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Ground-state properties in a model quantum field theory are calculated by stochastic evaluation
of a path integral representation of the many-body propagator. The model consists of nonrelativis-
tic nucleons coupled to vector and scalar mesons in one spatial dimension. Binding energies and
density distributions are calculated for bound states of up to twenty nucleons. The binding energy
as a function of density, the nucleon-nucleon correlation function, and the meson-meson correlation
function are evaluated in nuclear matter. Exact ground-state solutions to the full field theory are
shown to differ relatively little from those of the potential theory corresponding to the static limit.
The exact solutions differ substantially from those of the mean-field (Hartree) approximation, but
are quite similar to those obtained in the Hartree-Fock approximation.

NUCLEAR STRUCTURE Meson-nucleon field theory. Monte Carlo solution.
Nuclear matter.

I. INTRODUCTION

A fundamental problem in contemporary nuclear phys-
ics is understanding the role of non-nucleon degrees of
freedom. The traditional approach to nuclear many-body
theory, which has been highly successful, assumes that the
physics of the underlying non-nucleon degrees of freedom
can be adequately subsumed into a static nucleon-nucleon
potential which is then constrained to reproduce two-body
observables. In the absence of a tractable theory for the
non-nucleon degrees of freedom and definitive experimen-
tal constraints, we have at present little understanding of
the accuracy of the static-potential approximation or of
how the structure of nucleons and their interactions are
modified in finite nuclei.

From a theoretical perspective, it is therefore desirable
to study a schematic model that includes non-nucleon de-
grees of freedom and which can be solved exactly. By
eliminating uncontrolled approximations to the many-
body problem, one can focus directly on the observable
differences between the solution to the full theory and the
solution to a corresponding static-potential theory in
which potentials are defined from exact solution of the
two-body problem. At the simplest level, non-nucleon de-
grees of freedoin can be introduced in terms of a field
theory in which nucleons interact through their couplings
to meson fields; we address such a model field theory in

this work. Moreover, studying models containing nu-
cleons and mesons is worthwhile in its own right, as a step
toward understanding pion degrees of freedom in nuclear
systems. Ultimately, we may be forced to explore the role
of quark and gluon degrees of freedom, and, to this extent,
the present model should be viewed as a stepping stone to-
wards this goal.

We have two objectives in this work. One is to study a
specific model and thereby assess the role of meson
dynainics and the accuracy of the static-potential approxi-
mation. A second, broader motivation is to develop an
approach for studying non-nucleon degrees of freedom
which can ultimately be applied to more realistic prob-
lems.

The model studied here is constrained by the require-
ments that it produce nuclear saturation, resulting in nu-
clei with recognizable liquid-drop behavior, and that it be
exactly solvable, thereby avoiding obfuscation from un-
controlled many-body approximations. The first require-
ment is met by a field theory of the form utilized exten-
sively by Walecka and co-workers' containing scalar
mesons, which produce the overall binding, and vector
mesons, which introduce repulsion at short range. Al-
though, in principle, Monte Carlo techniques can be used
to solve such a field theory in any number of spatial di-
mensions, formidable practical problems associated with
fermions arise in more than one dimension, as discussed in
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Sec. II. Hence, in the present work we have restricted our
attention to a one-dimensional model. For simplicity,
rather than necessity, we have also chosen to define the
model with nonrelativistic nucleons.

The present model and the Monte Carlo techniques uti-
lized to solve it are subject to significant limitations.
Many-body problems in one dimension differ essentially
from those in higher dimension, and appropriate care is
required in drawing conclusions. The nonrelavistic model
precludes an investigation of the effects of the Dirac sea
of antinucleons ("baryon vacuum fluctuations") and the
importance of relativistic kinematics. The latter is known
to play a significant role in the saturation of three-
dimensional nuclear systems, as discussed in Ref. 1. We
have also omitted internal symmetries and form factors.

The use of Monte Carlo techniques imposes additional
limitations. The methods used in this work are restricted
to the calculation of ground-state expectation values. Our
solutions are exact in the sense that any desired precision
can be achieved by increasing the sample size X. In prac-
tice, the N '~ dependence of our statistical errors renders
it impractical to compare observables in the full theory
and the static-potential theory at a precision substantially
higher than one percent. Furthermore, we are currently
unable to use the Monte Carlo method to solve the field
theory exactly for the scattering of two nucleons. Hence,
we cannot test the conventional methodology in which one
constrains a phenomenological static potential to repro-
duce two-body observ ables.

Having admitted the limitations of the present model,
we should also emphasize that many of them can be over-
come. The nonrelativistic approximation is inessential,
and a relativistic field theory can be treated straightfor-
wardly in one dimension. For the nucleus "He, the present
model is amenable to solution in three spatial dimensions,
and the prospects for other systems in higher dimensions
will be discussed in subsequent sections. Extensions to
simple potential models with quarks, instead of nucleons
and mesons, is also possible using, for example, the con-
fining model of Lenz, Moniz, and Yazaki.

The remainder of this paper is organized as follows. In
Sec. II, we describe the stochastic method used to evaluate
the path integral for the many-body evolution operator.
This method is used for the solutions of both the field
theory and the many-nucleon problem with static interac-
tions. The model field theory is described in detail in Sec.
III. Numerical results are presented and discussed in Sec.
IV, and the salient conclusions are contained in the final
section. The main text is intended to be self-contained
and accessible to a physicist unfamiliar with Monte Carlo
methods. Technical details concerning the Monte Carlo
calculations are presented in the appendices.

II. METHOD

In this section, we briefly review the method used for
finding the exact energy and other ground-state observ-
ables of a quantum Hamiltonian system. The basic idea is
to evaluate stochastically the imaginary-time Feynman
path integral for the many-body evolution operator and
hence refine a trial wave function toward the exact wave

2

+ v(q)
2M

(2.1b)

and seek to determine the energy and other properties of
the ground state 0'o of H with energy Eo. For concrete-
ness, one may imagine a single particle moving in one di-
mension, although the method generalizes simply to many
coordinates.

The exact ground state can be obtained by applying the
imaginary-time evolution operator to a trial state @(q).
The latter is often chosen to have a simple form readily
computed analytically. Thus, we define

4(t)=exp f Ez(t')dt' e (2.2)

where Ez(t') is an as yet undetermined, c-number func-
tion. Note that as long as (Vo~ N)&0, %(t) will ap-
proach the (unnormalized) exact ground state 40 as t be-
comes large.

To compute the exact ground state energy Eo, we con-
sider the quantity

( )
(@~H JV(t)) (2.3a)(e

~

~(t))
dqH&q+qt

f dq N(q)%(q, t)
(2.3b)

Clearly, E(0) is the variational energy associated with @,
E(t~ao)=Eo, and E(t) is independent of the function
EN(t'). Note that we have used the Hermiticity of H in
(2.3b) to express the energy in terms of HN(q), which is
presumably a simple function. We now follow Ref. 7 and
introduce ' importance sampling" by defining

G (q, t) =N(q)%'(q, t),
so that (2.3b) becomes

f dq e(q)G(q, t)
E(t)= f dq G(q, t)

(2.4)

That is, the exact energy E(t) is the average of the "local
energy"

HC(q) 1 1 B 4(q)
N(q) 2M @(q) gq2

(2.5)

over the distribution G(q, t).
Our evaluation of E(t) is by a Monte Carlo method.

Suppose that there exists an ensemble of N "configura-
tions" [qi, . . . , q&) distributed according to G(q, t). (We
assume here that N, %0, and, hence, 6 are positive for all
q; however, see below. ) In this case, an estimate of E(t) is
given by

N
E(t)=—g e(q;) .

i=i
(2.6)

function. A more detailed exposition, together with sim-
ple examples, can be found in Refs. 3—6.

We consider a system with momentum p and conjugate
coordinate q whose Hamiltonian is of the form

(2.1a)
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Clearly E(t) becomes defined more precisely as N in-
creases. Furthermore, if @(q) is in fact the exact solution
%o, then e(q)=ED, independent of q, and E(t) =ED with
zero variance.

