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The coordinate-space distorted-wave impulse approximation approach to (y, m. ) and (m, y) reac-
tions on light nuclei is extended to include the full nonlocality of the pion, nucleon, and isobar prop-
agators that appear in the photoproduction operator. Whereas the introduction of the pion-

propagator nonlocality always produces a large effect on the corresponding term of the nuclear pho-
topion amplitude, the other nonlocalities affect mainly the relative phases of the appropriate contri-
butions leaving their magnitude almost unchanged. As a result, in a nucleus like ' C, where at low
energies one diagram (the contact term) accounts for most of the cross section and the pion-pole
term is not very important, there is almost no change compared with the local calculation. On the
other hand, in the nuclei ' C and ' N, where an appreciable interference occurs between the contact
and pion-pole diagrams, the nonlocality effect is quite large. Particularly affected is the reaction on
the nucleus ' N, even at very low energies. Our treatment blends coordinate- and momentum-space
techniques and hence allows one to incorporate other effects such as medium corrections or pion-
nucleon form factors. Comparison with available data is also discussed.

NUCLEAR REACTIONS {y,m) and (m, y) calculations for ' N, ' C, ' C, and
"N.

I. INTRODUCTION

The coordinate-space distorted wave impulse approxi-
mation (DWIA) approach has provided a generally good
description of low-energy reactions of pion photoproduc-
tion' and radiative capture ' on light nuclei. Successful
calculations carefully incorporate the following basic "in-
gredients": accurate description of the high momentum
transfer characteristics of nuclei (through many-body ma-
trix elements of single-nucleon operators, correlated when-
ever possible with electron scattering data), pion-nucleon
optical-model wave functions (consistent with pion-
nucleus data), and an operator to describe pion photopro-
duction on a single nucleon. We wish also to point out
that in photopion reactions the DWIA is a much better
approximation than in, say, pion-nucleus scattering, owing
to the weakness of the electromagnetic processes in the in-
itial state. There is no need, so far, for second-order elec-
tromagnetic processes, while the strong final-state interac-
tions are included to all orders in the pion-nucleus distort-
ed waves. (A more serious approximation is the restric-
tion to only one-body nuclear operators, so that "one-body
operator approximation" is perhaps a more appropriate
name. ) The main appeal of DWIA (or, rather, of OBOA)
is that the relatively simply physical picture of the pro-
cess, of the pion being photoproduced from a nucleon in
the nucleus and then making its way outside, is imple-
mented through a detailed microscopic calculation essen-
tially without adjustable phenomenological parameters.
More complicated physical processes can be taken into ac-
count partially by suitably modifying single-nucleon pro-
cesses or, at a later stage, through two- and more-body
operators.

Recent photopion experiments, however, revealed some

serious discrepancies with calculations for selected nuclei,
which suggests that the conventional local one-body
operator approach (OBOA) has to be refined. In addition
to addressing these discrepancies, it is important to extend
the energy range of the OBOA calculations to the 3,3 reso-
nance region where experiments with neutral and charged
pions are under way. In this region, medium-propagator
and, possibly, exchange-current corrections are expected to
become important. Before any of these interesting effects
are incorporated, however, one should remove all
nonessential approximations from the present formulation.
By far the most serious of these approximations is the lo-
cal (pointlike) treatment of the photoproduction operator.
As a bonus, once the nonlocality of the operator is re-
stored, any corrections that are effective one-body opera-
tors become easy to incorporate.

In this paper we extend the earlier Pittsburgh photopion
calculations ' to take into account the full nonlocality of
the elementary photoproduction operator. We develop our
nonlocality formalism for the Blomqvist-Laget (BL)
operator which has an appealing physical interpertation
and is very convenient for nuclear applications. Our
method, however, is quite general and can be applied to
any operator. It consists in treating the elementary pho-
toproduction step of the process in the momentum rather
than coordinate space. We regard this work as a first step
towards a new generation of y, vr calculations that will re-
move numerous currently accepted approximations and re-
strictions, some of which are discussed below; any such
improvement requires momentum-space techniques. At
the same time we preserve the reliability and physical clar-
ity of coordinate-space distorted-wave calculations.

In Sec. III we present our method for restoring nonlo-
cality to the separate terms of the BL operator. The main
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advantage of our procedure is that it yields simple replace-
ment formulae for the nucleon orbitals and pion distorted
waves entering the local calculation. As a consequence,
our treatment is a "local-equivalent" one and requires
minimal changes in the local technique. Effectively, the
relevant part of the calculation is performed in momen-
tum space, which opens a natural way to incorporate
medium effects. For computational ease, we replace the
optical-model pion-nucleus wave functions by phase shift
equivalent separable-model wave functions that reproduce
the behavior of the original optical wave functions in the
inner region. These wave functions are discussed and
compared to the optical functions in Appendix A. We
also point out the dependence of photopion reactions on
the behavior of pion waves inside nuclei and the general
need for more rehable pion-nucleus wave functions.

In Sec. IV, we discuss the results for the reaction
' N(y, n +

)
' Cs, at pion laboratory kinetic energies

T„=20, 50, and jI20 MeV. Here the photoproduction am-
plitude is largely the result of a destructive interference be-
tween the Kroll-Ruderman term o'e and the pion-pole
term and thus is very strongly affected by the introduction
of nonlocalities. While the nonlocalities of the nucleon
and 6 diagrams result in relatively small perturbations,
that of the pion-pole term is always large. This means
that the local limit for the pion-pole diagram is simply in-
correct. The effect of the nonlocality on the
intermediate-baryon diagrams is mainly to introduce an
additional complex phase without appreciably changing
the magnitude of their contributions. This (angle-
dependent) phase can be qualitatively understood as the
factor e' " ' picked up when the intermediate particle with
momentum p is allowed to propagate over the distance r.
The inclusion of nonlocality reveals an interesting differ-
ence between the pseudoscalar (PS) pion-nucleon coupling
y& and the derivative or pseudovector (PV) coupling y&9:
In the PS coupling, the usually dominant Kroll-Ruderman
term originates from the nucleon (or crossed-nucleon) dia-
gram, has a propagator and is thus affected by the nonlo-
cality. In the PV coupling, this term is primarily due to
the contact (seagull) diagram which is, of course, strictly
local. For single-nucleon pion photoproduction, the two
couplings are largely equivalent since they produce the
same Kroll-Ruderman low-energy limit and differ only in
more complicated spin- and orbital angular momentum-
dependent operators that are small compared with the
0'e. A nucleus, however, often acts as a "resonating cav-
ity" for angular momentum operators, suppressing some
and picking up others; as a result, small terms of the pho-
toproduction operator and the difference between the two
couplings may be considerably enhanced. Cfood examples
of such behavior are the nuclei ' N, ' C, and ' N, as dis-
cussed in Secs. IV and V.

