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A simple transparent formalism is presented for following the ensemble averaged evolution of an
excited system as it statistically emits particles. The formalism provides spectra and multiplicities
for the emitted particles. It permits consideration of large numbers of emitted particle species, in-

cluding those of medium mass, and a large number of excited states. The time developments of tem-

perature, mass, charge, Coulomb barrier, and recoil velocity are investigated with regard to their in-

fluence on multiplicity and spectra. Emission of resonant states is limited to those with decay rates,
fi/I, slow compared with emission rates which are readily calculable with the formalism.

NUCLEAR REACTIONS Developed ensemble averaged formalism for statisti-
cal decay of excited nuclear system. Time evolution of nuclear temperature,
mass, charge, Coulomb barrier, recoil velocity; emission of light, medium mass
particle stable, unstable composite fragments; multiplicities, energy spectra

calculated.

I. INTRODUCTION

We consider here the nuclear process in which a succes-
sion of particles is emitted from an excited nucleus. To
analyze this we develop a formalism for following the
averaged evolution of the system as the initial excitation
energy is transferred to the emitted particles. The ap-
proach permits the types of emitted nuclear particles to
have arbitrary mass number, charge, spin, and state of ex-
citation. In order to predict multiplicities and spectra, we
integrate the contributions for each type of particle from
each stage of the deexcitation process. The formalism
that we have constructed is simple in structure and con-
tent, yet appears to be sophisticated enough to include
those important average properties of nuclei that are
necessary to provide reliable estimates of multiplicities
and the shapes of emission spectra. The method is much
faster at calculating multiplicities and spectra of emitted
particles while treating a larger assortment of emission
species than currently used procedures' which succes-
sively calculate the individual decay chains; however,
some loss of detail does occur especially concerning the
target residuals. Although earlier works have attempted
to accomplish the goal of integrating the averaged ensem-
ble of systems, the formalism here is specifically chosen
to make transparent the physical phenomena influencing
the emission process. It uses a new and reasonable cri-
terion to select excited states for inclusion in the emission
process.

Let us consider the decay of a compound system labeled
C into a daughter 8, capable of further decay, and a parti-
cle labeled b. We take Nb to be the number of emitted
particles of type b. Then d %b/dt dE expresses the rate of
emission (at kinetic energy E into a given interval dE) of
that type of particle.

We build our formalism about a model expression for
this double differential quantity and obtain spectra from it
by the time integration

dNb ~ d~Xb
dt .

dE 0 dE dt

The emission rate is obtained by an energy integration

drab d Xb dE,
dt o dE dt

(1.2)

and the multiplicity by a further time integration

drabNb= f dt. (1.3)

It is convenient to characterize the instantaneous state
of excitation of the residual system by a temperature T,
which ranges, during deexcitation, from T „down to
zero. The time integrations indicated in Eqs. (1.1) and
(1.3) are performed by converting to the corresponding
temperature variable and using

Our approach is first to obtain an expression for
d Nb/dEdt which is a function of T, and using that to
obtain the emission rate drab/dt and subsequently a cool-
ing rate dT/dt which also is a function of T.

The following two sections (II and III) are devoted to
developing these expressions. In Sec. IV, we discuss the
question of the emission of excited nuclei and in Sec. V we
discuss the questio~ of the validity and certain general
properties of the formalism.
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II. EVALUATION OF d~N/dE dt

Let us first consider the emission of neutrons (particles
of unit mass and zero charge) and treat the process from
two points of view: (a) the evaporation of a Fermi gas
from a spherical well of depth Uo and radius R, and (b)
statistical emission from a many-body excited nucleus.
We shall compare the results of the two approaches.

For the evaporation, we take k to be the particle
momentum measured from the bottom of the potential
well and p the particle momentum measured from the top,
so that

I 2 2
p +U

2m 2m

The phase-space density for a Fermi gas is given by

d n

d rd k
2s+1 1

(2~)3 (
(k2/2m )I )/T+ 1)—

(2.1)

(2.2)

where T is the temperature, p is the chemical potential,
and s is the spin of the particle. (s = —,

' for neutrons. )

The differential flow from a surface element d A is
given by

d3r d
(2.3)

where n is the normal to the surface, v is the external
velocity of the emitted particle, and 8 is the function
which equals unity for a positive argument and is zero
otherwise. If U d p is given in terms of the kinetic energy

6+8, we take

d X
dE dt

2s+1
EMcrb+~ c[co/i(E/i)/co, (E, )],

(2 g)

20 b ++~( —7T~b (2.9)

For charged particles, on the other hand, the cross section
is effected by the Coulomb repulsion and is approximately

