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Nuclear temperature effects in the scission-point model of nuclear fission
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According to the scission-point model, the probability for a particular fission event can be ex-
pressed in terms of the collective potential and the collective kinetic energy at the scission point.
Two additional assumptions make the scission-point model an easily calculable model: the assump-
tion of equal collective kinetic energies for constant distances d between the tips of the fragments,
and the assumption that one is able to characterize the excitation energy of the fragments with a nu-
clear temperature T, independent of both the mass ratio and the charge ratio, and of the deforma-
tions of the fragments. It is pointed out that the latter assumption violates energy conservation. A
modified, recursive procedure is proposed, resulting in an "energy conservation consistent"
scission-point method. Mass and charge distributions for the fission of U and Cf compound
systems have been calculated and compared with distributions following the ' standard" scission-
point method of Wilkins, Steinberg, and Chasman.

NUCLEAR REACTIONS Scission-point model. Collective potential and in-

trinsic excitation energy. Nuclear temperature T. Mass and charge distributions.
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I. INTRODUCTION

During the past decennium, the theoretical aspects of
the nuclear fission phenomenon received much atten-
tion. ' From such studies, ' it has become clear that the
various distributions of induced fission are mainly deter-
mined between the outer saddle point and the scission
point (Fig. 1). In spontaneous fission, an additional role is
played by the penetration of the fission barrier between
the ground state and the exit point. In some, more con-
strained studies, one only considers the saddle point or the
scission point itself as the most important configuration in
determining the fission characteristics.

The "scission-point model" basically assumes that
there exists an equilibrium among the collective degrees of
freedom, near the scission point, which can be character-
ized by a collective temperature T„].As the most impor-
tant collective degrees of freedom one considers the fol-
lowing: the mass ratio Ai/A2, the charge ratio Zi/Z2,
and the deformation parameters sets IP& I and IP2] of the
nascent complementary fragments. According to statisti-
cal mechanics, the probability P(A;,Z;, I P; I ) for a partic-
ular fission event then becomes proportional to
exp[ E„i/T„~].Here E„—i(A;, Z;, IP; I ) expresses the to
tal collective energy available to the collective degrees of
freedom at the scission point. This collective energy
remains constant after the scission point and can be calcu-
lated for each scission configuration as the sum of the col-
lective potential energy and the collective kinetic energy.

Taking into account energy conservation (see Fig. 1), an
equivalent formulation of the scission-point model as-
sumption results in

P(A;, Z;, [P;])-exp[+E;„,/T, ~i] .

Here E;„,(A;,Z;, IP;I) stands for the energy absorbed by

the intrinsic nucleonic motion during the fission process
from saddle point to scission. Thereby, the equivalent
amount is dissipated from the collective degrees of free-
dom. Consequently, a precise knowledge of the collective
potential energy and of the ratio of the intrinsic nucleon
excitation energy to the collective kinetic energy, at a mo-
ment after the scission point, is necessary for a well-
founded description of the fission characteristics. When
calculating the collective potential energy, no particular
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FIG. 1. Energy conservation, illustrated schematically for the
fission process between saddle point and scission point.
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difficulties arise (cf. the detailed calculation of fission bar-
riers ' ). In order to obtain the collective kinetic and the
intrinsic excitation energy, however, one has to study ihe
process between saddle point and scission point by solving
a time-dependent Schrodinger equation. This implies, in
general, enormous numerical efforts. '

II. ENERCx Y CONSERVATION CONSISTENT
SCISSION-POINT MODEL

In the scission-point model of Wilkins et al. , ' simple
numerical calculations become possible by the introduc-
tion of two additional assumptions:

(i) One replaces the factor

exp[ —(E„ir, +E„ik;„)/T„i]
by the factor

exp[ —E oi, ~,a~T oil

where E«i ~, d(A;, Z;, [P; j ) describes the collective poten-
tial energy of the post-scission configuration, with a dis-
tance d between the tips of the produced fragments. The
distance d is assumed to be constant, independent of the
particular scission configuration. Only under the condi-
tion that the collective kinetic energy, calculated with a
constant value of d, is independent of both the mass ratio
and charge ratio, and of the deformations of the frag-
ments, can the factor

exp[ —E-i,k.~T..i]
be taken out of the total exponential and considered as a
constant for the particular fission process.