It now remains to specify the algorithm to generate the
ensemble of configurations. At t=O,

G(q, t)=
~
@(q)

~

8 6(q, t)
2M ()q2

[D (q)G (q, t)]
8

[e(—q) EN—(t)]G(q, t) .

aG 1

at
= E~(r) @—(q)If G(q, t)

@(q)
(2.7a)

(2.7b)

so that convenient methods (such as that of Metropolis
et al. } can be used to generate the initial ensemble, typi-
cally having X= several hundred members. To evolve the
ensemble in time, note that since

B%'/Bt =(E~—H)%,

6 satisfies the evolution equation

Equation (2.7b) can be interpreted as a diffusion equation
for G, with a drift function

D(q) = l I 84(q)
(2.8)M@q Bq

Note that the kinetic energy diffuses 6, D tends to keep 6
confined to regions where 4 is large, and the source
"creates" 6 where e(q) is smallest. The evolution of 6
over a short time from r to t+ht can be represented
through order ht by the integral kernel

6(q, t+b, t)= f dq'K(q, q', b, t)6(q', t),

K(q, q', ht)=expI —[e(q) —E~(t)]Et jexp ' (M/2~&t)
—q —q' —D (q')4t]2

2b r/M

(2.9a)

(2.9b)

The algorithm for evolving the ensemble should now be
evident. A configuration at time t at the point q' gen-
erates a contribution to G(q, t+b, t) equal to K(q, q', b, t).
This is realized by placing in the new ensemble a configu-
ration q distributed as

expI —[q q' D(q)ht) M— /2—b t I

and then weighting this configuration by

exp I [e(q) Ez(t)]b, t—I . —
The weighting is effected in practice by replicating or de-
leting the configuration with probabilities given by this
latter function. Thus, N fluctuates from time step to time
step but can be held roughly constant .by continuous ad-
justment of EN. Indeed, to keep f dq G(q, t) (and hence
N) constant, EN(t) should be equal to E(t), so that Ez
furnishes a second estimate of E(t},quite independent of
that given by (2.6).

In summary, our method is as follows. The system is
described by an ensemble of configurations, initially distri-
buted in q according to the trial function

~
@(q)

~

. The
overall efficiency of the method is closely related to the
accuracy of this trial function. To evolve the ensemble in
time, each member is moved in q with a shifted Cxaussian
probability function [the second factor in Eq. (2.9b)] and
then deleted or replicated according to the first factor in
Eq. (2.9b). The quantity E&(t), which is adjusted after
each time step to keep the number of configurations in the
ensemble roughly constant, provides an estimate of the en-
ergy, as does the average e(q) over the ensemble at any
time [Eq. (2.6)]. Furthermore, once the total evolution
time is sufficiently large, continued evolution generates in-
dependent populations of q distributed according to the
exact ground-state wave function, which allows the statis-

I

ties to be improved to any required accuracy.
Note that since the ensemble moves through configura-

tion space at a rate determined by b t, which must be suf-
ficiently small so that Eq. (2.9) is accurate, the estimators
of the energy will not be independent for successive time
steps. Therefore, in forming averages and computing
variances of the estimators, care must be taken to collect
values only at intervals of r sufficiently large that the
values are uncorrelated. Such intervals are conveniently
determined by examining the autocorrelation functions of
these estimators (see Appendix A).

The evaluation of ground-state expectation values of
operators other than the Hamiltonian is complicated be-
cause our algorithm readily provides an ensemble
representing 6 =@4, rather than one describing
However, following Ref. 5, if the trial function @ closely
approximates 4, then through first order in their differ-
ence the expectation value of an Herrnitian operator A can
be written as

{4/ 0) {4[~) {N/@)
In this case, the second term, which involves the trial
function only, is easily evaluated by averaging
A@(q)/N(q} over an ensemble distributed according to

, while the first term can be found by averaging
A@(q)/&b(q) over an ensemble distributed according to
6(q, t)

Importance sampling through use of a trial function has
been applied successfully to a variety of physical systems,
including liquid helium, molecules, ' the electron gas, "
liquid and solid hydrogen, ' and nuclei. ' Thereas the
implementation of the algorithm for many-boson systems
is straightforward, fermion systems pose special problems,
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as discussed in detail in Refs. 3—5, 7, and I1. The re-
quirement of antisymmetry means that 4 must have nodal
surfaces in configuration space. A knowledge of these
surfaces is essential in a Monte Carlo method, since the
wave function can then be clearly divided into positive
and negative regions and each treated separately. In one
spatial diinension, antisymmetry alone is sufficient to
specify the nodal surface locations, so that simply choos-
ing an antisymmetric @ is sufficient. (Note that D(q) be-
comes infinite at a node in @(q) [Eq. (2.8)], as configura-
tions are "repelled" from the nodes. ) However, for sys-
tems in two or three spatial dimensions, antisymmetry
alone is not sufficient to specify the locations of the nodal
surfaces; they are determined instead by the dynamics.
Several suggestions for dealing with these problems have
been put forth. The reader is referred to Refs. 11 and 13
for a detailed discussion.

0i' =ro=p=a. (3.2)

(3.3)

B . B
&P +iPa M —gvP—Vo+gvPaV+g. qBt Bx

(3.4a)

where o.; are the standard Pauli matrices. The corre-
sponding Dirac spinors also have only two components
and so may be interpreted as spinless (i.e., only one
positive-energy free-particle solution for a given momen-
tum).

The Hamiltonian density A can be constructed in the
canonical fashion. The Euler-Lagrange equations for the
Lagrangian (3.1) consist of three equations of motion:

III. THE MODEL

B' B'
, V+m'q =g.4'W'

Bt Bx
(3.4b)

Here

+-,','V„V g.q~, WV" +g—.A~ (3.1)

Ep„=Bp V —B„Vp,

Qur model is inspired by the relativistic quantum field
theory of Walecka, ' which contains nucleons interacting
with neutral scalar and vector mesons. Although original-
ly proposed to study high-density matter, this model has
recently been shown to provide a reasonable relativistic
description of the bulk properties of finite nuclei in the
mean-field approximation. ' However, it is of interest
here that for static, heavy baryons, the meson-exchange
interaction reduces to a sum of attractive and repulsive
Yukawa potentials that can reproduce the basic features
of the nucleon-nucleon force. [In one spatial dimension,
the Yukawa potentials become exponential potentials; see
Eq. (3.17).]

In the following, we will not attempt a systematic non-
relativistic reduction of the Walecka Lagrangian. Instead,
this model is used to suggest a simple meson-nucleon field
theory containing nonrelativistic nucleons that has a
reasonable static-potential limit.

%'e begin with the covariant Lagrangian density corn-
posed of scalar (y), vector ( Vz ), and fermion (f) fields:

W =P(i yqB" M)P+ 2 (Bp—pB"y m, y —) ,F" F—q, —

xp
Bt Bt

F" = =mvV —gvg aQ,

and one equation of constraint:

B „p BE
Bx Bx

= —mvVo+gv4 0 .

(3.4c)

(3.5)

5W
5(BQ/Bt)

B&
"'=5(Bq/Bt) =

Bt
'

BV BVo
"'=5(BV/Bt) = Bt+ B.

=

5W
7Tp- =0.

5(BV /Bt)

(3.6a)

(3.6b)

(3.6c)

(3.6d)

Since the timelike component Vp has no conjugate
momentum, it is not a dynamical variable and many be
eliminated in favor of BE/Bx using Eq. (3.5). The equa-
tions of motion for the electric field and vector field are
then Eq. (3.4c) and

BV l B'E
Bt mv2 Bx2

(3.7)

Here we define the "electric field" E=F" = F—" and-
omit the spatial index on field variables; that is, V= V".
The momenta conjugate to the fields are the following:

and the conventions used are those of Refs. 14 and 15
with A=c =1. In one spatial dimension, scalar products
become

a&b" =aobo —a„b„,
and the antisyrnmetric vector meson field tensor has only
one component:

+p = —+ p=B V /Bt —B Vp/Bx .