As an example of medium effects and with the pion
condensation in Inind, we use the nonlocality technique to
test the "softening" of the in-the-medium pion by arbi-
trarily giving it a smaller mass. An an outgrowth of such
calculations, we feel that the nucleus ' N may prove to be
a more interesting testing ground for ihe ideas of pion
condensation than ' C because of the unusual prominence

that the pion-pole term has in ' N even near threshold. Of
course, meson-exchange currents have to be taken into ac-
count before any definite conclusions about pion conden-
sation can be drawn. We stress that a proper incorpora-
tion of medium effects must follow a carefully organized
procedure to incorporate fully dressed propagators and
vertices avoiding overcounting, and, for lack of off-mass-
shell pion wave functions, should employ different pion
distorted waves for the long- and short-range parts of the
photoproduction operator.

In Sec. V, we compare the local and nonlocal calcula-
tions for other nuclei: pion photoproduction on ' C and
' C and pion radiative capture on ' N and ' C. In ' C
there is very little difference between the local and nonlo-
cal results except in the resonance region (T = 140 MeV).
In this nucleus the reaction is dominated by the o'e term
which is affected by nonlocality at most through the addi-
tional complex phase; since there is practically no interfer-
ence with the pion pole or other terms, the influence on
the photopion cross section is small. The situation is dif-
ferent in such nuclei as ' N or ' C, where the leading con-
tribution is relatively suppressed. For these nuclei, an in-
teresting interference with the pion-pole term appears,
which leads to minima in their differential cross sections.
The nonlocality then plays an important role, both by
strongly affecting the pion-pole term and by changing the
phases of the o"e term (in the PS coupling) and of other
contributions which tend to fill in the minima. We com-
pare our results with available data. Details of our calcu-
lational procedures are relegated to Appendix B.

II. BLOMQVIST-LAGET OPERATOR AND THE DWIA
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FIG. 1. Lowest order Feynman diagrams for pion photopro-
duction on nucleons.

In our calculations of photopion reactions we make use
of the Blomqvist-Laget (BL) operator for the elementary
reaction N(y, m)N'. This operator is derived from the
lowest-order Feynman diagrams shown in Fig. 1; in addi-
tion to providing a physical picture of the process, the BL
operator is obtained directly in an arbitrary frame of refer-
ence. This latter feature makes this photoproduction
operator especially suitable for nuclear applications; an
operator obtained with the help of dispersion relations, for
example, still has to be transformed from the two-body
c.m. frame into the moving frame of the struck nucleon,
which is an ambiguous procedure and difficult in view of
the inevitable partial-wave decomposition.

Note that embedding the BL operator in a nuclear cal-
culation is also by no means a unique process: Some
three-dimensional reduction has to be performed since the
operator is meant to operate not only on the three-
momenta p of the final particles but on their zero com-
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M(8) ( —) y( ) (2.1)

becomes exact since the pion rescatterings are already in-
cluded to all orders in P' z'. The DWIA formula

Q.2)

ponents po as well. In other words, zero components of
particles must be given certain fixed values. We adopt
here the view that the relevant particles must be put on
their mass shells; e.g., in the pion-pole diagram of Fig. 1(c)
we set (q )o E»——. It may turn out that some other choice
is better than ours; in fact the optimum choice of po in a
three-dimensional reduction is a major theoretical prob-
lem. Short of a full solution of this problem, our prescrip-
tion has the advantage that the photoproduction operator
has exactly the same form for both plane- and distorted-
wave plons.

In general, an operator derived from the first-order
Feynman diagrams reflects the interaction Hamiltonian.
The Blomqvist-Laget operator, however, is an effective
scattering tt matrix. Indeed, it includes pion-nucleon
final-state interactions by means of the phenomenologicajL
6 term rather than through the pion-nucleon scattering
wave function and is directly fitted to (y, a) data. (Only
the 3,3 phase of the resonant multipoles is reproduced; the
other, small, phases are ignored. ) We wish to point out
that the photoproduction operator to be used in nuclear
applications should be the photopion interaction Hamil-
tonian rather than the scattering matrix t. Indeed, when
many-body effects are neglected, the distorted-wave Born
approximation formula

local contact term of Fig. 1(d) defies our physical intui-
tion] nor prefer it because it directly produces a vector
current, since the single-nucleon data are described equally
well by both couplings. Even though the PV coupling ap-
parently leads to a better description of the n photopro-
duction near threshold, " this "success" is somewhat
misleading: The low-energy m photoproduction proceeds
through "small" terms of the BL amplitude (the dominant
terms are proportional to the pion charge), and these terms
cannot be expected to be reliable. In fact, most of the
small multipoles are not reproduced well in either cou-
pling. %'e emphasize that the deficiency is only in the
small terms: these„- however, may become important when
the energy is increased to the resonance region. Until a
better photoproduction operator is avai1able, we regard the
difference between the PV and PS results an another re-
flection of the theoretical uncertainty.

III. MOMENTUM-SPACE OPERATORS
IN A COORDINATE-SPACE CALCULATION

A. Pion-pole term

Each of the diagrams of Fig. 1, except the contact term
of Fig. 1(d), contains a propagator with the denominator
1/(p —m ), where p and m are the four-momentum and
mass of the intermediate particle. Coordinate-space calcu-
lations, typically, replace these propagators by their
zero-momentum limits, which leads to local objects. Pos-
sible momentum terms in the numerator are, however,
transformed into appropriate derivatives. In order to re-
store the nonlocalities (to correct the treatment of the
denominators), we introduce the nonlocality "smearing"
operator

then double counts the pion interactions with the struck
nucleon (already contained in t r). This double counting,
however, is only a I/A effect, which explains the general
success of the BL operator in nuclear photopion reactions.
The above considerations suggest that the 5 term, which
turns the BI. operator into the t matrix, be dropped. The
single-nucleon pion photoproduction then must also be
calculated using the single-nucleon analog of formula
(2.1). On the other hand, one could argue for the presence
of an "elementary" b, with a fractional coefficient in the
operator alongside a purely rescattering 6 in the wave
function. Therefore, we perform all our calculations both
with and without the 5 term, overcounting and under-
counting this contribution. Except for neutral pion pho-
toproduction (not treated in this paper), the resulting error
margin proves to be always small. It is only when the 6
"happens" to fill in a minimum created by an interference
between other terms, which occurs for instance in ' C and
' N, that it plays any appreciable role. Note that we do
not argue against the physical effect of creation and prop-
agation of the isobar. This effect is fully contained in the
pion-nucleus scattering wave function P„'~'.

