causes
in the nuclear medium. Microscopically, these effects
come about because the hole excites compound states ly-
ing near its own excitation energy. We split the contribu-
tions of such states into two parts, viz. ,

X(~)=X (co)+X (co) .

The piece X (co) describes the contribution to X(co) arising
from compound states that are strongly coupled to the
hole state. We give arguments later to suggest that this
contribution is slowly varying in energy and purely ima-
ginary. The second piece X (co) is the contribution from
doorway states. This represents a contribution to X(co)
coming from the coupling of the hole state to the com-
pound states IocaOy via a doorway in its vicinity. This
piece is expected to have both real (dispersive) and ima-
ginary (absorptive) contributions, and to vary rapidly with
energy in the vicinity of the doorway states that it in-
cludes. Since we are dealing with reasonably high excita-
tion energies, the contribution of X (co) to the spreading of
the single hole state is much larger than that from X (co).
The resulting quasihole state observed in the strength
function therefore consists of a single giant resonance,
whose width is determined by ImX"(co), possibly frag-
mented into one or more intermediate structures due to
poles in X"(~). Whether or not intermediate structure
states become visible in the vicinity of such a quasihole gi-
ant resonance is determined by both the widths of the
doorway states it couples to, and the strength of this cou-
pling. This latter feature suggests that only doorway
states having a collective nature present the possibility of
showing up as intermediate structures. Thus, in examin-
ing the spreading of a single hole state, we are led to con-
sider doorway states having a one hole plus vibration
structure, where the vibrational state is one of the collec-
tive states of the nucleus. We will see that the coupling
matrix elements between the quasihole and such collective
states have a coherent character, and are thus large.

From a microscopic point of view, such doorway states
consist of a hole coupled to interacting particle-hole exci-
tations which build up the collectivity. Each of these
particle-hole excitations are also spread out by their cou-
pling to the nuclear compound states. Consequently, the
Green's functions describing them have the same structure
as the Green's function G(co) we are trying to calculate.
Thus one is faced with a self-consistency problem: the
self-energy that enters G(co) is in turn determined by the
contributions X (co) and X (co) that in turn should enter
the Green's functions determining these contributions.
We break this impasse by the following argument. Since
the contribution to the quasihole self-energy from X (co) is
much smaller than from X (co) due to the localized (in en-
ergy) nature of the former, we simply neglect the contri-
bution X"(co) to the dressing of the particles or holes mak-
ing up the doorway state, and describe their propagation
by a Careen's function G (co) that is only dressed with the
self-energy X~(co).

Although the preceding assumptions result in an enor-
mous simplification of the full many-body problein, their
use in calculating X"(co) presents one with further prob-

lems, since the actual energy dependence of G (co) enters
the construction of the self-energy in an essential way.
Therefore, to actually do such calculations, we have made
appeal to the approximate procedures developed by Dover
et al. , which we have extended and developed further so
as to be applicable to the much more general problem of
quasihole damping.

The use of a dressed Green's function G (co) introduces
new features into the construction of the collective mode
part of the doorway states, which we construct in the ran-
dom phase approximation (RPA). The resulting RPA
eigenvalue problem now develops complex eigenvalues,
which in addition are a function of the energy co, necessi-
tating a study of this problem in conjunction with its ad-
joint.

We find that it is possible to implement the above pro-
cedures without making a specific choice as to how the
background self-energy X (co) behaves with energy, as
long as this variation is a slow one. The results we obtain
for the composite self-energy also retain the general
features expected of it as a function of co. In particular,
we find that our approximations preserve the very impor-
tant property of ImX(co) changing sign as the energy vari-
able ro passes through the Fermi level. The other impor-
tant result that follows from using G (co) in calculating
the doorway state self-energy is that it automatically en-
dows the doorway states with a width that is also deter-
mined from X"(co). Thus the widths of the giant reso-
nance and the intermediate structure resonances are deter-
mined by one and the same function.

We have chosen the isotopes of Sn as a specific case to
illustrate the results of this formalism, which is quite gen-
eral. The reasons for this choice are twofold: on the
theoretical side, the nuclear structure of these isotopes is
well understood, and their hole strength functions have
been extensively investigated experimentally, most recent-
ly by Gerlic et a/. The actual implementation of this for-
malism involves additional assumptions and technical
complications due to the structure of these nuclei. The
main additional assumption that must be introduced is a
specific parametrization of X (co), and a recognition that
pairing and isospin effects play an essential role in the Sn
isotopes. These matters are taken up in Secs. V and VI.
Specific results are shown in Sec. VII for the g9/2
quasihole in Sn. We comment in detail in Sec. VI on the
underlying assumptions leading to these results. Suffice it
to say that the fits we obtain in comparison with the ex-
perimental data are excellent, and therefore suggest that
the spreading mechanism introduced into the shell model
via the self-energy having background and doorway con-
tributions, has isolated the main physical features of the
problem.

II. FQRMALISM

A. The Preen's function

The resonance structure in the strength function associ-
ated with a hole state which is formed by the removal of a
particle from an A-nucleon system, can be investigated us-
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ing the single particle Green s function G,z(co) in Fourier
space. Gi2(co) is known to satisfy a Dyson equation,

G12(&)=G12 (~)+g 613 (CO)X34(a))G4$(~) .
34

(2 1)

Here X34(co) is the self-energy describing the effects of
the nuclear medium on the particle or hole. The numeri-
cal state labels used are arbitrary insofar as one is free to
choose the representation in which to calculate Giz(co).
The physical situation we wish to consider is how a single
hole state created in the nucleus is affected by its interac-
tion with the more complicated excitations to which it is
coupled. One knows that, if possible excitations of the nu-
cleus are put aside, the effect of the remaining nucleons on
the motion of a nucleon in the nucleus is adequately
described by an average field. This field can either be
represented phenomenologically by a shell model poten-
tial, or approached theoretically as in Hartree-Fock
theory. In this paper, we take the latter approach in prin-
ciple, and interpret the labels in Eq. (2.1) as referring to
Hartree-Fock (HF) states of a single nucleon. This means
that all effects of exciting the nuclear medium through
which a nucleon or nucleon hole is moving, reside in
X34(co). With this choice of representation, G i2' (co ) is
dressed to the extent that interactions with the average nu-
clear field have been taken into account. Consequently, it
is diagonal in the labels 1 and 2: GIi'(co)=GI '(co)5i2.
The same statement does not hold true for Gi2(co), howev-
er, since the particle in state 2 can scatter into state 1 by
exciting the nuclear medium. In a spherically symmetric
average field, labels 1 and 2 differ at most in their radial

Gi '(co)=
1 —n) +

CO —Ei+l'g 6)—6( —l YJ

(2.3)

where the HF occupation number n& ——0 or 1, depending
on whether e& lies above or below the Fermi surface at en-

ergy A, . Inserting this into Eq. (2.2) yields the familiar re-
sult

Gi(a)) =[co—ei —Xi(co)] (2.4)

Thus, in order to calculate Gi(co), a knowledge of the
self-energy X&(co) is required.