The two Dirac matrices may be determined as in Chapter
1 of Ref. 15. Denoting the matrices as a and p, one finds
a =p = 1 and I a,pj =0. These relations can be satisfied
in a two-dimensional representation, and we choose

The Hamiltonian density is given by

Bg
fields

=—~F+~+~v+~... ,

with the result

A F ——Q ia +p—MB

Bx

(3.8a)

(3.8b)

(3.9a)
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Bx

2

+m, y

2

E+ 1 BE
+my V

Bx

(3.9b)

(3.9c)

tic (NR) model in the following fashion. First, we neglect
all contributions from antinucleons and from the lower
("small" ) components of the Dirac spinors. This allows
the two-component Dirac fields f to be replaced with
one-component Schrodinger fields QNR. Second, we re-
place Eq. (3.9a) with the Schrodinger Hamiltonian

gv BE—gva V—
~v Bx

—gA 0 ~F~4NR ~+ 4NR2M
(3.10)

2

+——,(O'P)(A) .
mv

(3.9d)

Note that all factors of Vo have been eliininated using Eq.
(3.5) to express A solely in terms of dynamical variables.
There is also a density-density contact interaction between
nucleons [the last term in (3.9d}] analogous to the
Coulomb interaction in QED.

To this point, all manipulations have been carried out in
a relativistic framework. We now define our nonrelativis-

I

with p = iB—/Bx F.inally, we neglect the coupling be-
tween the vector field and the baryon current density:
—gvg afV. Since a=a„ is an odd matrix, g ag involves
products of upper and lower Dirac components, and this
coupling is a correction of order (1/M) compared to the
terms retained. This final approximation is not essential,
but greatly simplifies the subsequent numerical work.
(See the discussion in Appendix B.)

With the preceding simplifications, the model Hamil-
tonian for the meson-nucleon system is

H= f dxA (x}
A p2

'2 '2

i=1 Bx gpss y Bx

—g, f dx y(x)p(x) —
2 f dx p(x)+ —

2 f dx p(x)p(x)
gv BE 1 gv

mv Bx 2 mv
2 2 2

+ —, dx ms+ +ms' + —, dx E + 2 +mvVB~ . . . , 1 BE

i=1 Bx m~

(3.11a)

A gv A BE—g, g y(x;)— +
i —] pl+ i ] Bx x=x

gV A

g 5(x; —x~) .
mp i j

(3.11b)

Here we have returned to first-quantized coordinates x;
and momenta p; for A nucleons and have dropped the con-
stant contribution from the nucleon mass. The baryon
density has the first-quantized form

A

QNR(x)QNR(x) =P(x) = g 5(x —x;) . (3.12)

Note that we have only one type of ferinion, i.e., no spin
or isospin degrees of freedom.

The preceding Hamiltonian contains M, m„g„m~,
and g~ as parameters. Since M appears only in the nu-
cleon kinetic energy, we fix the nucleon mass at its physi-
cal value: M=939 MeV. The remaining constants can be
fixed, in principle, by calculating some small set of ob-
servables (binding energies, saturation density, etc.) as
functions of the parameters and then using physical values
to specify g„m„g~, and m~. Since we are interested pri-
marily in the qualitative features of the model, we follow
the simpler approach described below.

First, we consider nuclear matter confined in a large
box of length L at nucleon density

'F dkP= —kF 2m m-

and solve for the ground-state energy in the mean-field
(MF) approximation. By translational invariance in space
and time, all derivatives of the (c-number) meson fields
vanish, as does the spatial component V. The total
binding-energy density then follows from (3.11):

r

EMF 7T ~ 1 gu gs+ — p ~

c4 6 M 2 m2 ~2

The saturation density po is determined by

P(EMF /~ }/Bp)p

We fix the binding energy at saturation to be

(3.1S)

EMF H p 3
1 gv

2

+MF
6 ~ + 2 ms spo gspop+ 2 p

my

(3.14)

The first term is the nucleon kinetic energy, and we may
eliminate the mean scalar field yo by solving (3.4b) in the
nonrelativistic liinit': yo ——g,p/m, . Dividing Eq. (3.14)
by the baryon density gives the binding energy per nu-
cleon.



1684

TABLE y. «e& parameters.

go=196 Me/
gv=890 M

~~=14o M y
~&=783 Me@

300

—41467 Me@ fm2

BRIAN D. SEROT , S. E. KOON)N A 0 J W. NEGELE

STATIC ppT E &T IAL

28

200

'i'0 ~i = —16 Me@'

8a)
3M

gv
2

my

gs2=
m,

(3.16a)= —0.670 t

po
——0.484 fm (3.16b)

y three dimensionalmotivated b nuclear matt . No

ener
p'yg

e ers appearing in (3.15). We find
' 1/2

lpp

VNN (X)

U

X (fm)

FIG. 1. SStatic potentials for th
d ot th

'd' h
tice of length 16 fm

' = m 1
P

mode removed.

p dure imposes o 1This roce on y one constraint on th
ree s. o specify them uni u

s atic potential resultin f
exchan e. I

ing rom scalar an
' ld imension th'is is given b

0

( )
gv —myix i

2

2
gs —m, /xi

ms
(3.17)

Ouur one-dimen
'

sion al s1 ystem saturates
p m g as t e volume integral of U x,

dx U(x) =g,
is attractive (g(0). T '

e at a reasono arrive at a reason
p

& an
'

ve a sensible] an ve
'

e core radius [d-

y, the potential will ha
meson masses

wi have a sensible r

We th
=783

ose m, =m =140
re eV.

are sufficient t
en ative va ues. These c

v=m

o specify the four
considerations

p
resu ting static potential is

r shown in Fig. 1.
n Hav'aving cornpletel sp p

rm sui
lo s o ground-state pro erti

e o configurations. The
iguration are described b

H h
th

'
c con-

H, ce t e mesons
or inates x

ns are represented b
pto q (

o coordinates. 0

point. However, to re
ion of nucleon co d

od bo d
or inates, we

ng ') and to describe the m
Tlii is a so usef

sity and sc
em is erio

'
e ow.

p 'odic with len th
scalar field can b de ecomposed as

en-

p(x)= g 5(x —x. )
i=1

=v'2/I. 2'irri 2vpn

I

n x +pecos xL (3.18)

p(x) =v'2/I. 2 ir n
~ S1Il X g~ COS X

27Tn

L (3.19)

and similarly for E (x . S'
as the field coordinate and (m V(

'a es cf. E. 3
1 1 d

s oupeo lytothef'
vantageous from th f

e ields and not the'
e orm of

e ~ ~

e eir momenta. Th e con-



STOCHASTIC SOLUTION OF A MODEL MESON-NUCLEON. . . 1685

5
n;(x) = i-

sa(x)
a

sq(~) a~„
T T

i —v'2/L + g sin xB . i2nn

aq, „, L, a
27Tn+cos x

Pn af n

(3.20)

and similarly for m v V(x).
Substitution of the Fourier decompositions into Eq. (3.11) yields the Hamiltonian operator

A g2H=-
2M,.

00 gv—g. X e.p. —
n=l mv

B ~ a2 2

~nq n+
2

nE n

BE„
00 ~ QP $ g V 002

g En +—
2 g pa+Ho Evac-

fl =1 Bx 2 IV n=l
(3.21)

where
' 2 l/2

27Tn 2+Pig ) (3.22a)

2 2 BHo= —
2 + 4 iiis%o — O'DA-

B'(')
' &2L.

2 1 /2
2&n 2+mV

E=Enlmv .