Another theoretical uncertainty results from the choice
of the PS or PV pion-nucleon coupling: From a practical
viewpoint one cannot reject the PV coupling simply be-
cause of its nonrenormalizability [or because the strictly

Q(x —x')=(x x'),
P —Pl

which is simply the Fourier transform of the propagator.
We are careful to always choose the photon vertex to be to
the right of the operator (3.1). The photon, being a plane
wave, can then be viewed as "shifted" to the other side of
the propagator, as illustrated in Fig. 2. The operator 0
then acts only on one function: a nucleon orbital for the
diagrams of Figs. 1(a), 1(b), and 1(e) or the pion wave
function for the diagram 1(c). Instead of just one value
x'=x of this function, an integration over all possible
values of x' appears, hence the name smearing. For the
pion-pole diagram of Fig. 1(c), for example, we readily ob-
tain

(c) (e)

CO

FIG. 2. Local equivalent picture of the nonlocal diagrams of
Fig. 1 in our formalism. The hatched lines correspond to
smeared functions.
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3+(~+J)
0' '(x, x')= 2—E~ k f i 2(2ir) (q —k) '—m

d3 fq(x —x ')

=Eq,k
(2 )' kE —kq

(3.2)

The on-shell pion energy E~ in front ensures that in the
go

"old" local limit Eq~ Eq, q k~ 0 the operator becomes$09

the delta function 5( x ' —x ).
Note that in using the free-space BL operator we have

relied implicitly on momentum conservation, or on
translational invariance, which is only an approximation
in finite nuclei. We feel, however, that it is reasonable to
assume local translational invariance since medium correc-
tions can be introduced as a next step. Note also that in
(3.2) we have canceled the masses of the intermediate and
outgoing pions: The pion produced in the diagram of Fig.
l(c) is still in the medium and its wave function will be
distorted on the way out; medium corrections to the mass
can be thought to be contained in the optical potential.
Hence, any medium modification of the pion mass m
should only change the energies Eq and Eq . This pro-

cedure is necessarily arbitrary; we find it more to our taste
than, say, attributing the free-pion mass to the produced
particle and the in-the-medium mass to the virutal pion.
In any case, medium effects are investigated here only for
order-of-magnitude estimates.

Our nonlocality algorithm consists in replacing the pion
distorted wave function P„(x) by the smeared wave [cf.
Fig. 2(c)]

g (x)= f d x'0' '(x, x')f„(x ') . (3.3)

The remaining parts of the diagram are unchanged com-
pared with the local limit and the earlier calculation is
modified in a minimal way. We now rewrite (3.2) and
(3.3) in the following form:

~ ~rq x

f (x)=E& f 3 g (q), (3.4)
q (2ir)'

E&/q —q k

where q and k are the unit vectors and P (q) is the pion
distorted wave in momentum space. Finally, we perform
a partial-wave decomposition with the result

1/2

P (x)=g 2

l, m

)
i gl (x)YI (x),

li L l
pI '(x) =(—)~ g (2L+ 1)[(21+ 1 )(2ll+ 1)]'

I)I.

l) L I

0 0 0 Yl*,-(—qo)IILI', (x)

(3.5)

(3.6)

where qo is the actual (asymptotic) momentum of the out-
going pion relative to which the original distorted wave

f~( x) is expanded, and the radial integral is

~II I (x ) =E„f, q dq Jl(lx)QL (3.7)

1 =4ir g QL (z) YL (q ) YL ( k )
z —q.k

and chose the photon to move along the z axis:

(3.g)

YLM(k) ~M, O

' 1/2
2L +1

4m
(3 9)

Note that the smeared pion wave f (x) is no longer
cylindrically symmetric with respect to qo. This symme-
try, however, is of no use in photopion reactions anyway
(by contrast with pion elastic'scattering) since the incident
particle, the photon, is different from the scattered one, so
that the summation over the pion magnetic quantum
number is performed explicitly even in the local limit.
The smeared partial waves (3.6) thus directly replace the
original partial waves f'I '(x) whenever the contribution of

ji and QL are, respectively, the spherical Bessel function
and the Legendre function of the second kind, and pi (q)
is the unsmeared partial wave in momentum space. We
have made use of the expansion

the pion-pole diagram is evaluated.
The main physical effect incorporated in the mathemat-

ical expression (3.6) is the mixing of partial pion waves re-
sulting from the fact that, in contrast with the local pic-
ture, the photon is actually absorbed "away" from the nu-
cleon. The new summation variable L is, in effect, the
angular-momentum transfer arising from this "lever-arm"
effect.

Evaluation of the momentum-space integral (3.7) re-
quires knowledge of the pion partial wave functions in
momentum space, which entails several difficulties. For
instance, the Coulomb tail is very difficult to treat (this
can be partially circumvented using the Vincent-Phatak
method' ) and, in general, the Fourier-Bessel transform is
not easy to perform numerically. Moreover, our previous
calculations ' made use of the Michigan State University
(MSU) optical potential' which contains the V'.p V term
and hence cannot be transformed into a bounded
momentum-space operator without an arbitrary cutoff.
At this stage, we felt it appropriate, both for computation-
al ease and also to explore the uncertainty in the pion dis-
torted waves, to construct separable-model pion-nucleus
wave functions that are phase equivalent to the original
optical functions and reproduce their behavior in the inner
region as well as possible (we refer to them below as
"mock" functions). The main difference between the
optical-potential and mock wave functions is that the
latter are generated from potentials with a higher degree
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of nonlocality and that their derivatives are smooth, unlike
those of the MSU wave functions. With these mock pion
waves, the requisite integral (3.7) can be calculated in a
rather straightforward way. The mock wave functions are
described and discussed in some detail in Appendix A;
some numerical aspects of the calculations are relegated to
Appendix B.