(ii) One assumes that the intrinsic excitation of the fis-
I

sion fragments can be described by one-quasiparticle exci-
tations, so that the occupation probabilities of the proton
and neutron single particle levels satisfy Fermi distribu-
tions with parameters Tz(A;, Z;, [P; j ) and T„(A;,Z;, [P; j )
for protons and neutrons, respectively. Moreover, one as-
sumes that both T~ and T„equal the nuclear temperature
T. The parameter T is assumed to be independent of the
collective degrees of freedom at the scission point, and is
expected to be only a function of the extra excitation ener-
gy at the saddle point (Fig. 1).

Using these additional assumptions, it becomes possible
to calculate, in a simple way, scission probabilities
P(A;, Z;, [P; j ) starting from the following:

(a) temperature independent quantities: Coulomb and
nuclear interaction energies between the fragments and
liquid-drop energies of the fragments;

(b) temperature dependent microscopic corrections:
proton and neutron shell and pairing corrections.

Although both assumptions (i) and (ii) are essential to
make the scission-point model a calculable model, they are
subject to fundamental criticism. In the following, we
concentrate on the aspects related to nuclear temperature
in the scission-point model. Assumption (i) of constancy
of collective kinetic energy will be discussed in detail in a
subsequent paper.

In the scission-point model calculations of Wilkins
et al. , the excitation energy is assumed to be described by
the nuclear temperature T(A;,Z;, [P; j). Moreover, for
each mass ratio and charge ratio, and for each deforma-
tion of the scission configuration, one imposes the condi-
tion T (A;,Z;, [P; j )= T. At low nuclear temperatures
T(A;,Z;, [P; j ), the excitation energy E;„,(A;,Z~, [P; j )
(Refs. 12 and 13),

e„p—eF(Tp)E;„,= 1 th—
2T

E» ~ EF(T„)—
e, p Ep(Tp ——0)—+ g 1 tIr—

2T. e„„E„(T„=O),. —

is strongly dependent on the collective parameters:
(a) the single particle states e„aremainly dependent on

the deformation parameters [P; j of the fragments;
(b) the Fermi levels eF are mainly dependent on the

fragment mass neutron and proton numbers, (A —Z); and
Zl '

At higher temperatures, more and more terms in (2)
contribute to E;„,(A;,Z;, [P; j) and the variation of the ex-
citation energy as a function of the collective degrees of
freedom becomes less pronounced. One obtains the ap-
proximate relation

;E„,-( Ai+A)2T (3)

Whatever the precise relation E;„,(A;,Z;, [p; j ) vs
T(A;,Z;, [P; j ) is, it becomes clear that one cannot satisfy
the fundamental law of energy conservation during the
fission process, assuming a constant value for
T(A;,Z;, [P; j ).

Therefore, we propose the following modified pro-
cedure: Once the parameter d has been determined (d is

E,„=gg+P(A,,Z, , [P, j)E,„,(A, ,Z, , [P, j) .
3,. z,. Ip,. f

(4)

This quantity E„is very important when comparing cal-

I

the distance between the fragments for which all possible
configurations are supposed to have the same collective
kinetic energy), the collective potential energy is also fixed
sharply. One has to derive the intrinsic excitation energy
from energy conservation for each possible combination of
the collective degrees of freedom. Moreover, if one as-
sumes that one-quasiparticle excitations determine the oc-
cupation probability of the single particle states, the asso-
ciated temperatures must be fixed so that they correspond
to the intrinsic excitation energies derived from energy
conservation. The collective potential and intrinsic excita-
tion energies must then be calculated again with the de-
rived temperatures. This recursive method has to be car-
ried through for each fission event until the probabilities
P(A;,Z;, [P; j ) converge. With these probabilities and the
corresponding excitation energies E;„,(A;,Z;, [P; j ) one fi-
nally is able to derive the averaged excitation energy E„:
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culated and experimental results because of its relation-
ship with the experimental known excitation energy of the
compound system.