(3.22b)

(3.22c)

2 2]221gVA]+ —,xiii Eo+—
z

——,(m, +mi ) . (3.25)
2 mv

This term decouples from the remaining Hamiltonian and
can be solved exactly, since it is of simple-harmonic-
oscillator form. We find

Here and henceforth we indicate explicitly the Fourier
sums over sine components only, since the sums over
cosine components y„, p„, etc. , have identical form. The
coupling between the nucleons and the electric field has
been rewritten by inverting the Fourier transform of the
density, resulting in

po &2/L A, —— (3.23a)

p„=v'2/L g sin x;
2mn

L
(3.23b)

p„=v'2/L g cos x;
2mn

(3.23c)

2 ~ " . 2mn
p(x) =—+—g g sin x; sin

L L,-

2mn 2mn+ cos x] cos x

(3.23d)

We have also subtracted from H the infinite vacuum
(zero-point) energy for the fields

2 2 21 Rv gs A
0 (3.26)

E~ =E(A)+Eo(A) A[—E(1)+ED(A =1)]—

Note that Eo is completely determined by A and L, and
vanishes as L~ ao for a finite system. In infinite nuclear
matter, the n=0 mode energy per nucleon is precisely the
mean-field interaction energy [cf. Eq. (3.15)]. This is
correct, since the mean field approximation retains only
the volume integral of the static potential (that is, the
n =0 modes).

Since Eo is a well-defined constant, it can be omitted
from the Monte Carlo algorithm and explicitly included
later. In particular, Eo depends explicitly on L, and bind-
ing energies are defined relative to infinitely separated nu-
cleons, so it is necessary to include Eo in the calculation of
the binding energy. An alternative way to see this is to
consider ordinary potential theory. Omission of the n=0
modes corresponds to shifting the definition of the poten-
tial energy by an L-dependent constant. Although the
shift goes to zero as 1/L, omitting Eo for L = 16 fm yields
an error of 45 MeV in the saturation energy per nucleon in
nuclear matter. If we explicitly include the n=0 modes,
the binding energy Es can be calculated from

E„„=, g (co„+Q„), —
n=1

(3.24)

which is a physically irrelevant constant.
We consider now the Hamiltonian Ho involving the

n =0 modes:

=E(A)—AE(1)+(A —A)EO(A =1), (3.27)

where Eo(A) is given by Eq. (3.26), and E(A) denotes the
energy of A nucleons in a box of length L ignoring the
n =0 modes.

After subtracting the vacuum energy (3.24) and Eo, the
Hamiltonian can be written as
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, — nmn+

Xg n =1 f'n
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—Q„E„

gv ~ ~Pn 1 gv
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—g. g m.p. — g g E.
B

+—,g p. ——,
' g (~„+&„),

n=1 v i=in=1 i 2 mv n 1 n=1
(3.28)

where p„ is defined by Eqs. (3.23), and the Fourier sums
run over both sine and cosine components. This Hamil-
tonian is of the general form described in Sec. II, involv-

ing coordinates x;, E„, and qr„, momenta B/Bx;, B/Bq&„,
and B/BE„, and couplings between the various coordi-
nates. Nevertheless, there is still an infinite number of
mesonic degrees of freedom, and Eq. (3.28) is intractable
as it stands. To reduce the coordinates to a finite number,
we consider H in the static limit, which is obtained for-
mally by letting M~00. This eliminates the nucleon ki-
netic energy and results in fixed nucleon coordinates Ix; I;
consequently, the Fourier components of the density p„
are constant as well. In this limit, the vector and scalar
fields are independent, and the resulting Hamiltonian is of
the form of shifted harmonic oscillators in the field vari-
ables. It may be solved exactly for the (unnormalized)
ground-state meson wave function:

OO

@0('pn En ) = + exp[ Y~~n( p n&n )

[The static n=0 mode energy Eo(1) can again be treated
separately. ] Using the identity

cos(2m.nx /L )S x =
2 2

n +a~
cosh[m~(L/2 —

f
x

/
)]

m L sinh(m ~L /2)

with a~ =m~L/2ir, we find

g, I.Ei = — S,(0)—
8n a,

gvL+ Sv(0)—
8 Qv

(3.33)

(3.34)

p„+p „=—[2+2 cos(2n.nx/L)] .

Consider now two fixed nucleons separated by a dis-
tance x, for which

where

1
&n= 2 gspn ~

gv ~ ~pn

——,Q„(E„—g„) ], (3.29)

(3.30a)

(3.30b)

The static energy may again be calculated from Eqs. (3.31)
and (3.33), and the two-nucleon potential defined as the
difference between this energy and 2Ei. We find

g, L 1
VNN(x) = S,(x)—

4
[

ag

The energy is given in this limit by
2

OOpn ) 2 pn
Estntic 2gs g 2 + zgv g 2 +ED

n=1 ~n n=1 +n
(3.31)

1 2 1 1 2 1Ei = ——g,
' X, +—g.' & (3.32)

with p„ the Fourier components of the static nucleon den-
sity.

The static limit is useful because nuclear energy scales
are significantly smaller than the meson masses. Thus the
dynamics of the high-frequency meson modes will be
unimportant for the nuclear systems studied here. It is
therefore possible to "freeze out" these modes by replacing
this part of the true Ineson wave function with the static
result in Eq. (3.29). We then consider a finite number n,
of dynamic scalar modes and nv vector modes. In princi-
ple, the cutoffs n, and nv can be increased until conver-
gence is reached; we expect, however, that for momenta
(2irn/L) )M, the static approximation should be reason-
able.

To replace the high-frequency meson modes with their
static counterparts, we first calculate the energy of a sin-
gle, fixed nucleon (p„+p „=2/L) using Eq. (3.31):

gv& Sv(x)—
4~ 2

Qv
(3.35)

which is plotted in Fig. 1 for the parameters given in
Table I and L = 16 fm. VNN(x) explicitly incorporates the
periodic nature of the meson fields and omits the n=O
mode contribution, which is a spatial (but L-dependent)
constant. Note also that Eqs. (3.34) and (3.35) imply that
the static, single-nucleon self-energy is given by
Ei =

2 VNN(o).
Having defined the two-nucleon potential for the

periodic system, we construct the Hamiltonian as follows.
Begin with A nucleons interacting through VNN(x):

g2
, +

2
VNN(o)2M,. 1 ()~,. 2

+ Q VNN(xt —xJ ) . (3.36)

Here the second term gives the total nucleon self-energy,
and, at this stage, all meson modes are "frozen out. " To
incorporate a finite number of dynamic modes, we remove
their static energy using Eq. (3.31) and replace it with the
dynamic expression in Eq. (3.28). Thus, the desired Ham-
iltonian is written as
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The static limit is obtained by setting n, =nv ——0. The
omitted n=0 mode energy is included in the calculation
of binding energies using Eq. (3.27), where E(A) is calcu-
lated with Eq. (3.37). We emphasize that had we siinply
truncated the sums in Eq. (3.28) and not replaced the
high-frequency modes by their static limits, many more
meson modes would be needed to describe the interaction
accurately.

The preceding Hamiltonian is of the form studied in
Sec. II and contains a finite number of degrees of free-
dom. To implement the "importance sampling, " we need
only specify a suitable trial wave function. We take

A(x„x, . . . , x„)=+6(x;—x ) +F(xk),
i&j k

where

(4.1)

f

fied a posteriori because lower modes are also found to be
essentially adiabatic. The length L must be sufficiently
large to encompass the system with negligible edge effects.
In our calculations, we used box sizes ranging from L= 16
fm for light nuclei to L=39 fm for A =20.

The trial function A for nucleons in finite nuclei was
chosen to be a product of an odd two-body correlation
factor times a product of single-particle wave functions
parametrized as follows:

C(x;,(p„,E„)=A(Ix;I) + e 6 (x)= tanh(bx) (4.2)

( —1/2)Q [F —g (x)]e
m=1

and

(1+ a(x —R))—l(1+ —a(x+R)) —l (4.3)

(3.38)

The meson part is similar to the static solution (3.29).
Here, however, the functions X„(x)and g„(x) are calculat-
ed from Eq. (3.30) for a given set of nucleon coordinates,
whose distribution is specified by A( Ix; I ). The trial wave
function @ constitutes a type of Born-Oppenheimer ap-
proximation in which the dynamic part of the meson wave
function is determined by the instantaneous nucleon coor-
dinates. Our choice of A is discussed in the following sec-
tion.