Let us note, that in the case of plane-wave pions the
smeared pion wave function is easily obtained from (3A)
as the product

Q„(p(x) =R„((x)F(~(x)
is replaced by a smeared wave function

d3p (P (x x—')
tt,(„(x)=f d'x'm~k J (2n )3

kE~ —p k

(3.12)

Xg„(q(x ')

gram. Again, the photon is shifted to the other vertex and
the nucleon orbital

/E /qo —cos8
(3.10)

( )=(2 )

where 8 is the angle between the photon and the outgoing
pion and

where

= 2 &lL((0
I l(V (&Rn, (1.(,(x»r, „,(x),

I)Jtt)L

(3.13)

is the original plane wave. The nonlocality of the pion-
pole term in this case reduced to an angle-dependent fac-
tor which tends to build up the forward angles, thereby
shifting the pion-pole peak in the differential cross sec-
tion, and to increase the pion-pole contribution in general.
For T~=50 MeV pions, E& /qo ——U '=l. 5, which leads

to a factor of 3 at 8=0' or a factor of 2 at 45' in the pho-
toproduction amplitude. For distorted-wave pions, the
nonlocality effect is more complicated, as will be seen
from the explicit calculations presented below. Most
cases, however, can be qualitatively understood in terms of
the simple factor of Eq. (3.10). The angle dependence of
this factor is another illustration of the additional
angular-momentum transfer L (lever-arm effect) discussed
above. At low energies, the sum (3.8) over L converges
quite rapidly, since then the inverse pion velocity
v '=E~/q is large and the Legendre functions QL quick-
ly decrease with growing I.. On the other hand, when q
becomes large (and such q's play an increasingly important
role at higher energies), the argument v ' becomes close
to unity and more values of L are required. The plane-
wave factor in (3.10) also becomes very large: at T =200
MeV, it is 11 at 8=0' and 2.8 at 8=45 . The effect is am-
plified when the pion mass is softened: For a very small
m, the pion becomes highly relativistic and the factor
(3.10) is always important. Already from these plane-
wave estimates we can see the importance of the nonlocali-
ty of the pion propagator.

B. Baryon diagrams

Smearing of the nucleon diagram of Fig. 1(a) is per-
formed in a way analogous to that of the pion-pole dia-

I

R„(1,(,(x}=i '
( —)' (2L+ 1)v'21+1

l L l(
(N)X () () (} I„(Li (x) (3.14)

and
' 1/2

I„(L,, (x)=m„(N) 2 J p dp j(,(px)

XQL, R„((p) .
P

' 1/2

R„i(p)= 2
JIpX R+IXX X (3.16)

is performed analytically.
In the local limit, the sum over the nucleon magnetic

quantum number p is performed analytically, making use
of the irreducible-tensor property (3.12}. With the intro-
duction of nonlocality, this transformation law is replaced
by a slightly more complicated rule (3.13},and some of the
angular momentum algebra has to be redone. We start
with the nuclear matrix element of some tensor operator t
[originating in the diagram of Fig. 1(a)], write it in the
second-quantized notation, and insert the smeared orbitals
(3.13) instead of their local counterparts (3.12),

(3.15)

The orbitals R„((x} are, as usual, harmonic-oscillator
eigenfunctions and the Fourier-Bessel transform for them

(IfMfl(' IJM &=g&JfMf lit~pl JM;&(a
aP

=g&~y~yl~wplZ~M(& g &tpL((+lip( p&R. i R (,(, (l~saPncralt Ilp pPpcrp&.
aP I( I L

"O' P P

(3.17)

We have followed the notation of Ref. 2 as closely as possible. The single-particle matrix element of t appearing last in
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the r.h.s of Eq. (3.17) has proper irreducible-tensor properties and is, in fact, identical to the one appearing in the local
limit (where, however, l'=1 and p'=)((, ). The smearing, therefore, does not depend on the explicit properties of t and
all the operators that originate in the nucleon diagram of Fig. 1(a) are smeared in the same way. Changing to the jj cou-
pling, we obtain after some algebra,

&JfMI I t(a) I
JtMt&= g &JtJ)MtM

I JfMf & Q &J)LM)OI JM&&Jfll'(D) IIJ(& (3.18)

where D stands for "direct" [referring to the direct diagram of Fig. 1(a) as opposed to the crossed diagram in Fig. 1(b)],
and

&Jf lit(D) IIJ &=&&Jfll[a'xap] 'IIJ & & ( )'—
aP El ~l

~ . , 1/2
ip sp jp j jp J) (2j p+1)(2Jp+1)(2j +1)(Zp+1)(2J, +1)

x &! sJ I It I lips pj p &
' .,
Jp p 2J+ 1

(3.19)

In the local limit (L~ O, R ~ R ) this reduces to the result of Ref. 2
' 1/2

2) 2ja+ 1

& JfMf I
t

I J(Mt & & J'JM~M
I JfMf & y ( ) Rg t Rgt)tp

x & Jfl I[a.'xap]'IIJ &&4smal lt'Il~pspi p& . (3.:3)

&Jf I I
t (c) I I J; &

= g & Jf I I
[a.' x a p]"

I I
J; & 2 ( —)

+"+'+' "+ 'R„,„,R„,t„
aP Eaja

T

~a Sa Ja Ja JP ~1
x & cPi~allt Ilipspj p& ' L l' J LJa a Ja

- i/2
(2l' +1)(2j +1)(2j~+1) (2J)+1)

2J+1

In a similar way, mutatis mutandi, the expression for the smeared crossed-nucleon diagram of Fig. 1(b) is obtained,

(3.21)

The b, diagram of Fig. 1(e), finally, is smeared exactly as
the direct-nucleon diagram; the only difference is that here
the denominator of the propagator is more complicated:

D =s —Mg =(p;+k) —Mg2 2 2

I
use of the expansion (3.8), we employ the ansatz

2
S —MN

~N =mN+m
mg —MN

(3.23)

=mN+2Ep k —2p(. k —(mt, —iI )
l

(3.22)

where the width I must carry some momentum depen-
dence, since for a free b, it is proportional to the cube of
the pion-nucleon c.m. momentum. In a medium, this cu-
bic dependence may be different. Unfortunately, not
much is known about the width of the in-the-medium 6 in
a model-independent way; it appears that it does not great-
ly differ from the free-space value. ' In our application,
foriunately, the precise form of the momentum depen-
dence of I is not important, since the imaginary part be-
comes "noticeable" only in the vicinity of the resonance
m~ itself where the width I has its on-sheH value I p. The
overall effect of the imaginary part is also quite small; it
would become appreciable only for unrealistically small
widths. In order not to generate higher powers of the
cosine in the denominator of (3.13) and thus again make

2 2 ~ 2m N
—m ~ —(g(m ~+2m~m N )

D=(i+if)2p;k Ep +
t 1+ig

A—p; k (3.24)

2m~I o

m g —MN~

and neglect I . [We would have used I =I o with almost
the same results. The approach (3.23) is physically more
attractive. ] This gives

2
2 s —MN~

D =s —m g+2lmgI p
mg —MN
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The b, -smeared nucleon orbital is then

1(„1~(x ) =(mN+~)k

TABLE I. Momentum transfers Q(MeV/c) in the reaction
' N(y, ~+)' C~, at different pion laboratory kinetic energies and
scattering angles.

where

d3+ ip (x —x')

(2~)' k(E, +~)—k p

(3.25)

T =20 MeV
T =50 MeV
T =120 MeV

0=20'

80
60
40

0=90

180
230
340

0= 180'

235
315
470

mN —mg —ig(m +2m mN)

1+ig
(3.26)

and the only change required in the formulae (3.13)—(3.15)
is the replacement of the argument of the Legendre func-
tloil QL'.