Ob+g~Q =mRb
E —V 8(E —V), (2.10)

where V is the Coulomb barrier.
With Eq. (2.10) inserted into (2.8),

d Nb ~R 2

dE dt
= (2s + 1) (E —V)8(E —V)M3

X [ebs(Es)/~, (E,*)] . (2.11)

where M, E, and s refer to the mass, kinetic energy, and
spin of the emitted particle b; and where co~(E~) is the
density of states for the daughter system 8 at the excita-
tion energy Ez, which remains after particle b is emitted
with kinetic energy E from the compound system C, origi-
nally having excitation energy E,*. For the present, let us
neglect the corrections due to recoil of daughter nucleus 8.
The quantity o.b+z ~ is the cross section for the forma-
tion of system C which we take to be geometrical. For
neutral particles,

Ud p=2mEdEdA, (2.4)

and the yield is integrated over the entire surface, one ob-
tains the following differential result:

m~R2 1
(2s + 1)EO(E) (Ee )

s(,E*) (2.12)

In order to compare Eq. (2.11) with the Fermi gas
evaporation result of Eq. (2.7) and to generalize this ex-
pression, let us express the densities co& and co, in terms of
the corresponding entropy functions S(E*),

so that
(2.5)

For the case of a proton or heavier charged particle, the
emitted particle must surmount a barrier of height V.
Then the result of Eq. (2.5) generalized to

[S(E,*) S(E~)]- —
(cue/co, ) =e (2.13)

The entropy functions depend not only on E but also on
volume ( V) and particle number (X), with

d X
dE dT

(2s + 1)(E—V)g(E —V)

1
X +(F.+ Uo —p)/T

(e ' +1)
(2.6)

BS 1

~E ~v

BS
T

(2.14a)

(2.14b)

For

E+ Uo —p »T
For a change in entropy at constant volume, Eqs. (2.14)
provide

we obtain ZS= —SE—~SX .
1

T T
(2.15)

d N
dE dT

m mR
( 1)(E—V)0(E —V)

E/T [P Uo )/T
Qe e (2.7)

To use this expression for changes at constant volume in
Eq. (2.13) we take

E,*=Eg+E+ U,

Let us now consider the statistical emission approach of
Weisskopf. For the decay of a system labeled C into

where U reflects the fact that the emitted particle is ini-
tially bound. For emission of a nucleon (hX= —1) the
ratio co& /co, becomes
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—E/Te (P —U)/T
coB co, =e e g 16) For the corresponding factor in Eq. (2.7) we have

When this is substituted into Eq. (2.11) the result is identi-
cal to Eq. (2.7) provided U is associated with the well
depth Uo.

For particle emission from nuclei, we can relate the
change in excitation energy to the masses of parent and
daughter nuclei by the conservation of energy:

E, EB E—+——(MB ~Mb —M, )c

—E/T (~ Up)/T
e e

p=po+ , e—+f
where po is p (T =0). Substituting for a we obtain

(2.27)

The finite temperature chemical potential p can be ex-
pressed as follows;

e* =E*/A,
0 =S/A,

(2.18)

(2.19)

where A is the number of particles. While the entropy is a
function of E, V, and A, the intensive quantity o. must
depend on e* and p, i.e., other intensive variables. A
change in entropy with constant density thus becomes

AS=A, Ae*+o.M
Bc

(2.20a)

A he' +0~ . (2.20b)

To calculate the change in the reduced energy, he, for
the emission process, we use Eqs. (2.17) and (2.18) to ob-
tain

The expression in parentheses is just the ground state
separation or binding energy for particle b which we shall
call Bb here.

With emission from a nuclear system it is the density of
the daughter system which is more likely to be equal to
the density of the compound system than the volume of
the daughter is to be equal to the volume of the com-
pound. For this reason we consider an entropy change
which occurs at constant density (rather than constant
volume). Let the intensive quantities e' and o be related
to the excitation energy and entropy by

+(P—
p &p p f (2/3)e*/Te =e e (2.28)

If (Uo —po) is identified with the separation energy Bb
Eq. (2.28) gives

(p —Up)/T (f*—Bb)/T (2/3)p /Te =e e (2.29)

(p —Up)/T Abf —Bb /T (2/3 Ab /T0 e b b (2.30)

Note that the evaporation expression differs from the cor-
responding constant density statistical emission expression

(2/3)Abc*/T
in Eq. (2.26) by a factor of e b . A significant
difference is therefore expected in the prediction of the
particle yield depending on whether one uses the evapora-
tion approach from a fixed potential well or the constant
density statistical emission approach. We will use the
latter in the remainder of this work.