B. The nucleon self-energy

We now examine the exact expression for the nucleon
self-energy. Apart froin a static (HF) contribution, which
has already been taken into account, this is given by '

quantum numbers. However, radial excitations involve
energies of order twice the average spacing between major
shells ( -20 MeV in a typical nucleus, A = 100). Since the
two nucleon scattering matrix elements are generally
much smaller than this, the feature of a large energy gap
between shells allows us to replace X34(co) by its diagonal
elements only. The resulting Dyson equation for
Gi2(co) =Gi(co)5i2 may then be solved explicitly to obtain

(2.2)

In particular, the Careen's function GP'(co) for a par-
ticle or hole in the HF state 1 of energy ei is given by

oo II

X(co)= —,
' f f VG(co —co')G(co'+co")G(co")I (a),co', co"),

2& oo 2'lT
(2.5)

where the summations over intermediate states are im-
plied. Here V and I" are the fully antisymmetrized two-
body interaction and four point vertex function, respec-
tively. The factor —,

' in Eq. (2.5) compensates for the dou-
ble counting introduced by antisymmetrizing both the ini-
tial and final interaction vertices. The 6's are exact
Green's functions as given by Eq. (2.1). Their frequency
arguments are determined by energy conservation require-
ments. A convenient choice of these is shown in Fig. 2.

The vertex function I summarizes the effect of all pos-
sible interactions between two noninteracting but fully
dressed nucleon lines propagating according to the exact
Green's function of Eq. (2.1). It can be shown' that the
structure of the integral equation for I depends on which
vertex labels are identified with incoming and outgoing
states. In the event that (1,2) represent incoming and (3,4)
outgoing states, one obtains the integral equation shown
diagrammatically in Fig. 1.

The vertical double line indicates an (antisymmetrized)
effective interaction that is irreducible with respect to the
labels (1,2) and (3,4). The vertex function is in general a
function of three energy variables, I =I (co,co', co"). How-
ever, if the effective interaction in Fig. 1 is approximated

r(~') = V i f —1(~ )G(a+~ )G(~)V
2K

(2.6)

= V—I (co') II(co') V . (2.7)

In this expression, we have retained the approximation, al-
ready motivated in Sec. IIA, that the Green's functions
are diagonal in their state labels. Equation (2.7) gives the

~//W///~

id ld+ ld '

FICx. 1. Integral equation for the vertex function I . The ef-
fective interaction is indicated by vertical double lines.

by V, the resulting integral equation shows that this I is
only a function of the energy variable co'. Thus, writing
I (co') in place of I (co,co', co"), one finds upon translating"
the diagrams in Fig. 1 into symbols, the following rela-
tion:
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effective interaction I in the random phase approxima-
tion (RPA). This can be seen by iterating the equation on
V. The result is a series of bubble diagrams (each bubble
represented by —ill) connected by the direct and ex-
change matrix elements.

We now return to the exact expression for X, and insert
the I obtained from Eq. (2.7). Since this vertex function
is only a function of co', the energy integral over co" in Eq.

I

(2.5) generates a noninteracting polarization propagator
again. One finds

X(co)= ——I 6 (co —co') VII(co') I (co') .
2 2m

(2.8)

The meaning of this approximation becomes clear if one
inserts I (co') in terms of the integral equation it satisfies.
Then, carrying state labels explicitly,

I

X(co)= ——g I Gq(co —co')(5l
i

V
i
62)F(6543,co')(62

f
V

f
51),

23456

where

F(6543, ')=11(34,co')5 5 —11(65,co')(64
~

I ( ')
~

53)11(34, ')

(2.9)

(2.10)

is the polarization propagator for particle-hole pairs in-
teracting via I . In the same way that I (co') was shown to
be the effective interaction in RPA, its presence in this ex-
pression gives the RPA version of I'. In actual applica-
tions, where a simple form of effective interaction will be
used, we will ignore the antisymmetry of V and I, and
therefore drop the factor —,

'
in Eq. (2.9).

The approximation (2.9) has a simple graphical inter-
pretation. This is shown in Fig. 2. The exact expression
for X(co) has been replaced by one in which the intermedi-
ate nucleon state is modified by attaching the RPA ver-
sion of the interacting particle-hole propagator to it.

C. Background and doorway stage contributions

We now identify two types of contributions to X by
making use of known features of nuclear structure. Since
6 and F in Eq. (2.9) are still essentially exact propagators,
one knows that they vary rapidly with their energy argu-
ments, the former having poles at the excitation energies
of the 3+1 particle systems, the latter at the excitation
energies of the A particle system. The energy-averaged
versions of these two propagators over the actual energy
spectrum are expected to be smooth functions of co, how-
ever. Then G(co} describes the propagation of a dressed
particle or hole state with an energy and width given by
the (complex) poles of the averaged 6, while the poles of
the averaged F(co) describe the eigenmode vibrations of
such interacting dressed particle-hole pairs. These vibra-
tions are of two types: collective and noncollective. Of
these, one anticipates that only those vibrational modes in
F that are of a collective character will induce prominent
energy dependent features in co, with the noncollective
modes contributing to a smoothly varying background.
Let us denote the latter contribution to X by X . In con-

FK}'. 2. Exact form of the self-energy and its approximation
in terms of a nuclear polarization diagram.

Xi(co) =Xi(co)+Xi(co) . (2.11)

D. The background self-energy

The bulk of the effect of residual interactions on a nu-
cleon state in the average potential is accounted for by in-
cluding an imaginary part in this average potential. This
circumstance is brought about by the fact that, in the
strong coupling limit, the strength of the single particle
state at energy ei is distributed fairly uniformly over the
many compound states to which it is coupled. One can
then anticipate that the real part of the piece X, when
aueraged over the compound states surrounding e&, will
vanish, leaving a purely imaginary contribution. ' We can
thus set

Xi(co =+i Wi(co) for co~(A, ,

where we treat the matrix element

(2.12)

Wi(co)=(1
i W,p, (co)

i
1)

as a phenomenological function. The sign change as co

passes through the Fermi surface is required bg general
theory. Equation (2.12) therefore identifies Xi(co) with
the imaginary part W,„,(co} of the nuclear optical poten-
tial, but taken at values of its argument that do not neces-
sarily lie on the energy shell, ~=@&. The phenomenology
of this potential has been well documented for positive
on-shell energy arguments. In what follows, we will re-
quire W,~, (co), or rather its matrix elements, at negcttiue
energies, about which much less is known empirically.
We take up this question in Sec. VI. Irrespective of such
detail, Eq. (2.12) has the following implications: if 1 is a
particle state p with energy e, ~A, , then W~(co) is to be
identified with (p

~
W,~, (co) ~p) for all co&A,. Since co

ranges over all values both greater and less than A, , this in-
terpretation can only be maintained if W~(co} is set identi-

I

trast, the collective piece of F is coupled to an interrnedi-
ate dressed state in the manner depicted in Fig. 2, to pro-
vide doorway states of a dressed single particle state plus
vibration character, thus making up a doorway contribu-
tion. We denote this contribution to X by X . Hence,
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cally to zero for all oi & A,. Similarly for hole states, ei & A, ,

W„(~)= & h
I W.„(~)I

h &

for co&A. and zero otherwise. If we further insist that
Wi(A, )=0 for 1 =p or h, a condition borrowed from Fer-
mi liquid theo, ' then a consistent phenomenological
description of Xi(co) is obtained that is summarized by the
equation

Xi(oi) = i—(1 n—i ) Wi(co)8(co —A, )

nucleon lines by including only X in the single particle
propagator,

Gi(co) -=G i(co) =[a)—ei —Xi(co)] (2.14)

in evaluating expressions like (2.7) and (2.9).
Several alternative approaches to the problem of damp-

ing of single particle modes in nuclei have been discussed
elsewhere. '

III. POLARIZATION PROPAGATORS
+in i Wi(co)8(A, —co) .

The 8's are step functions.