III. CALCULATIONS

Detailed calculations of fission characteristics have been
carried out using the Wilkins method and the "energy
conservation consistent" method as outlined in Sec. II.
We have used the liquid-drop mass formula of Seeger and
Howard' for describing the macroscopic part of the col-
lective energy. The Coulomb interaction energy was cal-
culated using expansions in the charge moments of vari-
ous order. ' The nuclear interaction energy has been ob-
tained using expressions as given by Krappe and Nix. ' A
value of 1.5 fm was taken for the parameter d, while for
the parameter T„&the value 1.0 MeV was used. Special
attention was given to the calculation of the microscopic
corrections. The single particle energies were calculated
starting from a Nilsson Hamiltonian. ' ' In contrast with
previous scission-point model calculations, a temperature
independent pairing strength was used, and pairing correc-
tions as well as the pairing gaps were obtained by solving
the temperature dependent Bardeen-Cooper-Schrieffer
(BCS) equations. In calculating the temperature depen-
dence of the shell corrections we did not use the less pre-
cise method outlined by Bohr and Mottelson; the shell
corrections were calculated by applying the Strutinsky re-
normalization method to single particle states with a tem-
perature dependent Fermi-occupation probability. ' ' In
the Appendix, we discuss in some detail the numerical
solution to this problem. No attempts have been under-
taken to modify calculated potentia1 energies by adjusting
towards the experimental known ground state masses.

In Fig. 2(a) we illustrate the calculated mass distribu-
tions for the fission of a U compound nucleus using the
energy conservation consistent scission-point method.
The resulting mass distributions correspond to different
values of the averaged intrinsic excitation energy E,„at
the scission point (no temperatures can be specified any
longer) In the. se calculations, we assumed that, for a par-
ticular fragment configuration:

(a) The proton single particle states of the light and
heavy fragments could be described by the same tempera-
ture T~(A;,Z;, I P; j ) (analogous for the neutron single par-
ticle states).

(b) The proton and neutron nuclear temperatures,
T„(A;,Z;, I P; j ) and T„(A;,Z;, I P; j ), could be fixed so that
the excitation energies absorbed by each type of nucleons
becomes proportional to the number of nucleons available.

In Fig. 3, we compare the averaged nuclear temperature
for neutrons,

T„,(A;) =g g &(A;,Z;, I P; j )T„(A;,Z;, jP; j ),

with the nuclear temperature value according to the "stan-
dard" scission-point method. The relation T„„vsA; is
obviously very similar to the corresponding mass distribu-
tion, as is expected from combining relations (1) and (3).

In order to make the comparison with the standard
scission-point model calculations, carried out at different

constant temperatures T, one must also calculate each
time the averaged intrinsic excitation energy E,„using
Eqs. (2) and (4). Figure 2(b) gives the result of these cal-
culations for the fission of U. Although the standard
scission-point calculations are completely contradictory to
energy conservation, no spectacular differences between
the two methods result at high averaged excitation ener-
gies. This observation is expected: The relation express-
ing temperature versus intrinsic excitation energy (3) be-
comes less steep at higher excitation energies. Moreover,
the temperature dependence of the shell corrections 5S is
not very pronounced [ ~

d(5S)ldT
~

& 5], and the pairing
corrections only depend on temperature below the critical
temperature. The temperature dependence of the pairing
gap is only significant in the neighborhood of the critical
temperature.