IV. RESULTS

Monte Carlo calculations were performed for ground
state observables of finite nuclei and nuclear matter. To
understand the role of dynamic mesons, calculations in
the static-potential limit, with all meson modes frozen,
were compared with corresponding results with dynamic
meson modes.

As discussed in the previous section, calculations with
dynamic mesons require a truncation in the number of
modes appearing in the Fourier expansion of the fields.
Since there is little structure in the nuclear wave function
with momentum components above 3 fm ', and higher
momentum modes have sufficently high frequencies to be
described adiabatically, we have truncated the expansion
at n, =nv L/(2 fm). This——corresponds to a maximum
physical momentum =3 fm . This truncation is justi-

6 (x)=sin(n.x/L), (4 4)

which corresponds precisely to a Fermi-gas Slater deter-
minant.

All Monte Carlo results in this section contain two dis-
tinct errors. Statistical errors arising from finite sample
size are estimated as described in Appendix A and are
denoted by error bars on the graphs. Systematic errors are
introduced into all calculations by the use of a finite step
size ht. As explained and illustrated in Appendix A, all
observables may be straightforwardly extrapolated to
b,t=0. In the present section, the value of b.t will be
specified for each figure and comparisons will be carried
out at a fixed bt. The essential results presented in this

Reasonable values for the parameters a, b, and R were
selected on physical grounds and optimized by minimizing
the variational energy with the static interactions.

Nuclear matter was calculated by enclosing A particles
in a box of length L with periodic boundary conditions.
For A greater than poL, where po is the saturation density,
the ground state corresponds to uniform nuclear matter,
and for A substantially less than poL, nucleons coalesce
into isolated nuclei. We have verified that the periodic
solution at po with L=16 fm is a valid approxiination to
nuclear matter by reproducing the same energy per nu-

cleon as at L=10 fm. (See Fig. 7 in Appendix A.) With
periodic boundary conditions, the trial function must also
be periodic. Hence, we have used Eq. (4.1) with F= 1 and
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section should not require any specialized knowledge of
Monte Carlo technology, and further technical details are
relegated to the appendices.

A. Energies

The binding energy is defined as the difference between
the energy of A isolated, dressed nucleons, including the
meson self-energy contributions, and the total energy of
the interacting 3-body system. In a practical calculation,
it is then necessary to calculate separately the one-body
and A-body systems.

In the static limit, the contribution of the static meson
fields to the nucleon energy, Eq. (3.34), is 188.42 MeV for
the parameters in Table I and with 1.=16 fm. Although
it is artificial in a static potential theory to decompose the
nucleon mass into a bare energy and a self-energy arising
from meson fields, this static meson contribution sets the
scale for interpreting self-energies in the field theory with
dynamic mesons. The nucleon self-energies with n, =8 or
with n~ ——8 using ht =10 MeV ' are 192.3+0.2 MeV
or 191.1+0.2 MeV, respectively. This is the first of many
results in this section which show that the dynamic effect
of meson fields on ground-state properties is small in this
model. In comparison with the static theory, the nucleon
self-energy in the dynamic theory with either scalar or
vector mesons is shifted by only 2%%uo. For our present pur-
poses, as long as dynamic effects are small, it will suffice
to consider the effects of scalar and vector dynamics
separately.

The binding energy per nucleon in nuclear matter is
shown in Fig. 2. The solid curve in the upper portion of
the figure shows the mean-field result, Eq. (3.1S). Recall
that the parameters of the model were defined such that
the saturation point of the mean-field theory, rather than
that of the exact solution, corresponded to the physical
value of the binding energy. Also shown is the conven-
tional Hartree-Fock (HF) result, which is given by

2 2
EHF 1r p 1 gv gs

A 6 M+2 2(,v) 2(,, ) P
mv ms

(4.Sa)

-l0—

MONTE CARLO
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FIG. 2. Nuclear matter saturation curves. The energy per
nucleon (negative of the binding energy) is plotted as a function
of density for the mean field approximation (upper solid curve),
Hartree-Fock approximation (dashed-dotted curve), and Monte
Carlo calculations. The dots, X 's, and crosses denote calcula-
tions with the static potential, dynamic scalar modes, and
dynamic vector modes, respectively, using a time step Et=0.001
MeV '. Statistical errors are the size of the symbols unless
shown explicitly, and the solid line connecting the Monte Carlo
results is drawn to guide the eye. The dashed line shows the
static potential saturation curve extrapolated to b t=0. A box of
length 16 fm with periodic boundary conditions was used with
variable numbers of particles, and dynamic meson calculations
used n, =8 or n~ ——8, corresponding to a maximum momentum
of 3.14 fm

2mptan
&P m;

m;

2&p

'2

ln 1+ 2&p

m;

2

(4.Sb)

Monte Carlo results are shown in the lower portion of
Fig. 2. We regard the saturation curve for the static in-
teraction extrapolated to At =0 using the method
described in Appendix A as the exact nuclear matter solu-
tion for the static theory. Note that for popo, the solu-
tion is uniform nuclear matter. Clustering begins below

po, and in Fig. 2, the points at p=0.25 and 0.375 fm
correspond to essentially isolated nuclei with 3=4 and 6,
respectively.

Results for a finite ht with dynamic scalar mesons and
dynamic vector mesons are also shown in Fig. 2, as are the
static calculations with the same At. These should be
compared with each other, and not with the extrapolated

(At=0) static curve. (The relatively small extrapolation
correction indicates that this comparison at finite At will
reflect the relevant qualitative effect of dynamic mesons. )
As in the case of the nucleon self-energies, the effect of
dynamic mesons is relatively small. Inclusion of vector or
scalar mesons separately shifts the saturation density by
the order of S%%uo, so the total effect is expected to be of the
order of 10%%uo. In contrast to the mean-field approxima-
tion, which yields only about one-third of the full binding
energy at roughly one-half of the saturation density, the
static approximation reproduces the saturation curve to
within 10%.

Binding energies for a range of finite nuclei with the
static interaction are shown in Fig. 3. The semiempirical
mass formula in one dimension with no long-range forces
or isospin contains only a volume term and surface term,



28 STOCHASTIC SOLUTION OF A MODEL MESON-NUCLEON. . . 1689

Eg ag
QV 2

A A
(4.6)

30—

O

X 20—
4J
CD

IO—

dP

/
/

/
/

/
/

I
I

/

I
I

I
I
I
I
I
l

I

20
I

100
A

FIT&. 3. Binding energy per nucleon of finite nuclei comprised
of A nucleons bound by the static potential. Trial energies
evaluated with Et=0.003 MeV are shown with statistical er-
ror bars. For A & 8 the box length was 16 fm and for A )8 the
length was 32 fm. The dashed curve denotes the semiempirical
mass formula with volume energy coefficient 36.7 MeV and sur-
face energy coefficient 48.9 MeV. The arrow indicates the infin-
ite nuclear matter limit.

A fit to the energies of the four largest nuclei using this
mass formula yields the values a r

——36.7 MeV and
aq ——48.9 MeV. That a~ and the nuclear matter binding
energy for the same ht, 37.1+0.1 MeV, are nearly equal
indicates saturation for heavy nuclei. The failure of Eq.
(4.6) for light nuclei, however, suggests that saturation
does not set in as early in this model as in real nuclei.
(Note that the Pb nucleus, the paradigm for a heavy
saturated nucleus, is only six nucleons thick measured
through the center. )

The effect of dynamic mesons on the binding energies
of finite nuclei is comparable to that observed in nuclear
matter. Relative to the binding energy per particle of
28.3+0.2 MeV in the 2=12 nucleus obtained for the stat-
ic potential, dynamical meson calculations with n, =8 or
nz ——8 yield 29.2+0.2 or 28.6+0.2 MeV, respectively, indi-
cating a total shift due to mesons of the order of 5%.