E. Doorway states

(2.13)
In this section we construct explicit expressions for the

(averaged) polarization propagators II and F pertaining to
noninteracting and interacting dressed particle-hole pairs,
respectively.

The arguments leading up to Eq. (2.13) are valid as long
as the strong coupling approximation holds. This is not
the case if the coupling to compound states occurs via
doorway states. Then a different situation prevails. In-
stead, the strength of the state 1 is fragmented over the
doorway states it is coupled to. Since the doorway states
are themselves spread only locally into compound states in
their vicinity, an indirect coupling between state 1 and the
compound states is effected. The cancellation of the real
part of the energy-averaged contribution to the self-energy
no longer occurs, so that the piece Xi(co) arising from
doorway state excitations has both real and imaginary
contributions to Xi(co). In what follows, we use Eq. (2.9)
to calculate the doorway self-energy Xd using a specific
nuclear model.

Although the expression (2.9) with G and I' interpreted
as energy averaged propagators is a highly simplified ver-
sion of the exact result, there is yet a further complication
in that these propagators required to calculate X still de-
pend on X itself. We resolve this problem using the fol-
lowing argument. Since doorway states of a collective na-
ture are expected to be relatively few in number, the bulk
of the self-energy that converts a Hartree-Pock state into a
dressed state is given by Xb. Consequently, we dress all

ImGi(oi) = —
I
(c i ),o I, „z8(co—A, )

s

+
I «i 4 o I

'. .=z,-~8(~—co)
s

(3.1)

if the e, and e, are quasicontinuously distributed with
average spacings D, and D, . We have set

(c', )„=(e",+'
I
c',

I
e', ),

etc., using an obvious notation, and the bars denote energy
averages in the vicinity of e, =oi —I, and e;=A, co, —
respectively. One finds by direct calculation that II(12,co)
is given in terms of these quantities as

A. The noninteracting particle-hole propagator

The propagator II for noninteracting particle-hole pairs
appears in Eq. (2.7). This expression corresponds graphi-
cally to a single bubble diagram containing fully dressed
particle and hole lines. An evaluation of II can be carried
out using the Lehmann representation that expresses the
G's in terms of the excitation energies e, and e, , and
strength functions of the 2+1 particle systems. One has,
in particular, the relation

I (ct).o I

'
I «z)'o I

'
II(12,ai) = —f dog f de,

' '. +(1~2,co~ —co) .
Ds Ds' a) 6s es'+ l g

(3.2)

2 Wz(A, —eg )
I «zoo I

'=
Pg2

(e, +ez —A, )z+ Wz(A, —e, )
(3A)

as long as e& ~ A, and p2 ~ g.

As a prelude to evaluating this expression, we identify

the strength functions
I
(ci },o I

and
I
(cz), o I

as arising
from the background contribution of compound levels.
Therefore, by taking the imaginary part of Gt(co), one
finds that the strength functions are given by

2= Wi(eg+k)
I «i 4o I

'= z'
z (I —ni) &

Dg (e, ei+A, ) + Wi(e, +A,)— .

(3.3)

An explicit evaluation of II using these expressions is
prevented by the unknown dependence of Wi and Wz on
their energy arguments. However, the resonance forms in
e, and e, of the strength functions plus the fact that the
integrand is singular at e, +e, =co suggests the following
approximate procedure: replacing Wi (e, +A, ) and
Wz(A, —e, } by their values where the integrand in Eq.
(3.2) is large. These values occur where, simultaneously,
e, +e, =co and the product

I (ci)so I I
(cz)s'o I

is large.
This in turn happens when either of the expressions (3.3)
or (3.4} resonates. Thus while maintaining the condition
e, +e, =oi, we must evaluate Wi(A, +e, ) in the particle
strength function at the peak e, =A, —e2 of the hole
strength function, and Wz(A, —e, ) in the hole strength
function at the peak e, =@i—A, of the particle strength
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function. Gne then finds that the W's in Eqs. (3.3) and
(3.4) must be replaced by Wi(@2+co) and Wz(e& —co). The
resulting integrals for II now become elementary, if we ex-
tend the lower limits to —oo. This is justified by the
peaked nature of the strength functions. Thus

(1 n—i) n2
II(12,co) =

~i e—2 i—[Wi(e, +~)+W, (~, ~—)]

constants with respect to e, and e, still satisfy the sum
rule

X I «i).0 I'+X
I
«i)'Ol'=I

in the sense that, individually, one finds

+(1~2,co~ —co) . (3.5) 2 1«i ).o I
=— f «,

I (et)„( '=1—n, ,
S S

We remark in passing that the approximate strength func-
tions obtained by replacing the energy-dependent 8 s by

X l«i)sol —= f de, [(c,), 0~ =n, .
S S

(3.6)

B. The interacting particle-hole propagator

The expression for F in Eq. (2.10) can be written as

F(4321,co) =II(43,co) 5i4523 —g (54 V
~

63)F(6521,co)
56

(3.7)

Fph, hp Fph, ph

Fhp, hp Fhp ph
(3 &)i I ( ——co) coI—

with the help of the integral equation for 1. The structure of Eq. (3.7) is such as to couple those matrix elements of
F(4321,co) where the index pairs (4,3) and (2.1) are either particle-hole or hole-particle states. Thus F breaks up into
submatrices labeled by the type of excitation these indices represent. After substituting for II(43,co), Eq. (3.7) can be ar-
ranged as a matrix equation,

A —E 1 (co )—coI 8 I 0
0 I

in this space. VVe employ the now standard notation
and 8 for the matrices 2;„J E;5 „5;J+(jm——

~
V~ ni)

and 8; „J——(mn
~

V
~
ij). 3 is Hermitian, 8 is symmetric,

and I is the unit matrix. The excitation energies and
half-widths of the participating particle-hole excita-
tions are E;=(e~ —e;) and I ~;(co)= W' (e;+co)
+ W;(e~ —co). If 1 ~;~0, one recovers the standard RPA
equations.

We solve for the matrix F by inverting Eq. (3.8) in
terms of the eigenvalues and eigenvectors of the associated
homogeneous problem. At fixed co this reads

I

er the complete spectrum of F from a knowledge of the
eigenvalues

coi(co) =ccrc(+co) i'(+—co)

in the fourth quadrant for both signs of co. This spectrum
is indicated schematically in Fig. 3. The pattern of eigen-
values is not symmetric about the imaginary axis unless
I (co) = I ( —co ).

Since the eigenvalue problem (3.9) is not self-adjoint,
the orthogonality relation is between the eigenvectors of
the original and adjoint problem,

A —i I'(co)

i I ( —co)—
Xi (co) Xx(co)

Yi.(co) ~ —&i, (co)

Xx(co)
[&«(~)Sx(~) l (3.10)

(3.9)

Since the operator in this equation is not Hermitian, Eq.
(3.9) has to be supplemented by the adjoint eigenvalue
problem, where i I ~—i I . The eigenvalues of the adjoint
problem are coax(co) with eigenvectors [Ri,(co)Si(co)], say.
One can then show that —coi( —co) is also an eigenvalue
of Eq. (3.9) with eigenvector [Si(—co)Ri( —co)]. Like-
wise, —coax( —co) is also an eigenvalue of the adjoint equa-
tion with eigenvector [Y~( —co)Xi ( —co)].