In even-even fissioning systems, the difference between
standard and energy conservation consistent calculations
is expected to be larger. Indeed there, more than in the
fission of odd-even systems, odd-even effects do show up
manifestly. Consider, for instance, three configurations
(one with four, one with two, and one with no odd num-
bers of nucleons) which would have the same potential en-

ergy, not taking into account odd-even effects (Fig. 4).
The energy conservation consistent calculation generates
three different temperatures T4 & Ti & To, of which the
lowest belongs to the configuration with the strongest
odd-even effects, so that these disappear in a retarded
manner when rising the excitation energy. On the con-
trary, the standard calculations would have produced the
same averaged excitation energy for a single temperature
T„,higher than both T4 and T2, and consequently the
odd-even effects would be much smaller at the same aver-
aged excitation energy. From Fig. 5, in which we com-
pare the standard and energy conservation consistent
scission-point model calculated mass distributions for the
fission of Cf at various averaged excitation energies,
these intuitive arguments are fully confirmed. . The domi-
nance of odd-even effects in the mass distributions disap-
pears quite suddenly in the standard calculations at an
averaged excitation energy of about 11 MeV. In energy
conservation consistent calculations, however, the domi-
nance only disappears very slowly.

The difference between both approaches comes out even
more pronounced when comparing charge distributions.
In Fig. 6, we compare the (Zz —Z„,d) values, calculated
according to the standard (T =0.832 MeV) and using the
energy conservation consistent treatment, at an averaged
intrinsic excitation energy of 15.3 MeV per U fission
event for both . The standard curve contains an oscilla-
tion with a period of 3.5 mass units, as well as a strongly
pronounced %=82 shell effect. On the other hand, the
energy conservation consistent curve contains the same
pattern as the well-known experimental (Z~ —Z„,q) curve
for the thermal neutron induced fission ' of U: An os-
cillation with a period of five mass units.

IV. CONCLIJSIGN

According to the scission-point model, the probability
of a particular fission event, characterized by a given set



NUCLEAR TEMPERATURE EFFECTS IN THE. . . 1643

I I i I ~ I f I I ~ I I 't I I I ~ I I I I I
f

I I I ~ I ~ I I I ] ~ I I I ~ I I I I
~

I I I I ~ I I I I ) I I \ I I I I I f tl I I I I I I'lit l1 I I I I I II
/

'I I ~ I I I II I i 111 ~ 11 I I I
t

I I I ~ 11111
1

I I I I I 'I I

Z',

sv 1.4 MeV
I

I I
I

I I I I I I I I ~ [ I I I I I ~ I I ~
t

1 I I ~ I ~ I f I
)

~ I I ~ I I I I I
/

I I I I f 1 I I I } I f I I I rl

90 100 110 120 130 140
f I t I I ~ I ~ I I I I

/
f I I I ~ I I \ I

/
I I I I I I ~ I I 't I I I I I f I I ~

/
I I I f I I I I I ] ~ I ~ I I I I

90 100 110 120 130 140

MASS NUMBER A

FIG. 2. Mass distributions for the fission of 'U, calculated in (a) the energy conservation consistent (left-hand side) and (b) the
standard scission-point model (right-hand side).

of collective parameters, is determined by the sum of the
collective potential and collective kinetic energy of the
post-scission configuration characterized by the same pa-
rameters. The precise knowledge of the collective kinetic

energy can only be obtained by studying the dynamics of
the fission process between the saddle point and the scis-
sion point. Calculations do simplify much, imposing a re-
lation between the collective kinetic energy and the vari-
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ous collective degrees of freedom at the scission point
(mass ratio, charge ratio, and deformations of the frag-
inents).