To evaluate f*, which is a function of the instantaneous
temperature T, we use the Fermi gas model in which pro-
tons and neutrons are treated separately while being con-
fined to the same volume. Thus there are different densi-
ties for each type of particle, p (for protons) and p„(for
neutrons) with

W/p~=Z/p~=A /p . (2.31)

for single nucleon evaporation from a fixed potential well.
For emission of a particle of mass Ab we may approximate
the result by

ABeB =A e (+++b ) (2.21) The quantity f* is a function of temperature and density,

and with Ab the mass number for the emitted particle, f'(T p) =@*(T,p) To(T p) . — (2.32)

Ab eB E+Bb
&B —&c = (2.22)

Ab (e —Tcr ) Bb-
b,S=—E/T+ T

(2.23)

It is convenient here to define a reduced free excitation en-

«gy f

Finally, approximating eB by e*, =—e* we obtain the change
in entropy at constant density from Eqs. (2.20) and (2.22),

While we assume p is constant in the emission process the
relative number of residual neutrons and protons changes
with time, and thus, in genera1, p and p change and
hence, in general, f* is different for protons and neutrons.

The change in residual mass number A, and change Z,
introduces a time (temperature) dependence for the separa-
tion energy Bb. We use the liquid drop formula for the
masses of the instantaneous compound and residua1 nuclei
and the tabulated masses for the emitted particles. For
the former we have used

f*=e*—To, (2.24)

which is related to the Helmholtz free energy I' by

F E
A

(2.25)

E/T (Abf —Bb )/T
cuB/co, =e e (2.26)

where Eo is the ground state energy. In terms of f*, the
ratio coB/co~ which appears in Eq. (2.11) becomes

M (A9Z) = 14. 1A —1 3A / —0 595Z /A ' /'

—19(A —2Z) /A . (2.33)

The pairing term is omitted because one is at high excita-
tion energy and is averaging over neighboring nuclei in the
evolution.

In treating the Coulomb barrier for Ab &2 we use a
touching-sphere approximation,
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Zb(Z, —Zb )e

r, (A ' +(A, —A )' )
foi Ab)2,

b (Z 1) 2

for protons,
r,A, '/3

(2.34)

where r, is taken as 1.44 frn. The barrier Vb is implicitly
a function of time (temperature) through the correspond-
ing dependence of Z, and A, .

Combining all of the ingredients above we have the fol-
lowing expression for the rate of emission of particles of
type b:

d Ng mbmRb

dE dt
=(2Sb+1) (E —Vb)exp 0(E —Vb)exp[(Zbf*(T, p )+nbf*(T,p~) Bb)/T—],2/3

(2.35)

Rb ——

where ro ——1.2 frn.
We have to this point neglected the recoil of the daughter nucleus B which attends the emission of nucleus b. This

feature is easily included by replacing the kinetic energy E above with the total kinetic energy of both b and B in the rest
frame of the emitting nucleus c, E, , and by replacing mb by the reduced mass,

mb =mba ~(Mb+~g) .

where Zb+nb ——Ab, with Zb the number of protons and nb the number of neutrons for the emitted nucleus. mRb is the
geometri. cal cross section associated with the formation of the compound nucleus from particles b and B. We take

[(A, Ab)'—+Ab' ]ro, for Ab )2,
r (A, —1), for Ab ——1,1/3 (2.36)

This provides

d Nb =y X(E, , T,b)F(T, b),
dE, dt

with

2
m&ro

~3
X(E,T,b) =[E—Vb(A, (T),Z, (T)}]e 0[E—Vb(A, (T),Z, (T)}],

Ab(Ac —Ab)
F(T,b)= (2Sb+ 1)[(A,(T)—Ab)'~ +Ab'~ ]

A,

(2.37)

(2.38a)

(2.38b)

XexpI [Zbf*(T p )+nbf*(T p„) Bb(A, (—T),Z, (T))]/T] . (2.38c)

The first factor y in Eq. (2.37) is a constant, while the
second factor X contains all of the energy dependence.
The factors X and I' depend on the type of particle emit-
ted and the temperature both explicitly and implicitly
through the time dependence of A, and Z, . The energy
spectrum of particle b in the rest frame of the emitting nu-
cleus is therefore given by

d Nb d Nb dEc~ d Nb A,
dEc~dt dEc~dt dEic~ dEc~dt Ac —Ab

(2.39)

where Ei, is the energy of particle b alone in this frame.

III. THE COOLING CURVE T(t)

so that the spectra and multiplicities arising from the en-
tire evolution may be calculated via Eqs. (1.1)—(1.4).

The variation of the temperature with time for our en-
semble averaged system is given by the ensemble averaged
expression of the conservation of energy,

dE,* dNb d (Ex)b+ Bb+ =0,
di b dt b dr

where

(3.1)

d (Ez)b
dt

is the average rate of change of kinetic energy carried by
the emitted particles of type b and the recoiling nucleus B.