One knows from general theory that the poles of F lie
in the second and fourth quadrants of the complex energy
plane. This means that the real and imaginary parts of
the cox(co) always differ in sign. Then the fact that—cox( —co) is also an eigenvalue means that one can recov-

X 0
X 0 0

0 X x X0 X
0 x R (~I- jp (~I

X

0 X

FIG. 3. Pattern of eigenvalues coq(cu) giving the poles of E(co)
(crosses). The eigenvalues co~(co) of the adjoint problem are also
shown (dots).

The phase g~ is + 1 or —I accordingly as the eigenvalue
cox(co) lies in the fourth or second quadrant. These results
are proved by an extension of the method given by Thou-
less. '
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The solution of Eq. (3.8) can now be expressed as the
sum

X3 (co)
F=g & ( )

[Ri(co)Si(co)] (3.1 1)

over all eigenstates. The individual submatrices of F may
then be read off, e.g.,

Xi (a))R3 (oi)

3 ai(co) i P—i,(~) o—i

Si( —co)Yi ( —oi)
(3.12)

ai( oi) —i Pi„—( —co)+co '

where we have made use of the connection between the
eigenvectors of coi(co) and —co3( —co) to write the sums
over states with eigenvalues in the fourth quadrant only.

IV. DGOR&AY STATE CGNTRIBUTIGNS TG X

We now make the division of the self-energy into door-
way and background contributions as suggested in Eq.
(2.11), and calculate the doorway piece X by inserting two
versions of the polarization propagator F into Eq. (2.9).
In the first calculation, we approximate F by the nonin-
teracting polarization propagator II for independent
particle-hole pairs.

A. Noninteracting particle-hole pairs

We now calculate the contribution Xi(co) to second or-
der in the interaction using the dressed propagator 62 and
II(34,co). This corresponds to using doorway states con-
sisting of noninteracting two-particle —one-hole excita-
tions. The result, ignoring antisymmetry effects, is given
by

Xi(~)= —i X I
(32

I
&141)

I f G2(~ —~')«34, ~') .
234

2m'
(4.1)

While unrealistic in that interactions necessary for the buildup of collectivity in Xi are absent, Eq. (4.1) gives results that
are illustrative of the full problem. The energy integral can be evaluated using the Lehmann representation for 62 again.
The calculation is outlined in the Appendix and gives

Xi(co)=g I
(32

I
V

I
41)

I

234

(1—n2)(1 n3)n4-
co E2 E3+—E&+—i[W2(co —E3+E4)+ W3(co —E2+Eq)+ Wz(E3 —co+E2)]

n2n3(l —n4)+
Ei E—3+E—4 i [W2—(~ E3+E—4)+ W3(«+~ E2)+—W4(E3 ~+E2)]

(4.2)

It is evident from this expression that the damping of the
doorway states is controlled by the off-shell values of W3,
W3 and W4 ~ The arguments of these functions have been
forced off-shell due to the sharing of the total energy co

between the various excitations in the intermediate state.
[By off-shell, we mean, as usual, that the energy argument
of a function like Wi(co) does not equal the energy eigen-
value Ei of the state 1.] For example, W2(oi E3+E4) in-
the first term of Eq. (4.2) describes the damping of a par-
ticle state 2 in the presence of a particle-hole excitation
(E3 'E4), and therefore must be assigned the share
co ('E3 'E4) of the available energy. One can verify the
remaining energy arguments in Eq. (4.2) in the same way.
This pattern of energy arguments in the W's also ensures
that the imaginary part of Xi(co) changes sign properly as
co passes through the Fermi surface at A, . To be specific,
consider the first term containing two-particle —one-hole
excitations, where 2=m and 3 =n are particle states, while
4=i is a hole state. The following pattern then appears in
the imaginary part of the denominator.

W~(co —E„+E;)+W„(co—E~+E;)+Wi(E~+E~ —co) .

(4.3)

According to Eq. (2.13), the first two terms are nonzero if
e—(E„—E;) and e—(E E;)&I,, while the third v—an-
ishes unless e~+e„—m & A,. Noting that combinations of

f

the type e~ —A, and e~ —e; are always positive, being sin-
gle particle and particle-hole excitation energies, one sees
that all three of these inequalities can only be met if co is
at least greater than A, . In a similar fashion, the imaginary
part of the denominator in the second term of Eq. (4.2)
only survives if co & A,, so that the sign of ImXi(co) changes
froin negative to positive as co passes through A, . Further-
more, each term in Eq. (4.3) switches on individually as its
argument exceeds A.. This is shown schematically in Fig.
4.

Finally, each term in Eq. (4.3) goes on shell at the exci-
tation energy Ed ——E~+E„—E; of the two-particle —one-
hole doorway state. The width of the doorway state

w, (~) w (~j

Ed=4'En ~i

FIG. 4. Variation with energy of the absorptive components
that enter into the damping calculation of a two-particle —one-
hole state placed at Ed ——e +e„—e;. The Fermi energy is at A, .
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[given by twice the expression (4.3)] thus becomes a sensi-
tive function of its excitation energy, a feature that will be
essential in actual calculations. A similar pattern emerges
for the damping of two-hole —one-particle excitations.

In the event that the doorway states in Eq. (4.2) were to
become dense enough so that one could essentially average

over them in some interval 6, one would retrieve Eq.
(2.12) with

w'i ——(m /b )g'
I
(32

I
V

I
41)

I
2,

as expected.

B. Particle-hole vibrations

We now include interactions among the particle-hole excitations, and replace Eq. (4.1) by
I

Xi(co)= i —g I
(62

I
V

I
51)

I f G2(co co)—F(6543, co) .
23456 2m

(4.4)

Using the solutions {3.11) for F, one can again do the energy integral {see the Appendix). The final result, which in-
volves the following abbreviations,

Ai2i(co)= gx;(co)(i 1
I

V
I
m2)+gy;(co)(mi I

V Ii 2) gr J (co)(n2I V
I jl)+gsj (co)(j2I V In 1)

lltl mi nj NJ

(4.5)

and

+12,i, ( co)= gx" ( —co)«2
I

V
I

m 1)+P~";(—co)(m2
I

V
I

i 1)
mi

gr„j ( —co)(n 1
I

V
I
j2)+ps„j. ( —co)(jl

I
V

I
m2)

nj NJ

(4.6)

is given by

(1 n2)A $2 i(co——ep)
X&(co)=g' g ~

'. +
z co —ei —ai.+ipse. +iWz(co —ai. )

n 2& iq, i.(&q —&)

co e2+ ai—„ipi i—W2 (co—+ai )
(4.7)

where the eigenvalues ai„ipi„an—d ai i p'i a—re evaluated
at arguments ~—e2 and e2 —co, respectively. The indexed
lower case letters in Eqs. (4.5) and (4.6) denote com-
ponents of the corresponding upper case column vector,
e.g., x;(co) is the (mi)th component in Xi(co). At this
stage, the sum on A, involves the complete spectruin of F.
However, in applications this will be restricted to a few
low-lying collective modes, with the remaining A, s being
considered as absorbed into the background Xi(co).

I

turn, as do the eigenvibrations that are built up from such
interacting particle-hole pairs. Therefore, a state label like
1 specifies all the single particle quantum numbers
In l ji&imiI in the average field. In the following, we
segregate the magnetic quantum number m, and write
t 1,m i J, now reserving 1 as an abbreviation for the
remaining nonmagnetic quantum numbers. Thus, for ex-
ample, F(4321,co) becomes

V. INCLUSION OF ANGULAR MOMENTUM,
ISOSPIN, AND PAIRING

F(4m43m32m2 lmi, co)

In order to implement the general theory developed thus
far, we must consider the various symmetry properties of
actual nuclear states in addition to specifying a
phenomenological form for Xi(co) and a specific nuclear
model in which to calculate Xi(co).