Whether the collective kinetic energy is imposed or cal-
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culated, the value of the intrinsic excitation energy (ab-
sorbed by the nucleons) is fixed unambiguously by energy
conservation. If one describes the excitation of the frag-
ments by one-quasiparticle excitations, then the values of
the parameters T(A;,Z;, [P; j) of the Fermi occupation
probability of the single particle levels become fixed for
each combination of the collective degrees of freedom.
They cannot be chosen freely, as was the case in the stan-
dard scission-point model of Wilkins et al. The differ-
ence between energy conservation consistent and standard
scission-point model calculations of charge distributions is
quite pronounced for a given value of the averaged intrin-
sic excitation energy. The difference between the two ap-
proaches is not very spectacular when comparing mass
distribution calculations: Differences only occur when
comparing odd-even effects. The dominance of those
odd-even effects disappears quite suddenly in the standard
calculations, but disappears very slowly in energy conser-
vation consistent calculations.
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FIG. 4. Schematic representation of the disappearance of
odd-even effects, for a particular choice of the (constant) collec-
tive kinetic energy, using the energy conservation consistent and
the standard scission-point model, respectively.
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APPENDIX: NUMERICAL CALCULATION OF TEMPERATURE DEPENDENT SHELL CORRECTIONS
ACCORDING TO THE STRUTINSKY RENORMALIZATION METHOD

Assuming an occupation of the single particle levels of the Fermi type (with nuclear temperature T), one obtains' for
the shell correction (for instance, y = 1.3fuuo and p =6):
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E—EF
1 —tA

'XX
~=1 n =0

even

T

H„(0)H„
y

exp"n!

2

dE. (A 1)

A=+ 1 —th
x=1

(A2)

Ep —E~",T,
y

(A3)

and the functions q„(x,T) and p„(x,T) stand for

+ 00

p„(x,T)= —,
' f e ' H„(t) 1 —th dt

(A4)

Here H„(x)denotes the Hermite polynomial of degree n;
E~ and Zp are the solutions of, respectively,

q„(x,O) = —e " [ , H„(x—)+nH„z(x)], (A7)

H )(x)=—

even

assuming conventionally

e+" [1+erf(x)] . (A8)2'
For an arbitrary value of T, the integrals (A4) and (A5)
have to be calculated numerically. This is extremely time
consuming, in view of the fact that, in solving fission
problems, tens of thousands of shell corrections have to be
calculated. However, after iteratively repeated partial in-
tegrations of expressions (A4) and (A5), one obtains a
series expansion in powers of T:

. k
Qo T —Xp„(x,T) =p„(x,O) —g Pk —H„+k ~(x)e ", (A9)

k=2

r

+ oo

q„(x,T)= —,f e ' H„(t) 1 th-
j

(A5)

q„(x,T)= q„(x,O)

k
oo—g pI, — [ ,'H„+k(x)—

k=2
even

Only in the limiting case T =0, can expressions (A4) and
(A5) be calculated independent of the x value. One ob-
tains with

—X+nH„+I, 2(x)]e (A 10)

p„(x,O) = —e "H„~(x), (A6) (2 —2)
(Al 1)

0.0

u
~~ —0. 2

Rl
I

—0. 4

Bk is the Bernoulli number of order k. Since
limk pk ——+2, expansions (A9) and (A10) are oscillat-
ing divergent, but of the asymptotic type, owing to the

—Xe " factor: Up to a certain k value, X, the successive
terms in (A9) and (A10) become smaller and smaller; for

l

I

I

I

'L I0

h &j p (x)..(., D) — t:, (-'„)'
even

—1.0
120 "25 130 135 140 145
115 110 105 100 95 CIO

A

FICx. 6. (Z~ —Z„,d} values in the charge distribution of the
fission of 'U, calculated in the energy conservation consistent
scission-point model (denoted with a solid line) and in the stan-
dard scission-point model (denoted with a dashed line).
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FICr. 7. Schematic representation of the effect of truncating

the series expansion ofp„(x,T) at any order k.
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k &K, they become larger with alternating signs (see Fig.
7). Consequently, truncation of these series ever yields
finite errors. These errors are obviously totally negligible
as far as T/y &1/10, which corresponds with tempera-

tures up to 1.0 MeV. Shell correction calculations at arbi-
trary temperature T, relying on this method, only require
about three times as much time as required by shell
correction calculations at zero temperature.
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