B. Density distributions

To further explore the nuclear ground state in this
theory, we have calculated one-body density distributions
and two-body correlation functions. The nucleon-nucleon
correlation function in nuclear rnatter is defined as

r

g(x)= f dy 0' p y+ —p y ———5(x)p(y) 4) (4(@(
(A —1)p 2 2

g 5(
( x; —x( (

—x) 'pl

(A —1)p(%
~

qy)
(4.7)

with normalization such that g approaches unity at large
x. In a practical Monte Carlo calculation, the x continu-
um is divided into discrete intervals, and the average of
Eq. (4.7) is calculated for each interval using Eq. (2.10).
In the results presented here, the average value for each
interval is plotted at the midpoint with statistical errors,
and the interval size is obvious from the spacing of data
points.

The nucleon-nucleon correlation function for the static
interaction at p=0.75 fm (near saturation density) is
shown by the data points in Fig. 4. For comparison, the
correlation function for a Fermi-gas Slater determinant,
calculated using the same discrete intervals, is denoted by
a solid curve. Qualitatively, the dynamical correlations
included in the exact result beyond those imposed by an-
tisymmetry display the expected physical behavior. The
repulsive core inside 0.5 fm decreases the probability at
short range relative to that of the Fermi gas, and in the re-
gion of maximum attraction around 1 fm the probability
is correspondingly enhanced. At larger distances, the
"healing" of the two-body correlation function arising

).2—

O4—

x (fm)

FIG. 4. Nucleon-nucleon correlation function g (x) in nuclear
matter. Monte Carlo results at p=0.75 fm with Et=0.0005
MeV ' for the static interactions are shown in the center of
each averaging interval by statistical error bars. For compar-
ison, the values of the correlation function for a Fermi-gas
Slater determinant calculated in the same averaging intervals are
connected by the smooth solid curve.
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from Pauli blocking of all available scattering states is evi-
dent from the agreement between the exact and Fermi-gas
correlation functions.

Quantitatively, the dynamical correlations in our model
are significantly weaker than those arising in three-
dimensional calculations with phenomenological poten-
tials. A manifestation of this weak core is the relatively
minor suppression of g (x) inside the core radius. In com-
parison, a potential like the Reid soft-core yields a g(x)
which remains nearly zero throughout the core region.

The inclusion of dynamic vector or scalar mesons does
t

not yield results for g (x) statistically different from those
displayed in Fig. 3. Hence, any differences must be less
than one percent. Given the facts that energies calculated
with static and dynamic interactions differ on the order of
10%%uo and that the interaction only contributes at most a
10%%uo deviation in g(x) relative to the Fermi gas result, it
is not surprising that the final sensitivity of g(x) to
dynamical mesons is below one percent.

The meson correlation function may be defined analo-
gously to Eq. (4.7) and evaluated in momentum space.
Using the notation of Eq. (3.19),

2irk 1 I (+
I y(y+x/2)y(y —x/2) I e&

L L"

2
&%k+9k (4.8)

Since

flak

I are the coordinates describing the fields, (yk &

may be straightforwardly evaluated in the Monte Carlo
calculation usia Eq. (2.10). For comparison, the expecta-
tion value of yk for the static modes is obtained directly
from the displaced harmonic oscillator wave function for
the meson field, Eq. (3.38), with the result

2
&V k &.~i;.=&k+

260k
(4.9)

A Monte Carlo calculation with n, =8 at p=0.875 fm
yielded values for Gk which were identical to the static re-
sult for each inode to within statistical errors of one per-
cent. Repetition of the calculation with a much smaller
scalar meson mass, m, =14 MeV, yielded the same result.
Thus, with respect to equal-time correlation functions, the
mesons are essentially static.

The one-body density distributions for finite nuclei, like
the nucleon-nucleon correlation function, are calculated
by evaluating the one-body density over a finite interval
using Eq. (2.10). In order for the perturbation expression
(2.10) for the density to be accurate, the trial density itself
must yield a reasonable approximation. In Appendix A
we demonstrate that our trial functions and the perturba-
tion expression are adequate, by showing that the correct-
ed density is independent of the trial function.

Density distributions for finite nuclei from 3=4 to
3=20 using the static interaction are shown in Fig. 5.
For the lightest nuclei, the averaging intervals are suff-
icientl small that the quantum density fluctuations and
surface shape are accurately portrayed. For the largest
nuclei, however, much of this structure is averaged out.
For example, each point in the 3=20 system corresponds
to the average of three or four points in the A =4 system,
and one may observe directly in the figure that most of
the structure for 3=4 would be removed if each group of
three or four points were replaced by its average. Quan-
tum density fluctuations for a similar one-diinensional
system are studied with much higher resolution in Ref. 5.

The essential physical effect displayed in Fig. 5 is the
unusually slow saturation of the interior density with in-
creasing A. In real nuclei, in calculations of finite nuclei
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FIG. 5. Density distribution for finite nuclei. Monte Carlo
results with statistical errors using Et=0.003 MeV ' are shown
for the average density in each of 20 spatial bins as described in
the text. The saturation density for nuclear matter for the same
ht is p=0.77 fm and is indicated by the dashed line.
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in three dimensions with realistic interactions, and in the
one-dimensional model of Ref. 5, the average interior den-
sity of light nuclei is very close to that of nuclear matter.
In contrast, the average interior density of nuclei from
A=4 to A=8 in Fig. 5 differs from the nuclear matter
values indicated by the dashed line by from 30% to 15%.
Only in the heaviest nuclei, such as A =20, shown at the
bottom of the figure, does the interior density approach
that of nuclear matter. Thus, in addition to the slow onset
of liquid-drop behavior with increasing A discussed in
connection with Fig. 3, the slow approach to nuclear den-
sity shown in Fig. 5 provides independent evidence of the
unusually slow saturation arising in the present model.

V. SUMMARY AND CONCLUSIONS

In this work, we have investigated a nonrelativistic
theory of nucleons coupled to vector and scalar mesons.
By restricting the model to one spatial dimension, it has
been possible to exploit fermion Monte Carlo techniques
to compare exact solutions to the theory including dynam-
ic mesons with exact solutions to the corresponding poten-
tial theory in which all meson modes are static.

Our main physical result is that dynamic mesons intro-
duce small changes relative to the static potential theory
for the observables we have investigated. For this model,
at least, we have thus justified the conventional approach
to nuclear many-body theory, in which a nucleus is
described in first approximation in terms of nucleon de-
grees of freedom interacting via static potentials, and the
dynamic effmts of subnuclear degrees of freedom are
treated as small perturbations. The physical origin of this
nearly adiabatic behavior is evident from the Born-
Oppenheimer approximation to the Hamiltonian, Eq.
(3.37), provided by the trial function, Eq. (3.38). To the
extent to which the nucleon motion is slow compared to
the meson frequencies co„and 0„,the displaced oscillator
wave function for the meson fields accurately describes
the essentially instantaneous adjustment of the mesons.

In contrast to the accuracy of the static potential ap-
proximation, we have shown that the mean-field approxi-
mation does not describe the nuclear matter saturation
density and energy. A particularly striking feature of the
mean-field theory, when viewed from the context of the
present work, is that it involves precisely the n=0 modes
which decouple from the dynamic meson and nuclear de-
grees of freedom in Eq. (3.37). To the extent to which
saturation arises from strong repulsive short-range in-
teractions corresponding to multiple exchanges of vector
mesons, it is clear that this physical effect is totally ig-
nored in the mean-field approximation but sensibly ap-
proximated by the exact static potential approximation, or
even in the conventional HF approximation.

Despite the obvious physical limitations of one-
dimensional models, it is reasonable to expect these con-
clusions concerning the static and mean-field approxima-
tions to apply as well to three dimensions. Repulsive
short-range interactions are even more important in pro-
ducirig saturation in three dimensions than in one dimen-
sion, since the kinetic energy alone can saturate a one-
dimensional system with attractive interactions, but not a

three-dimensional system. The arguments concerning the
decoupling of dynamic modes from the n=0 mean-field
terms and the Born-Oppenheimer justification of the stat-
ic potential limit are, of course, independent of dimension.