A. Angular momentum

In a spherical nucleus all single particle and hole states
of the average nuclear field carry good angular inomen-

I

in this notation.
Now consider the expression (2.9) that is represented by

the second diagram in Fig. 2. Angular moinentum con-
servation requires that the total angular momentum of the
intermediate particle or hole plus vibration state couple to
the angular momentum j] of state 1 under examination.
It is therefore convenient to introduce an interacting
particle-hole propagator I' carrying angular momentum
J. This is given by

F (4321,co)= g (jqmq j3—m3
I
JM)( —)

' 'F(4m43m32m2lm„co)( —)
' '(jimi jq —m2

I
JM),

m lP22

&Pl 3m 4

(5.1)
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where the arrow notation on the left indicates the order in which the angular momenta are coupled in the Clebsch-
Gordan coefficients. We use this notation generally. Then it is a matter of simple angular momentum algebra to show
that F~(43,21,co) satisfies the following equation:

F (4321,co)=II(43/co) 5(4623 —y (54
~

V
~

63)F (6521,co)
56

(5 2)

a result that may be obtained formally from Eq. (3.7) by simply choosing the coupling scheme on the left, and then
maintaining it throughout the equation. Note that F is independent of M, and II(43,co) is independent of both J and M,
except that j& and ji must be able to couple to J. Then the self-energy of a state carrying angular inomentum ji may be
written in terms of F as

XJ,(~)= —i 2 2 . (J4Ji I
V lj3J2}*(j5ji I

V
I j6j2}I 62(~ —~')F (654»~')2J+1 . . . . , . . . . des'

J 23456 2ji+1 2m
(5 3)

where we have again neglected antisymmetry.
This result indicates that the contribution to X, from

polarization propagators carrying a prescribed angular
momentum are additive. One observes again that the re-
sult (5.3) follows formally from Eq. (2.9) by applying the
"arrow coupling" technique, provided one includes a fac-
tor

(2J + I)/(2ji + I)

that arises froin recoupling. Therefore, the final result for
X~ (co) from Eq. (5.3}can be read off from Eq. (4.7) using

the replacements A»q~A»z and 8»&~8»z whe~eJ J
3 i2i and Bi2i are given by Eqs. (4.5) and (4.6) with
(i 1

~
V

~
I2) recoupled after including the factor

4"=[—n+pT' ']/(2To+1}'"
T( —)

n+
2Tp

[2To/(2TO+ 1)]'~
(S.S)

in terms of neutron (n} and proton (p) hole creation opera-
tors for the core region, and the isospin lowering operator

T'-'= gp'„n„.

These operators create states of good isospin [To+—,',
To —,

'
] correspon—ding to analog and antianalog states in

[Z, N —1) of the parent system [Z —1, N]. The rela-
tions (5.5) allow one to express G2 as

(2J+1)/(2j, +1) 62 —— 6~(co)+ — 6~(co)
2Tp+ 1 2Tp+ 1

(5.6)

and summing on J. This result is recorded later in con-
nection with Eq. (5.8).

6 (co)= [co—e —X (co)] (5.4)

B. Isospin

The filled single particle levels of a nucleus with N ~ Z
may be divided into core levels occupied by both protons
and neutrons, and valence levels that accomodate the ex-
cess neutrons. The ground state

~
Z,N ) of this A particle

system carries isospin [TO, To] where 2TO=N —Z.
Adding a proton to, or removing a neutron from, the

valence region likewise produces states of good isospin
[To—i, To —

& ] in the residual A + 1 systems. This is
not the case, however, when a proton is added above or a
neutron removed from below the valence shell. Then
states of mixed isospin are formed. Let us examine the
self-energy Xi in this situation. If the index 2 on Gz in
the expression for Xi is a neutron hole in the core, then
not Gz, but rather the propagators 6, and G~ for the
analog and antianalog quasihole excitations are known,
and have the simple form $2.14), e.g.,

when 2 refers to a neutron hole in the core. If we restrict
the polarization bubble attached to 62 to consist of iso-
scalar (ET=0) excitations only, then isospin conservation
requires that the state 2 has the same isospin as the state
label 1 on X~. Hence,

Xi ——[2TO/(2TO+ 1)]X~

or

(2TO+ 1) 'X, ,

if 1 is an antianalog or analog quasihole, respectively.
The self-energies X~ and X," are calculated from Eq. (2.9)
as before with the replacements 62~6 or 6, . We note
in passing that the background contributions X„and X,
are quite different in these two Green s functions; 6« is
subjected to essentially the full damping by the optical
field,

X~= [2TO/(2Tp+ I )]iW'2,

while ImX, -=O because the level density of compound
states with the same isospin as the analog state is expected
to be much lower. '

C. Pairing

So far we have assumed a sharp Fermi surface separat-
ing occupied and unoccupied single particle levels. This

where e~ is defined such that E =A, e~ is the antiana-—
log excitation energy. We introduce' the quasihole
creation operators
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G(o)
( )

Q2 U2'. +
CO —E2+l Yj CO+E2 —l'g

(5.7)

where E2 is the quasiparticle excitation energy

E =[(e —A, ) +b j'/

distinction cannot be maintained in applications to the
isotopes of tin, for example, which we discuss in the next
section. It is well known that the valence shell neutrons in
these isotopes exhibit strong pairing effects. ' We take
cognizance of this by introducing the standard Bogoliubov
transformation to quasiparticle creation and destruction
operators, and expressing Gq in terms of these. Then, for
example, the propagator G'q ' for a HF state 2 is replaced
by

as measured from the quasiparticle vacuum, while uz, U2,
and 6 are the probability amplitudes and gap parameter.
The effect of pairing is thus to reduce the component of
the Green's function associated with a HF particle or hole
in state 2 from unity to uz or uz, respectively. These two
components are no lon~er mutually exclusive so that the
line associated with 62 ' in any diagram is partially a
particle state and partially a hole state. This effect can be
carried over into the dressed Green's function Gz by sub-
stituting ui for (1 n—i) and U2 for n2 in Eqs. (3.3) and
(3.4) for the particle and hole strength functions of the
background. This replacement leaves the sum rule (3.6)
for the total strength unchanged, since u i +U i

——1.
The calculation of the doorway self-energy that includes

pairing and angular momentum effects follows the same
pattern as that leading to Eq. (4.7). One finds

A, A, E- —
J 2 (2A + ) co A, E2 —ai—+—i Pit +i W2(co ai ) —co

8 i2 i (A, —E2 —co)U2
J 2

2+E2+—ai i gi —I W2—(co+ cxj )

(5.8)

where E2 ——(Ez —5) is the pairing quasiparticle excitation
energy relative to A, , and the arguments of ai, Pi and ai,
Pj„are now co A, Eq an—d A—, —Ez —co, respectively. This
expression is simply obtained from Eq. (4.7) by the re-
placement of ez & X in the first term in that equation by
A, +E2 ~ A, , which is particlelike, and c2&A. in the second
term by A, —E2 & A, , which is holelike. The factors (1 n2)—
and n2 are replaced by the probabilities u 2 and Uz.