Ep +M
(3.27)

When the cross section is calculated and the sum over nu-
clear polarizations M;,M~ is performed, from (3.18) or
(3.19) we obtain

JJ,L,
' (2Jf +1)

J)M JL 2J+1

(3.28)

in place of

(2Jf + 1)

JM 2J+ 1
(3.29)

IV. RESULTS FOR THE REACTION ' N(y, m+)' Cg,

In this section we study in detail the effect of nonlocah-
ty in the reaction ' N(y, m.+)' Cs, at pion laboratory ki-
netic energies 20, 50, and 120 MeV. We have chosen this
nucleus to be our "laboratory case" because of its interest-
ing nuclear structure and the special opportunities it pro-
vides for high momentum-transfer reactions, such as
(y, ir). Photoproduction of positive pions proceeds here
purely through the nuclear M1 form factor which has
been studied' in the (e,e') scattering to the 2.313 MeV ex-
cited state of ' N (the isospin partner of the ' C ground
state). The P decay of ' C is anomalously slow owing to
the famous cancellation in the Gamow-Teller nuclear ma-
trix element, and the form factor behaves in an unusual
way': Instead of falling off with the momentum transfer
Q, as usual in light nuclei, it rises from an almost zero
value at Q=O to a maximum approximately where the
first minimum occurs in, say, ' C. The nucleus thus
prefers to absorb large momentum transfers. Low-energy

where Fq;„ is a kinematical factor, so that the new summa-
tion variable Ji now plays the role of the true nuclear
angular-momentum transfer while the old angular-
momentum transfer J can differ from it by I.. The sum
over I. (the additional angular-momentum transfer due to
nonlocality) is limited because of the rapid convergence of
the expansion (3.8) for heavy baryons (U '& 1); in prac-
tice, I. (2 is sufficient in most cases.

photoproduction of pions is usually dominated by the
Kroll-Ruderman operator 0'e which governs the P decay
as well; this contribution is now suppressed, though not
completely since the momentum transfer involved is rela-
tively large (see our Table I and Fig. 8 of Ref. 2). We ex-
pect that the other, usually small, terms of the BL opera-
tor will become important, and this is indeed the case as is
documented below.

In terms of the nuclear structure input, we have used, as
in Ref. 2, the MIT-NBS phenomenological wave func-
tions. ' At this stage we are not concerned' with their
unusual physical character since the T= 1 M 1 form factor
is here the only one contributing to the reaction and hence
the nuclear wave functions can be thought of only as a
coinpact way of parametrizing the experimental form fac-
tor. Nevertheless, in the future we intend to improve the
nuclear structure input, especially with regard to the
latest (e,e') measurements. In all our calculations we em-
ploy the MSU(79) optical potential' as it turns out to be
easier to mock with the separable model; only at T =20
MeV have we used the later potential MSU(80) which has
been fitted to both scattering and pionic-atom data.
Throughout our work we use the separable-model mock
pion wave functions fitted to the MSU wave functions, as
described in Appendix A. By comparing the nonlocal re-
sults with the local ones obtained with the same (mock)
pion wave functions, we are able to see the pure effect of
the nonlocality. For comparison, we also show the local
results for the optical-model wave functions. The differ-
ence between the two local results, which is always rather
small, illustrates the uncertainty due to the imprecisions in
the wave functions. We use the traditional pseudovector
(PV) pion-nucleon coupling, except where explicitly indi-
cated otherwise by the label PS.

In Fig. 3 we present the differential cross section calcu-
lated at T~=50 MeV with the full BL amplitude. The
nonlocal results are shown by the two solid curves labeled
PV and PS corresponding to the two pion-nucleon cou-
plings and by the dotted curve, which does not contain the
contribution of the 5 diagram. As discussed in Sec. II,
the band between these three curves reflects our theoretical
uncertainty. The dashed curve displays the local mock re-
sult while the dotted-dashed curve corresponds to the
optical-model (local, of course) calculation. The differ-
ence between these two curves is here larger than in most
other cases because of the unusual prominence that the
pion-pole term gains in ' N. Indeed, the pion-pole term
couples only to the derivative of the pion wave function
[due to the pion electromagnetic vertex e(q+q')], and, as
we discuss in Appendix A, the derivatives in the
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0
IQ TABLE II. Parameters (in deg) of the phase rotation

P=a+b cos8 of the contributions of the smeared diagrams of
Fig. 1 relative to their local counterparts.

T =20 MeV
Diagram a b

T =50 MeV
a b

T =120 MeV
a b

I0 2
2

10

5
3

40

5
2

30
3

30

2
l0 P=a+b cos8,

which can be understood simply as the phase

(4.2)

30 90
Lab angle ( deg )

~20

FIG. 6. Same as Fig. 3 but at T„=20 MeV. The solid curve
labeled 0.25 corresponds to the full result with m* =0.25m,
while the solid C%' curve is obtained in the local limit using only
Coulomb pion waves, compared to which the plane-wave results
are 20% higher.

ponents hidden in the pion wave function. (To a smaller
degree, this effect is also observed in ' C.) Characteristi-
cally, at higher energy when the form factor peaks at a
smaller angle, the second maximum is less pronounced (cf.
Fig. 4 at T =50 MeV and Fig. 5 at T~=20 MeV). At
even higher energy, T =120 MeV, the second maximum
degenerates into a wide plateau. To further explore the
pion nonlocality, we soften the in-the-medium pion mass
m', as explained in Sec. II. The solid curves labeled 1.0,
0.75, 0.50, and 0.25 in Fig. 5 are calculated with m* taken
as a corresponding fraction of the free mass m~. Natural-
ly, the nonlocality effect is considerably enhanced when
the pion is softened (and vice versa, when m ~ exceeds m~,
the local limit is approached). It is the already small mass
m that makes the pion nonlocality so important. The
full cross section (cf. Fig. 6) turns out to be rather stable
under this change: it is affected appreciably only when
m* &0.50m~.