Relativistic effects (which have been neglected here)
may also play a significant role in the saturation in three
dimensions. In particular, maintaining the Lorentz scalar
and vector character of the meson potentials and nucleon
source terms leads to additional density dependence in the
nucleon-nucleon interaction. ' Thus, the conclusions con-
cerning the mean-field approximation obtained in the non-
relativistic limit may not apply to a relativistic treatment
of our model.

One avoidable pathology of the model calculations re-
ported in this work is the slow saturation of the density
and binding energy with the nucleon number A. This slow
saturation arises from the long range of the potential in
Fig. 1 resulting from setting the scalar meson mass equal
to that of the pion and from the fact that the interaction
parameters were determined by mean field rather than ex-
act nuclear rnatter properties. The use of the light scalar
meson mass has the pedagogical advantage of emphasiz-
ing rather than obscuring any effects of meson dynamics.
In realistic calculations of the nucleon-nucleon potential,
one-pion exchange gives an essentially negligible contribu-
tion to the intermediate range attraction, which is dom-
inated by two-pion exchange. Thus, the range of the at-
tractive nuclear force is characterized by twice the pion
mass and phenomenological potentials fit to scattering
data are of considerably shorter range than that of Fig. 1.
From Fig. 2, it is evident that if the potential parameters
in our model were readjusted so that the exact Monte Car-
lo calculation saturated at E/A —16 MeV and kF-1.3
fm ', the static potential would acquire a substantially
stronger vector meson repulsive core. Decreasing the
range of the attraction and increasing the core repulsion
would yield a static potential more similar to the model
interaction of Ref. 5. The latter interaction was defined to
reproduce appropriate dimensionless ratios characterizing
realistic nuclear interactions in three dimensions, and pro-
duced saturation with A comparable to that observed in
real nuclei. Thus, we believe the slow saturation of the
model used in the present work is an artifact of the pa-
rameter values selected for this initial exploration and
does not materially alter the physical conclusions we have
drawn.

From a technical perspective, this work represents a
first step in the development of exact stochastic tech-
niques for dealing with non-nucleon degrees of freedom in
nuclei. Motivated by the success of using trial functions
in quantum many-body systems to guide Monte Carlo
random walks, we have demonstrated that a trial function
is also useful in guiding the stochastic evolution of meson
fields. The use of a displaced oscillator wave function for
the fields had two substantial benefits. Since the Born-
Oppenheimer approximation is quite accurate, the random
walk for the meson degrees of freedom is biased by an ex-
cellent approximation to the exact solution, requiring the
Monte Carlo calculation to account for only very small
dynamic departure from adiabaticity. Second, truncation
of the expansion in meson modes was facilitated by the
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possibility of summing the oscillator contributions for all
n analytically via Eq. (3.35), and then including the differ-
ence between dynamic evolution and the oscillator approx-
imation for a finite number of low-momentum modes.
This treatinent of the meson degrees of freedom is not re-
stricted to one dimension and should be valuable in realis-
tic applications in three dimensions.

Two generalizations of the present work offer fruitful
avenues for future investigations. For a one-dimensional
system, it is possible to treat the full relativistic Hamil-
tonian, Eq. (3.9). The ineson field equations have an
analogous Fourier expansion, with source terms which
contain both the baryon (g g) and scalar (PP) density.
The nonrelativistic Schrodinger equations with continuum
x may be replaced by the Dirac equation on a discrete spa-
tial lattice, and the number of dynamical fermions equals
the number of mesh points plus A. In this way, it will be
possible to assess the effect of relativistic kinematics and
the role of polarizations of the Dirac sea. For spin-isospin
independent coupling, it is also practical to solve the a
particle with the present nonrelativistic Hamiltonian in
three dimensions, providing a more definitive test of the
role of meson dynamics.

Extension of the methods used in this work to realistic
nuclei in thrm dimensions still poses substantial difficul-
ties. The addition of spin-isospin dependent interactions
to study pions or treatment of nuclei in three dimensions
with A & 4 gives rise to formidable practical problems aris-
ing from nearly cancelling positive and negative contribu-
tions to Monte Carlo estimates of observables. These fur-
ther generalizations may be treated in principle either us-
ing transient estimates" or by reformulating the problem
on a discrete spatial mesh. ' Since both approaches lie at
or beyond the limits of currently available computer facil-
ities, the development of more powerful stochastic tech-
niques for many-fermion problems remains a major con-
ceptual challenge in this field.

This work was supported in part by the National Sci-
ence Foundation (U.S. Grants Nos. PHY77-27084,
PHY79-23638, PHY81-07395, and PHY82-07332), and by
the U.S. Department of Energy (Grant No. DE-AC02-
76ER03069). J. W. Negele and Brian Serot gratefully ack-
nowledge fellowship support by the John Simon Gug-
genheim Memorial Foundation and the Alfred P. Sloan
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semble of configurations has been relaxed (i.e., by evolving
it for some time), the precision of the energy estimators is
improved by averaging their values at many different sub-
sequent times. For such an average to be meaningful and
for its variance to be estimated accurately, statistically in-
dependent values must be averaged. However, when ht is
very small, Eq. (2.9) shows that the ensemble evolves very
slowly (q =q'), and successive values of the energy estiina-
tors are highly correlated. For example, Fig. 6 shows the
autocorrelation function of the energy estiinator E(t)
[given by (2.6)] for a representative system with several
different ht. This quantity is defined as

([E(t +r) —E][E(t)—E])
( [E(t)—E]')

where ( ) denotes time average and E=(E(t)) is the
average energy. When ht is smail, c is nonzero for many
time steps, so that energy values must be accumulated in-
frequently, resulting in increased computational effort for
a given precision.

A practical upper bound on ht is set by the accuracy
with which (2.9) approximates (2.7). This clearly requires
that the average nucleon "step" in the diffusion process,
(b,t/M)'~, be small compared to the other characteristic
length scales. If we take the latter to be 0.2 fm, we find
ht(0.001 MeV '. However, when there are dynamic
meson modes present, an even shorter time step is re-
quired to evolve the high frequency inodes (Q„&783 MeV
implies b, T & 10 MeV '). This can be at least partially
alleviated by using a more accurate treatment of the
meson propagation over ht. Consider a single scalar
meson mode y with frequency co, in the presence of static
nucleons giving a classical solution X as in (3.30a). In this
case, with a trial function of the form (3.29), (2.7) gives
the evolution as (putting Ez ——0)

BG 1BG B co

Bt ' 2 BqP By 2
(q, t) =—,+~ [(tp —X)G]——G =0 .

(A2)

This Fokker-Planck equation can be solved by the (unnor-
malized) kernel

I

I.O f
ENERGY AUTOCORRELAT!ON FUNCTION

APPENDIX A: COMPUTATIONAL TECHNIQUES

One of the most important features of our numerical
method is the use of a finite time step b,t. This has several
implications which must be carefully considered in actual-
ly performing calculations and which constrain b.t to be
neither too small nor too large. Some of these are dis-
cussed in this appendix.

Our method becomes exact in the limit At —+0, which
is, of course, impossible to reach in practice. A practical
lower bound to ht is given by the rate at which configura-
tions in the ensemble explore phase space. Once the en-
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FIG. 6. Energy autocorrelation function, Eq. (Al), as a func-
tion of time for a twelve-particle system with n, =8.
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K (y, p', ht )=exp
[y gee a—lttt+ ( 1 e —olat)y]2

(1 e 2—mht)/~

which has the expected limits

q—&'+coht (y' X—)
llm K(lp, q7', b,t)=exi-t�ao ' ' 25t

lim K(y, y', bt)=exp[ to(tp —X) ]—.ht~ co

(A3)

(A4a)

0.8—
I

l 1 r

yl g 1

Hence, by suitably renormalizing the drift and dispersion
terms in the Gaussian kernel for the evolution of the field
variables, the analytically known properties of the
harmonic-oscillator Hamiltonian can be exploited to
achieve a more accurate evolution of the high-frequency
modes for a finite time step.