The expression (5.8) is generally applicable, since the
pairing effects automatically disappear whenever the state
2 falls in the core region. Additional pairing effects can
appear in the polarization propagator. This occurs when
I' is made up of interacting quasiparticles, as has been dis-
cussed in some detail by Baranger. ' %'e note in passing
that since pairing leads to nonconservation of particle
number, there must also be an associated fluctuation in
isospin measured by ( T ) —( T ) . If this quantity is
small relative to ( T), the consequences of isospin break-
ing are small. This inequality is well satisfied for the iso-
topes of Sn, which are considered next.

VI. APPLICATION TO THE TIN ISOTOPES

In this section, we apply the formalism developed thus
far to a calculation of the strength function for the iso-
topes of Sn. We must therefore specify (a) the HF single
particle energies e& and the quasiparticle spectrum result-
ing from these for a given isotope, and (b) the self-energy
insertions Xi(co) and Xi(co). We illustrate the implemen-
tation of these facets of the problem by describing the cal-
culation of the g9/p strength function for the removal of a
neutron from " Sn.

A. Single particle energies
and the quasiparticle spectrum

The shell model single particle valence levels that are
relevant' for discussing nuclear structure in the vicinity

I

of the Sn isotopes are listed in Table I. The associated
quasiparticle levels, shown on the right side of this table,
were calculated using the common gap parameter 5=0.92
MeV, and the Fermi energy X= —9.67 MeV. The neutron
threshold (zero energy point) has been located by identify-
ing the 3s~~z quasipaiticle state with the neutron separa-
tion energy in " Sn. The filled g9/q to fs/2 states do not
enter the pairing calculation. %"e have taken the location
of these from estimates of Gerlic. The proton single par-
ticle levels have simply been obtained by shifting the last
occupied proton level, the g9~2 state to the Fermi energy
k, and are listed in TabLe II. The accuracy with which
single particle energies are known does not warrant a
better determination of the proton energies.

8. The background self-energy

According to Eq. (2.12), we require the matrix elements

Wi(a))=(1
i W,p, (co)

i
1) .

To construct a plausible phenomenological form for these,
we make appeal to Fermi liquid theory, ' which predicts a
(oi —A. ) dependence of Wi(co) near the Fermi surface, as
well as the fact that the on-shell Wi(e, ) is a slowly in-
creasing function of ei near ei ——0. The simple form

(6.1)

where Wo is the value of the optical potential at co=0
(neutron threshold) agrees very well with the empirically
determined on-shell variation of Wi with energy. ' Since
this expression is meant to be an extrapolation to negative
values of co in the vicinity of the Fermi energy, Eq. (6.1)
should not be confused with the empirically known energy
dependence of the optical potential for positive energies.
When 1 refers to a hole state, we continue to use the ex-
pression (6.1). This involves yet a further assumption,
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TABLE I. The neutron spectrum. The single particle energies, measured from the zero (neutron
threshold) and as excitation energies from A. are given for the valence shell levels and first harmonic os-
cillator shell levels below this. The occupation probabilities u, and quasiparticle energies associated
with the valence shell are also listed. These have simply been extended into the core region, by setting
U, =1 and E,=

~
E, —A.

~

. The 3s~n quasiparticle lies at excitation energy 0.11 MeV, where s„=9.56
MeV is the neutron separation energy in " Sn.

Level

1h (i/2
2d 3/2

2d5 /2

(Mev)

—8.30
—8.90
—9.20

—10.88
—11.10

/(e, —A)
/

(MeV)

1.37
0.77
0.47
1.21
1.43

(Mev)

1.65
1.20
1.03
1.52
1.70

E, =E,—6
(MeV)

0.73
0.28
0.11
0.60
0.78

2
Ua

0.09
0.18
0.27
0.90
0.92

lg9/2
2pi/2
2p 3/2

1fsn
lf7/2

—15.71
—16.01
—17.01
—18.01
—19.01

6.04
6.34
7.34
8.34
9.34

6.04
6.34
7.34
8.34
9.34

TABLE II. The proton spectrum. This is obtained from the
neutron single particle spectrum by moving the g9/2 state to lie
at i.
Level

1h ))/2
2d 3/2
3$ l/2

lg7/2
2d 5/2

Ea

(MeV)

—2.26
—2.86
—3.16
—4.84
—S.06

[(e,—A, ) [

(M@V)

7.41
6.81
6.51
4.83
4.61

lg9/2
2p
2p3/2
1fsn
V'vn

—9.67
—9.97

—10.97
—11.97
—12.97

0
0.30
1.30
2.30
3.30

also confirmed empirically, ' that the spreading of single
particle states on either side of the Fermi surface is simi-
lar. While as yet there is no specific proof of this asser-
tion, it does seem a reasonable one in view of the fact that
a particle or hole state at the same distance from the Fer-
mi surface will be confronted with a similar density of
compound levels.

Such a model for Wi(co) is, of course, a gross approxi-
mation in a finite nucleus near co=A, , where, in contrast to
a Fermi liquid, the very concept of an optical potential
near the ground state looses all meaning, and we will have
to see how these assumptions work in practice. In view of
all these uncertainties, it is clearly futile to pay attention
to the state dependence of W as carried by the label 1.
Thus we accept that Eq. (6.1) holds irrespective of wheth-
er the state label refers to a particle or a hole, so that
Wi(co) is symmetric about co=A, . The assumption of a
specific form for Wi(co) allows one to calculate this func-
tion at the various excitation energies required for the
self-energy Xi(co). We should perhaps emphasize that a

more detailed analysis of the problem would introduce a
phenomenological operator 8;~„calculate its matrix ele-
ments, and try to deduce its parameters from a match be-
tween theory and experiment, as has been done for 8'

pt
for positive energies. At the present time, however, there
is not enough systematic data to make such an analysis a
definitive one.

C. Structure of doorway states in ii6Sn

Two types of doorway states present themselves as can-
didates in this nucleus. These consist of a single neutron
hole coupled to vibrations of the proton core (type I), or
neutron valence shell (type II), respectively. If, in the last
case, these doorway states have their neutron hole in the
core, then, as discussed in Sec. VB, such states do not by
themselves conserve isospin. The correct linear combina-
tion for such type II doorway states is obtained' by form-
ing the analog state of a proton hole coupled to neutron
valence shell vibrations in the parent system " In. It thus
contains components more complex than two-
particle —one-hole excitations. Hence the type I doorway
state represents a dressing of the g9n quasihole by proton
vibrations, while the type II dresses the g9/2 quasihole
with neutron vibrations. In this picture, we have con-
sidered the proton core and neutron valence shell vibra-
tions as occurring independently. This is not strictly true.
The residual interaction will mix them. However, since
the proton excitations are intershell, while the neutron vi-
brations are intrashell, there is a relatively large energy
separation (-2—4 MeV) between their respective excita-
tion energies. Their mixing is consequently small. We
continue to neglect it in what follows, and speak of these
types of vibrations as though they occur as independent
modes of excitation.