The contributions of the baryonic diagrams of Figs.
1(a), 1(b), and 1(d) are studied at T =50 MeV back in Fig.
4. Their overall strength is almost unaffected by smear-
ing. The nonlocality, however, changes the complex
phases of the diagrams. The relative phase P between the
nonlocal and local contribution of, say, the N diagram
[Fig. 1(a)] is obtained by comparing the interference of
this diagram (nonlocal and local) with some other "refer-
ence" diagram, e.g., the contact or pion-pole diagram, tak-
en the same (local) in both cases. Only cosines of the an-
gles are obtained in this way; the determination of the an-
gle P thus requires a careful comparison of the results ob-
tained with different reference diagrams. The complex
phase P by which the smeared diagram is rotated relative
to its local counterpart turns out to be roughly a linear
function of the cosine of the scattering angle 8,

) 0
JD

PS

P.
I0

50 90 )20
Lab angle (deg)

FIG. 7. Same as Fig. 3 but at T =120 MeV.

picked up when the intermediate baryon is allowed to pro-
pagate over the distance r (Th. e initial momentum of the
struck nucleon is approximately averaged out. ) The coef-
ficient b in (4.2) thus corresponds to the product Qr where
Q is some average momentum transfer. A better descrip-
tion would be obtained if Q were made angle dependent,
Q =k +qo —2qok cos8.

In Table II we present the values of a and b for the
direct-nucleon and 5 diagrams at several energies. Vfe
found that the linear description (4.2) fits the 5 diagram
worse than the nucleon diagram and it completely breaks
down at the higher energy T„=120 MeV, where the phase
starts oscillating with cos8. This fact is easy to under-
stand recalling that the 6 denominator provides an addi-
tional complex phase which becomes more influential
when the energy increases. It is interesting that the coeffi-
cient b, which reflects the propagation of the intermediate
particle, is almost independent of energy. This was to be
expected since the average momentum transfer increases
with energy very slowly. The smaller b for the b, diagram
indicates a smaller propagation distance. The same phase
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TABLE III. Total cross sections (pb) corresponding to full nonlocal and local-mock calculations and to separate nonlocal diagrams
of Fig. 1.

Reaction

12C(y, ~-)"N„
12C(~ + )12B

' N(y, m.+)' C,

"N(m+, y) "Og,
13C(~+ ~)13N

13C(~ + )13B

T. (MeV)

43
43

140
20
50

120
50
50
43
42

All, local

6.2
4.7
1.3
0.24
0.75
0.29

20
24
15
7.3

All, nonlocal

6.0
49
1.3
0.56
0.86
0.76

17
22
15
6.3

Con.

7.2
6.3
1.5
0.67
1.3
0.56

21
25
14
6.3

1.6
1.8
0.84
0.22
0.84
0.92

16
20

1.4
3.9

0.12
0.11
0.12
0.01
0.06
0.06
1.2
1.4
0.54
0.23

N'

0.05
0.08
0.10
0.004
0.02
0.03
0.91
0.94
0.22
0.32

0.09
0.07
0.17
0.004
0.02
0.07
2.9
3.0
0.50
0.72

rotation can also be calculated for the pion-pole diagram
(see Table II) for which it is very large, indicating a longer
propagation range, which makes the choice of the angle
branch of the cosines quite difficult. For this reason there
is no m. entry at T = 120 MeV in Table II. Note that here
the nonlocality strongly affects not only the phase but also
the magnitude of the pion-pole contribution (see Fig. 4).
The crossed-nucleon diagram [Fig. 1(b)] is affected in a
way very similar to the direct diagram. The overall con-
tribution of the baryonic diagrams in ' N is quite small,

both relative to the o'e term and to the pion-pole term,
which is not always the case elsewhere. Our discussion of
their nonlocalities, however, remains true in the other nu-
clei as well. In Fig. 7 we present the results at T =120
MeV. The nonlocality effect here is very large and, again,
it is due mostly to the nonlocality of the pion-pole dia-
gram. These high-energy results, however, are less reliable
owing to the deficiency of the small terms of the BL
operator (see Sec. II) and since the pion-nucleus wave
functions are here less trustworthy (Appendix A).

the role of producing the Kroll-Ruderman operator and
being the largest single contribution, is assumed by one of
the nucleon diagrams, N or N' for the m. + or ~ pho-
toproduction, respectively.

Table III also reflects some interesting features of the
structure of the nuclei investigated. The nucleus ' C is
"tight, " having closed shells of both protons and neutrons
(there is an appreciable configuration mixing, of course),
and the M1 transition to the 15.11 MeV 1+ excited state
(isospin partner of the ground states of ' B and ' N)
proceeds most efficiently through the Gamow-Teller spin
and isospin flip operator without any orbital exciations.
The contact term is fully dominant here and the other dia-
grams, which are associated with more complicated opera-
tors, are quite small. At the higher energy, T =140
MeV, these momentum-dependent contributions grow
considerably in importance. (As it can also be seen from
the reaction on ' N, these terms, especially the 6, tend to
grow with energy, while the contact contribution decreases
following the form factor. ) By contrast, the nuclei ' C

V. RESULTS FOR THE NUCLEI "C "C AND "N
AND CONCLUSIONS IQ

I

In this section we present our results for several other
nuclei. We use the same nuclear-structure information as
in Refs. 2 and 4 and employ the MSU(79) optical poten-
tial' to obtain the reference pion wave functions. The PV
pion-nucleon coupling is used except where explicitly indi-
cated otherwise. For general orientation, in Table III we
summarize the total cross sections for all the reactions
both for the full calculations, nonlocal and local mock,
and for each separate (nonlocal) diagram. As the inspec-
tion of the table shows, the contact diagram CO, which
generates only the o'e operator and accounts for most of
its strength, always yields the largest contribution. The
next largest is the pion-pole diagram m, especially in the
nonlocal case shown in the table. The baryonic diagrams
N, N', and 6 are much smaller and only influence the de-
tails of the differential cross section. It is interesting that
the two largest diagrams, CO and m., always interfere des-
tructively, so that the sum cross section is smaller than
that of the contact diagram alone. We note that for the
PS coupling the all-important role of the contact diagram,

—l

IQ

—2
IQ

3Q 9Q IZQ

Lab ang le ( deg )

FIG. 8. Same as Fig. 3 but for the reaction ' C(y, m )' Ng, at
T„=43MeV.
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FIG. 9. Same as Fig. 3 but for the reaction ' C(y, m+)' Bg s at

T =43 MeV. The data are from Ref. 18.