Our calculations typically ustxl an ensemble of 100 con-
figurations evolved over a time 1.5 MeV ' after relaxa-
tion (requiring typically T=0.3 MeV ). Sampling fre-

0.2—
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/ ~ r
/
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/
~0

lD 45 '

~ -38—
LLI

STATIC
INTERACTION

I I I I I I ~ J
2 4 6 8

x (fm)
FIG. 8. Density distributions for A =8 nucleons demonstrat-

ing that different trial functions yield consistent ground state
densities. Density distributions for the trial function given in
Eqs. (4.1)—(4.3) with a = 1 fm ', b=0.5 fm ', and R =4 or 5 fm
are denoted by the short or long dashed curves, respectively.
Monte Carlo results for the ground-state density using the per-
turbative expression (2.10) are given by the square and circular
data points for calculations using the R =4 and R =5 trial func-
tions, respectively. Despite the substantial difference in trial
densities, the Monte Carlo densities agree within statistical er-
rors denoted by the error bars.

SC ALAR IVlESONS

40—
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FIG. 7. Calculated energy per particle in nuclear matter as a
function of time step ht. The square and round symbols denote
normalization and trial energies [Eqs. (2.2) and (2.6)], respective-
ly, the statistical errors are the size of the symbols unless indi-
cated by error bars, and the dashed curves are to guide the eye.
The upper portion shows the energy per nucleon with the static
interaction at p=1 fm ' calculated in a box of length 10 fm
(open symbols) and a box of length 16 fm (filled symbols). The
lower portion shows the energy per nucleon including scalar
mesons with n, =8 in a box of length 16 fm at p=0.75 fm

quencies were determined in each case by analyzing the
energy autocorrelation function, as discussed above.
These were typically every five time steps. The extrapola-
tion of the Monte Carlo results to the Et=0 limit is illus-
trated in Fig. 7. Note that the trial and normalization es-
timators agree within the statistical errors. We have also
verified, in selected cases, that our trial functions @ are
adequate, in that the calculated energies and densities are
independent of the precise trial function chosen (see Fig.
8).

APPENDIX 8: VECTOR MESON COUPLING
TO THE BARYON CURRENT

As discussed in Sec. III, the nonrelativistic model used
in our investigation was defined by eliminating the cou-
pling

(B1)

from the interaction Hamiltonian density in Eq. (3.9d).
Since the matrix a mixes upper and lower components of
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~p+mi y——t a i ——gvV +pM
Bx

(82)

This illustrates that the coupling of the baryons to V is
identical to their coupling to the (spatial) vector potential

in spinor QED. Thus, by performing the standard
Foldy-Wouthuysen reduction, ' ' we may rewrite Eq.
(A2) in terms of nonrelativistic Schrodinger fields to any
desired order in (1/M). We will work consistently to
0(1/M) and find

~F+~1—PNR M+
2M PNR M 0NR(P + VPW'NR
p gv

2M

2

+ 2M
V 1tNRQNR+0(1/M ), (83)

the Dirac spinors P, this interaction terin is (at least) of
order (1/M) and thus represents relativistic corrections.
These corrections are, of course, necessary to maintain the
global U(1) gauge invariance of the Lagrangian (3.1) that
ensures conservation of the baryon current. Here we
describe how these corrections may be included in the
Monte Carlo analysis.

Note first that by combining A i with the free Dirac
Hamiltonian density (3.9a), we find

gy=i - g 2V(x;)
2M,

BVt
+

g2
g V'(x;)+0(1/M'),

2M; 1

(84)

where we have gone to first quantization for the nucleons
and partially integrated the momentum operator, drop-
ping the surface terms. Note that Hi does not contribute
to the mean-field energy in nuclear matter, because V:—0
by reflection invariance. Thus Eq. (3.15) and the subse-
quent discussion are valid even when H~ is retained in the
model Hamiltonian.

We now rewrite Hi using Fourier coinponents for the
field V, which is considered the conjugate momentum to
the electric field E, as in Sec. III. Thus,

where p = —iB/Bx. Corrections to the interaction terms
involving the dectric field E [see Eq. (3.9d)] enter at
0 (1/M ) and so may be neglected in this approximation.

The first term in Eq. (83) gives the free Schrodinger
Hamiltonian density, and we may write the (approximate)
interaction terms as

Hi=—f dx A i(x)

6 B . 27Kn B 277n
V(x) = i —= i v'2L —+ g sin x +cos x

M (x) BE() „, L BE„ I. BE„
(85)

which leads to
r

mvM i i i BE xj mv ] i xf

gv ~2/L B g B+
vM Bxg

2
gv ~2/L B g B
2M

2 —X g &n. (xi)
mvM I i. =l n, n'=1 BE

2 2 2 2B i 2 2 1 gv A gv A B

BE 2, L,MI. BE
+ (86)

Here we indicate explicitly the sums over Fourier sine components only, and the field variables E„are defined in Eq.
(3.22c). The matrix 8 is given by

8„„(x;)=

2' n . 2777'
sin — x; sin — -x;

2m.n . 2m.n '
cos x; sin x;

27Tn 2&n
sin x; cos

2mn 2mn'
cos xg cos

(87)

The first three terms in Eq. (86) originate from the cou-
pling of the nucleon current to V and introduce mixed
derivatives B /BE„Bx;. The remaining terms come from
the V ("seagull") piece in Hi and introduce off-diagonal
derivatives B /BE„BE„. Note also that the n=O modes
are now coupled to the n&0 modes and hence we have in-
cluded the relevant part of the n=0 Hamiltonian Ho [cf.
Eq. (3.25)j.

Because of the new cross terms, Hi is not of the form
described in Sec. II. Schematically, we can represent the
full Hamiltonian as

H=gT~ —
—, +gv q,
B, B

~ Bq Bq', Bq
(88)

where q stands either for field variables or nucleon coordi-
nates. [The form studied in Sec. II is obtained if
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T~.cc5~ and V depends only on coordinates: V= V(q).]
Here V incorporates the first three terms in Eq. (86),
while all remaining terms are included in Tqq. The new
form of the Hamiltonian requires three mod~ifications in
implementing the Monte Carlo procedure, all of which
may be carried out straightforwardly in practical applica-
tions.

First, in determining the trial meson wave function [Eq.
(3.38)], one must invert and calculate the determinant of
the matrix T. This may be easily done to O(1/M), which
is sufficient, since the reduction procedure leading to Eq.
(83) already omits corrections of O(1/M2) in the diago-
nal elements of T. Second, in evaluating the drift terms in
the evolution operator [see Eq. (2.8)], one must include the
momentum-dependent terms appearing in the potential
V(q, t}/t}q}. This is also straightforward. Finally, to write
the Hamiltonian with a finite number of vector meson
modes, one must include the corrections of order (1/M) to
the static nucleon-nucleon potential (3.35}. The first three
terms in Eq. (86) lead to a "recoil correction" of the form

gv 1
2

V'„„"(x, ,x, )=, ,5(x, —xt }
mv 2M Bx; 2M Bx

where Ia,bI:ab—+ba. There will also be modifications
coming from the "seagull" vertex cc V . These may be
calculated by evaluating the energy from the remaining
terms in Eq. (86) in the limit of fixed baryons and then
constructing a modified coordinate-space potential as in
Sec. III. One may then include these corrections in the
static Hamiltonian (3.36) and, as discussed in Sec. III, re-
place the desired number of dynamic modes using the ex-
pressions in Eq. (86). Note that since (89) is a "quasilo-
cal" contact interaction, it can be used in the periodic sys-
tem without worrying about images. In addition, since
the corrections (86) are already of order (1/M) and
dynamic effects of the vector meson are small, it may be
possible to include these effects using the "static" poten-
tials alone.
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