A common feature of the spectra of the tin isotopes is
the occurrence of low-lying 2+ and 3 collective modes.
In " Sn, these lie at Aco2 ——1.27 MeV and Aco3 ——2.38 MeV,
respectively. The expected positions of doorway states
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FIG. 5. Energy-level diagram showing the relation of the one hole plus vibration doorway states to the g9/2 analog and antianalog
states of " Sn. The experimental neutron and proton threshold energies for " Sn are also indicated. 6, and 6 are the Coulomb ener-

gy shift and the neutron-proton energy difference, respectively. The horizontal lines on the vertical axis mark the projections of the
individual one hole plus vibration levels that have been individually identified by the excitations that make them up. The barred
letters indicate neutron quasiholes, unbarred letters neutron (pairing) quasiparticles. The 2+ and 3 (experimental) collective modes
at 1.27 and 2.38 MeV, respectively, are shown on top of the single quasihole or quasiparticle they are combined with to form a door-
way. The dotted lines give the same information for the calculated 2P (proton core) vibration. The g9/~ analog and antianalog states
and their accompanying doorways have been crosshatched for easy reference.
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that can be formed by coupling these collective vibrations
to those neutron hole states of Table I that can couple

9 +
with them to a total angular momentum —, are shown in
Fig. 5. The isobaric splitting ' of the g9/i analog-
antianalog pair is shown for comparative purposes. The
estimated positions of type I doorways, based on a calcu-
lated value of fm2 —3.8 MeV (see later) for a 2+ collective
mode of the proton core is shown by the broken lines. We
have arbitrarily grouped those doorways involving the
known 3 excitations under type II, i.e., mainly proton vi-
brations. Whether this is predominantly so or not, is not
relevant for our further discussion, since these doorway
states lie too far from the g9/2 quasihole to be significant.

It is clear from the level diagram in Fig. 5 that the g9/2
quasihole state remains isolated except for the [g9/2432+)
doorway just above it. The reasons for this are simply ei-
ther the strong compression of the neutron quasiparticle
spectrum or the large binding energies of the neutron
quasiholes in the core. Both effects favor either low-lying
or high-lying doorway states. The latter lie at too low an
excitation energy for the damping mechanism in our
model to be physically realistic, while the former are ef-
fectively spread out to merge with the background because
the model is certainly realistic in this region. To illustrate
this effect, let us estimate the damping width of the com-
ponent

273/2 [2d5/227 i/2 )

of the doorway state at 10 MeV excitation that contains
the 3 vibration. One has, from the second term in Eq.
(4.2), that the on-shell half-width of such a two-
hole —one-particle state is given by

which is of the same order as the half-width of the g9/2
quasihole (0.86 MeV).

Experimentally, the g9/2 quasihole strength function
(see Figs. 7 and 8) shows significant fragmentation on its
low energy side. We show that this data is consistent with
the presence of doorway states of the type II, consisting of
a 2+ collective mode due to vibrations of the proton core
coupled to neutron holes. %'e estimate the position and
strength of this collective mode froin an RPA description
of the proton core excitations, using the previously deter-
mined P2 part of the residual interaction that describes
the neutron valence shell vibrations so successfully. '

This interaction may be written as

V(12)= fg YJ(1) Y/(2)—

by the separable form just given, and drop the exchange
matrix elements. Then the RPA collective mode excita-
tion energy becomes

1/2

ro, (ro)j=@'(ro) 1 — g (g;)

The sy bol

(6.2)

8'j(co) =E —il (ro)
j

g~;es/the average energy of the dressed particle-hole exci-
tations that make up the vibrations ~, . In particular, a
2+ mode (which we henceforth designate 2~+) can be built
up, out of the proton excitations lg9/2~2d5/2 and
igf/z + lg—7/2 Th. e high degeneracy of the g9/2 state (con-
ta'jning 2j+ 1 = 10 protons) ensures the collective nature
of the resulting vibration. To calculate its energy, we note
by reference to Table II that the unperturbed energies of
the above excitations are nearly degenerate: they lie at 4.6
and 4.8 MeV, respectively, while their individual (on-shell)
half-widths are

W~ (e~ ) + 8; ( eg )=2.2( 4.6/9. 67 ) =0.50 MeV

2.2(4.8/9. 67)2=0.54 MeV,

oi, (co)=a, (ro) i 13,(ni)—
given in Fig. 6. Note that the real part of the collective
energy is lowered from 4.7 MeV to around 3.8 MeV by an
amount almost independent of co, while the imaginary
part, P, (co), depends strongly on ro.

IO "

gp 8-

respectively, using 8 0
——2.2 MeV. This gives an average

on-shell half-width of I =0.52 MeV. Hence,

8'=(4 7 0 52.i)—Me. V .

Actually, the imaginary part of I' is energy dependent.
Using Eq. (6.1) for Wi(ro) to construct an average I (co)
and setting fz ——2.50 MeV, a value bracketed by Kiss-
linger and Sorensen's value' of 2.75 MeV, and the Bohr-
Mottelson estimate of 2.04 MeV for the quadrupole-
quadrupole strength, one finds the values of

where YqM is a spherical harmonic of rank J and fz and
adjustable (but for our case known) interaction strength.
Its direct matrix elements cause the transfer of angular
momentum J during particle-hole collisions. They are

6

where g - is the multipole moment of order J.21
It is well known that the eigenvalue equation Eq. (3.10)

for the RPA collective modes can be solved exactly if we
approximate the direct matrix elements in that equation

3.7 3.72 B.7q 3.76 3.78
[MeV)

FICx. 6. Plot of P, vs a, as a function of the energy parame-
ter ~. Values of m at 2 MeV intervals are indicated.
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It now remains to couple the 2„+ state to intermediate
neutron hole (and/or quasiparticle) states. Using Reco,
=-3.8 MeV, we obtain the set of dashed energy levels

shown in Fig. 5.
It is important to note that we use the same interaction,

viz. , —fz Y(1) Y(2) for coupling the RPA dressed bubble

F (4321, ni) to the intermediate neutron state as was used

to generate the bubble. The collective enhancement of the
coupling matrix elements 3 &2 ~ and A~2 ~ is seen directly
from the result that A i2 i. and Bi2 i. —g,. (Qm;)
separable interactions.

Having calculated X&(co) in this fashion, we add it to
Xi(co) in accordance with Eq. (2.11) and hence construct
Gi(co) of Eq. (2.2). The strength function is then given by

(6.3)

0.6

00--
-20 -I6 -l2

(MeV)

FIG. 8. The g9~~ strength function as calculated in Fig. 7, but
with Rp=2. 2 MeV. The neutron single particle levels have
been shifted up by 0.9 MeV.

VII. RESULTS

In this section we show results of calculating the g9/2
neutron hole strength from Eq. (5.8) and make a compar-
ison with experiment. Figures 7 and 8 show this strength
function for the isotope "Sn, for two choices of the
strength 8'0. The parameters entering the calculation
have been described in Sec. VI. In these, and in all subse-
quent figures, the experimental data of Gerlic et al. have
been shown as (i) a dashed histogram of the original data
averaged over 0.5 MeV bins, and (ii) when there is suffi-
cient data, as a dotted curve representing the measured
strength smoothed with a running Breit-Wigner weight
function of half-width 0.3 MeV. The main peak observed
in these two figures shows the lg9/2 antianalog state,

0.6
II5Sn

0.2

0,0 ——
-22 -I8

I

-I4
N (MeV)

-10

FIG. 7. Calculated strength function for the 1g9/2 antianalog
neutron hole state in " Sn. The solid curve shows the calcula-
tion for Wo ——2.8 MeV and f/ ——2.50 MeV, that determines the
width and splitting of the giant resonance. The dashed curve
shows the same calculation, but with all neutron single particle
energies moved up by 0.9 MeV. The experimental data of Gerlic
et al. is indicated both as a histogram and as a dotted curve, see
text.