Lab angle ( deg )

FIG. 10. Same as Fig. 9 but at T„=140 MeV.

and ' N are "loose," having a valence neutron (or a hole)
which allows them to respond to various spin and orbital
angular momentum operators associated with the small di-
agrams of Figs. 1(a)—1(d). Indeed, these contributions are
an order of magnitude larger than in ' C. The contact-
diagram cross section is also increased, reflecting the al-
lowed Gamow-Teller transition between mirror nuclei rel-
ative to a particle-hole excitation, but the increase is not as
dramatic as for the other diagrams and the Kroll-
Ruderman term here appears as relatively "suppressed. "
It is telling that photoproduction of negative pions on ' C
is quite similar to that on ' C since it takes place only on
protons whose configurations are the same in both cases.

The differential cross sections are presented in Figs.
8—1S. As before, the nonlocal results are shown by the
two solid curves labeled PV and PS and by the dotted
curve which we calculate omitting the 6 diagram. As dis-
cussed above, the band between these three curves reflects
the theoretical uncertainty (our "best bet" is the dotted
curve). For comparison, the local results are also shown
by the dashed curve (mock pion wave functions) and
dotted-dashed curve (the reference optical-model func-
tions).

Figures 8 and 9 display the results for the reactions
' C(y, n. )' Ns, and ' C(y, m.+)' Bz, at T =43 MeV.
The Kroll-Ruderrnan term is here dominant (see Table III)
so that the nonlocality cannot have any appreciable effect
in either coupling. Indeed, all the calculated curves are
close to one another. In the resonance region (Fig. 10},
however, the back angles are affected quite strongly, since
the cr e term has already died off with the form factor;
the effect is due almost entirely to the pion nonlocality.
The (y, m+ } results are in a reasonable agreement with the
43 MeV data' although the shape of the differential cross
section is not reproduced too well and the theory seems to
be too high at forward angles.

The other nuclei are more interesting. In Figs. 11 and
12 we deal with the reaction of the radiative capture
(n.+,y) to the ground state on the nuclei ' N and ' C. The
Kroll-Ruderman term is here suppressed and it interferes
with the pion-pole term producing a minimum in the dif-
ferential cross section around 90'. The nonlocality turns
this minimum into a shoulder with a marked difference
between the two pion-nucleon couplings. The omission of
the b, diagram, following our arguments in Sec. II, re-
stores the minimum and shifts it somewhat to forward an-
gles. (In a local counterpart of the dotted curves the
minimum is more pronounced. )

Finally, in Figs. 13 and 14 we show the differential

IO
I

IO

b

IO 30 90 I 20
Lab angle ( deg )

FIG. 11. Same as Fig. 3 but for the reaction ' N(m+, y)' Og,
at T =50MeV.
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FIG. 12. Same as Fig. 3 but for the reaction ' C(~+, y)' Ng,
at T =50 MeV.

Lab angle (deg )

FICx. 14. Same as Fig. 3 but for the reaction ' C(y, n+) Bg,
at T =43 MeV. The data are from Ref. 5.

cross sections for the reactions ' C(y, m )' Ns, and
' C(y, m

+
)
' Bs, . It is in these reactions that the largest

discrepancies with experiment were discovered. Here, all
the usually-small diagrams m., N, N', and 6 produce com-
parable and relatively large contributions (see Table III
and Fig. 15), so that the nonlocality is both large and diffi-
cult to delineate. The calculated results, both local and
nonlocal, are well above the data. In this case, however,
the nuclear structure input (Cohen-Kurath wave func-
tions' have been used) is clearly inadequate since the cal-
culated electron-scattering form factors are considerably
higher than the experimental ones. ' Unfortunately, a
simple adjustment of the wave functions, the way it has

been done for '"N, cannot be performed here since the
T= 1 information required in the photopion reactions is
not measured directly; even more so, an overall rescaling
of the Cohen-Kurath form factors to the electron scatter-
ing data proves to be not sufficient to bridge the order of
magnitude gap between the photoproduction theory and
experiment. Thus a thorough nuclear-structure calcula-
tion is needed to explain the drastic suppression of the
form factors. It has been suggested that this effect arises
from core polarization. ' Others claim that it is due to
pion condensation. Their results, however, are not in the
form that can be directly used in our calculations.

To summarize, we have made our best effort to faithful-

I
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FIG. 13. Same as Fig. 3 but for the reaction ' C(y, ~ )' N~,
at T =42 MeV. The data point is from Ref. 5.

Lab angle (deg)
FICx. 15. Same as Fig. 3 but for the reaction ' C(y, m+)' Bg,

at T =43 MeV.
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ly implement the one-body operator approach (OBOA) to
nuclear photopion reactions using the best available
nuclear-structure and pion-nucleus information. With the
introduction of nonlocalities there are no significant calcu-
lational approximations left and the remaining (and aris-
ing) disagreements with data must be attributed to inade-
quate ingredients or to many-body operators. More work
needs to be done providing a better BL-type photoproduc-
tion operator, better pion-nucleus wave functions, prefer-
ably obtained in a momentum-space calculation, better
nuclear-structure information, especially for the reactions
on ' C, and, finally, introducing the Pauli blocking in a
proper way. ' Once the remaining discrepancies are
resolved in the "simple cases," such as ' C(y, m+)' Bs, ,
photopion calculations may become reliable enough to
provide a complementary source of information both on
pion-nucleus interactions and on nuclear T= 1 form fac-
tors. With such new, hopefully forthcoming, calculations
and high-precision measurements the subject is out of its
infancy.
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APPENDIX A:
PION-NUCLEUS MOCK WAVE FUNCTIONS

To make the Fourier-Bessel transform (3.16) possible,
we replace the previously used ' MSU optical-potential
wave functions by model pion-nucleus functions which
can be transformed and which mock the behavior of the
original functions in the inner region. For computational
ease we have chosen the model as a rank-one separable po-
tential in each partial wave,

=2 - qadi(qr)g(q)~q
Jl(qo")++(qo) y

q —qo —ie

(A5)

We have chosen the form factors g(q) to be linear com-
binations of two Yamaguchi or Gaussian terms,

g(q) =g 1(q)+yg2(q)

with a complex y and

g;(q) =q '/(q'+P, ') '

(A6)

(A7)

l —aq2
g;(q) =q 'e (A8)

The Yamaguchi form (A7) was used in the calculations;
the Gaussian form leads to similar results.