This result refers to the isospin channel To ——,'. The neu-

tron component of this,

S,(co) X2TO/(2TO+1),

is to be compared with the experimental data.

while the shoulder immediately to the right of this is due
to the two overlapping doorway configurations 2d&/22~
and lg7/22~+ (see Fig. 5) that have been shifted shghtly
due to their mutual interaction. The main peak of the cal-
culated strength is not properly positioned using the single
particle energies listed in Tables I and II; see Fig. 7. Since
these energy values are parameters in the shell model, one
can readjust the calculated peak to lie at the observed po-
sition. We have done this by simply raising all neutron
single particle energies by a common amount, 0.9 MeV.

It is clear from these two figures, that an excellent
description of the observed strength function is obtained
from the model we have proposed. Not only is the split-
ting of the g9/2 hole correctly reproduced by the coupling
strength fj that is determined independently from other
data, but also the widths of both the main peak and its
doorway satellite are correctly described. It is a matter of
opinion which of the two calculations, which differ only
in the value of the parameter 8 0, give a better representa-
tion of the data.

It is also of interest to see what the model predicts for
the g9/i strength function for the other isotopes of Sn.
Referring back to Eq. (5.8) for the doorway self-energy
X&(co), one sees that the only quantities entering this equa-
tion that are strongly dependent on mass number are the
quasiparticle excitation energies E„the occupation proba-
bilities u, and u„and A, . Published calculations' of these
allow one to follow the variation of these parameters
through the Sn isotopes. Two examples of such strength
functions are shown in Fig. 9 for "'Sn and " Sn

Two features should be pointed out: (i) The doorway
state shifts in energy as one moves through the Sn iso-
topes. This is brought about by the mass number depen-
dence of the quasiparticle energies E, . (ii) The fits
predicted for "'"Sn are satisfactory, without further ad-
justment of the remaining parameters that were used for
115Sn

We conclude this section by pointing out that the other
doorway states appearing in Fig. 5 have little effect on the
g9/p quasihole due to their energy separation or (on the
high energy side) large dainping. It is of interest to note,
however, that two of the three low-lying doorways formed
by coupling the 2+ or 3 vibration to the 2dz&2, 1g7/2,
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(a)
I
I
I
I

~ ~

~ ~
~
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~ ~

IIISn II5Sn

0.2

X

~ 0.6
F (b)

=2

0 I

-20 -IB —I6 -I4 -l2
4) (MeV)

-Io

0.2-

FIG. 10. Calculated 1g9/2 strength function for "Sn, using
parameters as in Fig. 8. The background self-energy X~(co) has
been suppressed in G~(~).

O.O
-I8

M (MeV)

FIG. 9. (a) Calculated 1g9/2 strength function for "'Sn, using
parameters A, = —11.44 MeV and 4=0.97 MeV. (b) Calculated

1g9/2 strength function for " Sn, using parameters A, = —9. 12
MeV and 6=1.05 MeV. The other parameters have remained
the same as those used in Fig. 8 for both these calculations.

and Ih ii~2 neutron quasiparticle have been identified with
observed states —, at 2.37 and 3.07 MeV in the pickup
data of Gerlic et al.

VIII. DISCUSSION AND OUTLOOK

While the results of the model for calculating the
strength function for deep-lying holes and their compar-
ison with experiment are self-evident, some concluding re-
marks are in order. We first examine the basic assump-
tion that the self-energy can be split into a smoothly-
varying piece Xi(co) and a doorway piece Xi(co). The two
extremes of this assumption are the following. (i) There is
no background contribution. All damping of the hole
state proceeds via doorway states to which it is coupled lo-
cally. One can easily test this idea by shutting off Xi(co)
in Gi(co) but not in Gi(co). This is shown in Fig. 10. The
resulting peak height of the g9/2 state is seen to be much
too high, and the width much too narrow. (ii) There is no
doorway contribution. Xi(co) is zero. Then the g9/2
strength function obviously consists of a single unsplit
peak. '

The question of how Xi(co) behaves with energy is a
second basic assumption. The device of relating IrnXi(co)
to W'i(co), the average value of the nuclear optical poten-
tial at energy co is certainly a reasonable one, especially in
view of the excellent results that have been obtained from
it. From a more fundamental point of view, the im-
plementation of this assumption is more troublesome: ex-
periment does not give us information on the "off-shell"
values of Wi(co) when ro&e&. We have circumvented this
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APPENDIX

%'e sketch the arguments underlying the approximate
evaluation of Xi(co) from Eq. (4.1). Since we eventually
invoke the approximate expressions (3.3) and (3.4) for the
strength functions, it is clear that the intermediate state 2
in the frequency integral

62 co —co' F 6S43,co'
27'

(Al)

is either a particle or a hole. Let us assume it is a particle
and insert the approximation II for F as in Eq. (4.1).
Then,

problem by arguing that details of how Wi (ro) depends on
its state label "1"could not be implemented in our calcu-
lations in view of the sparseness of data. While this is cer-
tainly true, the question is a very interesting one that will
certainly have to be answered as more data becomes avail-
able that does require a better knowledge of Wi(co). The
situation has a strong parallel with the development of the
optical potential at positive energies. After the initial
phenomenological success, the availability of more and
better data has resulted in rather detailed empirical
knowledge of the properties of the nuclear absorptive po-
tential. This empirical detail has also provided the neces-
sary impetus to carry out a reasonably successful deriva-
tion of the nuclear optical potential from a microscopic
point of view. In the case of hole states one can expect
developments as more data become available. For deep-
lying holes, development of a microscopic theory would be
of special interest, since the off-shell behavior of Wi(co)
enters into the determination of the doorway state spread-
ing widths in an essential way.
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b i i t 2
(1—ns)n4

Gz(co —co')II(34,co')=g 1(cq),o I
(A2)2' co —A, —es —Es +E'4+ l [W4 (e's —co +A, +es )+ W3 ( 6s +co —A, —Es )]

The symbols in this expression have already been defined in the main text. If we replace the s sum by an integral,
then the result (3.3) for

~
(c2),o ~

may be used. This resonates at e, =@2—A, . Its cofactor in Eq. (A2) resonates at
e, =co A,—e3—+e4 W. e argue as in Eq. (3.2) and evaluate the W's in each factor at the resonance of the other one.
Hence Wq(e, +A)~ W2(co e3+—eq) in

~
(c2 ),o ~, while W3(e3 —co+A, —e, )~W3(eq+co —e2) and Wq(e3 co+A

+E )—+ W4(es —co+f2). The remaining integration over e, is now elementary. A similar procedure holds if 2 is a hole
state, and one obtains the result (4.2) quoted in the text.

The evaluation of (Al) when E includes the interactions between particle-hole pairs follows a similar pattern. Instead
of (A2), one is confronted with the expression

A &2 t„(co A, —e, )—
(cp+ ),p ~

'
co A, e—,—a—g{co—A, —e, )+ipt„(co A—e, ),—

if 2 is a particle state. We use the same argument as in the derivation of (A2), i.e., evaluate a~ and Pt, at the resonance
energy E&=Ez—A, of

~
(cz),o ~

and W2 in this factor at the resulting resonance energy e, =co—A, —aq(co —e2) of its
cofactor in {A3). The remaining e, integral is again elementary and one obtains for (A3) the value

A &2 ~(co —e2)(1 nz—)
co e2 a—g(co—E2)+—

ipse(co

ez)+—i W2[co ag(co—62)]—
which, together with a similar expression that holds if 2 is a hole state, leads to Eq. (4.7).
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