The coefficient F(qo) and the overall normalization are
obtained by matching the function (A5) and its derivative
to the reference function at some matching distance R tak-
en as 6 fm for p shell nuclei. Our mock functions are thus
automatically phase shift equivalent to the original wave
functions and there is no need to calculate the strength pa-
rameter A, . The remaining parameters of the form factors
p;, l;, and y are adjusted so as to reproduce the reference
wave functions in the internal region as well as possible.
The Coulomb interaction is taken into account implicitly,
since we fit to a Coulomb-containing function. In fact,
since we match at a distance which is too large to be
probed in photopion reactions, our procedure is an
equivalent of the Vincent-Phatak method' for treating the
Coulomb tail in momentum-space calculations.

The fit is rather good as can be seen from Figs. 16 and
17 which show the s-wave mock wave functions for the re-
action ' N(y, n+)' Cs, at T~=50 and 120 MeV. It is
only slightly worse for higher partial waves. Note that we
fit only the wave functions themselves so that the deriva-
tives are reproduced with somewhat less precision. In ad-

U(p,p') =g(p) g(p')
&P

(A 1)

with a complex (energy-dependent) strength A, . As is well
known, the scattering amplitude is then

1f= —r„(qo qo)= —g(qo), g ~ g(qo»
1 A+A qo

where
O

2 " g (q)q dq
—qp —lb

(A3)

and the outgoing scattering wave function in momentum
space is

S(q —q ) 2 t& (q qo)
+—

2
qo ~ q —qo—

2.0 4.0
Distance (fm)

6.0

5(q —qo) g(q)+F(qo)
qo q —qo —1 E'

(A4)

Performing the transform to coordinate space we obtain

FIG. 16. The pion wave function for the reaction
' N(y, m+)' C~, at T =50 MeV. The solid curves are obtained
using the MSU(79) optical potential (Ref. 9), and the dashed
curves are the mock pion waves (see Appendix A).
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For a local absorptive potential V= U —i8' 8') 0, the ra-
dial divergence of the current is negative,

(A12)

Z. O 4.0

which is no longer true if the interaction is nonlocal.
Plots of the divergence for the optical pion-nucleus wave
functions clearly display "creation regions" inside the nu-
cleus, i.e., regions where D )0. For the mock wave func-
tions these regions are more pronounced. Of course, such
regions appear for nonlocal potentials only inside the nu-
clei, reflecting the redistribution of flux. On the nuclear
surface the divergence D is always negative, as appropriate
for net physical absorption.

Distonce ( &m j

FIG. 17. Same as for Fig. 16, but at T =120 MeV.

dition, the derivatives of the MSU optical functions con-
tain discontinuities which are due to the unbounded term
7 pV' in the optical potential. These kinks are more pro-
nounced in the p and d partial waves and at higher ener-
gies. The mock wave functions smooth these discontinui-
ties and, thus, are more physical in this respect.

The main difference between the mock and reference
wave functions is that the former contain a higher degree
of nonlocality. We recall here the Percy effect: for a
real attractive interaction a nonlocal equivalent of a local
wave function tends to be suppressed in the interior region
reflecting the flux going to the other channels implicitly
present in the nonlocal case; for a repulsive interaction the
converse is true. This tendency becomes quite pronounced
in the resonance region where the strong absorption simu-
lates repulsion. In fact, to overcome this effect at
T~ = 120 MeV, our mock function developed an additional
node very close to the origin (Fig. 17).

We wish to point out that the suppression is not very
strong even in the resonance region (approximately a fac-
tor of v2 in the amplitude) so that the familiar motto
"pions do not penetrate into nuclei" is termed too strong-
ly. In fact, the "true" pion wave function is, most prob-
ably, even less suppressed since the optical potential un-
derestimates the nonlocality. The photopion reactions
probe the pion wave function inside the nucleus and thus
much more reliable wave functions are needed for the
(y, m) calculations in the resonance region.

Finally, we note that even the optical-potential wave
functions are nonlocal to some extent because of the pres-
ence of the derivative-dependent interaction. This can be
explicitly seen by considering the radial current

j~(r)=(rp)*B,(rp) . (A9)

Writing

APPENDIX 8: NUMERICAL PROCEDURES

g (x)=f~ (x)+g (x) (Bl)

and smear it explicitly by the formula (3.10); the remain-
ing distorted part g (x) contains only a limited number of
partial waves, which truncates the angular-momentum
summations.

Finally, the Legendre functions QL(z), which are needed
for both real and complex arguments, can be easily calcu-
lated from their hypergeometric series when the argument
is not too close to unity. In the difficult case z=l, we
first calculate the ratio

QL (z)
RL(z) =

Qr. + i(z)

using the upward recurrence relation

Rr (z)= 1.+1
z(2L + 1) LRr i(z)—

(82)

(83)

We discuss here the numerical evaluation of the in-
tegrals IrLr (r) given by (3.7) and (3.15). In the pion-pole

case (3.7) the integral presents a twofold difficulty: the
pole singularity of the scattering wave function (A4) and
rapid oscillations of the Bessel function ji(pr), especially
at large r. To avoid the pole, we make use of the analyti-
city of the form factors and calculate the integral along a
complex path around the singularity at q =qo. In the case
of the Yamaguchi form factors (A7) the path is subse-
quently deflected into the upper complex half plane, after
having replaced the ji by Im(br+) which turns the oscilla-
tions into damped exponentials. ' For the baryon case
(3.15), there is no pole and the function R falls off quite
rapidly, so that the integral is easily calculated along the
real axis. Because of the oscillations of the ji, we use the
trapezoidal rule which works here much better than the
Gauss rule, especially at high /. We thank Dr. H.
Amakawa for his advice on this subject.

In calculating the integral (3.7), we separate out the
plane-wave part of the pion wave function,

we obtain

(A10)

(A11)

Then, we iterate down the Legendre functions themselves
starting from Qr +i ——1 and QL, ——Rr. ,

ZL+1 L, +1
Qr. , (z) = zQL(z) —— QL+, (z),

L, I.
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which is a stable procedure. Once L =0 is reached, the se-
quence is renormalized referring to

Qo ———,
' 1n[(z+ 1)/(z —1)] .

It turns out that iterating up the ratios RL is a much more

stable procedure than iterating up the functions QL .
Indeed, for L &8 it can be used up to z=1.5, at which
point the hypergeometric series already converges suffi-
ciently quickly.
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