Let us consider protons and neutrons separately then,
In the preceding section we established an expression

for the rate of emission of particles as a function of tem-
perature. In this section we relate the temperature to time

I

Ec =Zc& (T,p )+Neo (T,p~) .

Differentiating with respect to time,

(3.2)

dE,' dZ, , dN, „ge'(T,pv) gT Be*(T,p ) ()T
(3.3)
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Conservation of particle number relates the loss of particles from the compound nucleus to the number of emitted parti-
cles by

dZ, dNb
Zb

dt b dt
(3.4a)

dX,
dt

dNb
ftb (3.4b)

Combining Eqs. (3.3) and (3.4) in (3.1), and using the specific heat C, —=Be /BT we obtain the desired cooling curvedT, dNb, , d «z)b
dt

= [N, C, (v)+Z, C„(vr)] ' g [Bb Z—be*(w) —nbe*(v)]+
b dt

(3.5)

where

&*(~)=AT,p„), e*(~)=&(T,p ), C, (~)= de*(~)

and

( )
de*(v)

dT

For d (Ez)b /dt we have

d(E~)b m d Nb —Vb /T=f E, dE, =2T (1+0.5Vb/Te ' yF(T, b), (3.6)

and for dNb/dt,

dNb oo d Nb ~
—Vb /T= f dE, =T e b yF(Tb) .

dt vb dtdE

(3.7)

Z, (T)=Z, (T „} g f— Z„dT . {3.8b)
b max dt dT

The Coulomb barrier for each type of emitted particle
evolves with T according to Eqs. (3.8) and {2.34). The
binding energy also evolves with time,

Integrating Eq. (3.5) enables us to uniquely relate tempera-
ture to time as shown in the example displayed in Fig. 1.
We can obtain the history of the ensemble averaged mass
number and charge by

A, (T)=A, (T,„)—g f Ab dT, (3.8a}
d&b

c c mRx z- d g)T

Bb(T) =Bb(A, (T),Z, (T)},
where

Bb(T) =M(A, {T),Z, {T) )

—M(A ( T) —Ab, Z, ( T) —Zb ) M(Ab, Zb )—

(3.9)

(3.10)

IB-

l6-

I4-

) l2-
CP

& lO-

8-
6-

2-
I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I s r

lO' lO~ lO' lOS lO'o

tIITle (tfTl/C)

P, =&Pb
b

(3.11)

(P, ')= gP, Pb) .
bb'

(3.12)

For random orientation of pb,

and Eq. (2.33) is used for M(A, Z) of the compound and
the residual systems. Figure 2 illustrates the decrease in
quantities A, (T), Z, (T), Bb(T), and Vb(T), and Fig. 3

shows typical variations in decay rate dNb(T)/dT as the
system cools.

Finally, we consider the evolution of the mean recoil
momentum for the emitting system. Conservation of
momentum provides

FIG. 1. The monotonically decreasing dependence of nuclear
temperature on elapsed time for evaporation is shown for a nu-
cleus with initial parameters Z, ( T,„)=55, 2, ( T,„)= 133,
T,„=18,and eF ——38.

b

(3.13)

To obtain (pb2) we use Eq. (3.6) and perform the follow-
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ing integration:

d (Etc)b dt
(pb }=f 2mb gT,

where mb(T) is the reduced mass

Ab[A, (T) Ab ]—
A, (T)

(3.14)

& (T)=— (P, (T)} .
3 mph,

(3.15)

d2Nb =yg'(E„, T,b)F(T,b) A, /(A, —Ab),
dEi,mdt

The recoil correction in Eq. (3.15) modifies
Nb /dEicmdt in Eq. (2.39),

The velocity of the emitting source is then taken to have a
gaussian distribution about its mean with a distribution
e -"'"~"~) where

(3.16)

2 2 2 d Vg'(E), , T,b)= fg — (v —v, ),T,b e
mb (2mb, )

i (3.17)

and —,
'

mbv =Ei, . This recoil correction modifies signi-
ficantly the energy spectra for heavy particles which pri-
marily are emitted in later stages of the cooling process,
but the light particles tend to be unaffected as indicated by
Fig. 4. The rate of particle emission dNb/dt given by Eq.
(1.2) is of course unmodified.

In summary we have shown in this section how the ulti-
mate observables, multiplicities, and energy spectra are in-
fluenced by the evolution of the cooling process.

IV. EMISSION OF EXCITED NUCLEI

Nuclei may be emitted not only in their ground states
but also in any of their excited particle stable states and, in
certain circumstances, in particle unstable states. These
nuclei must be counted along with the ground state in
determining the yield of a given isotope. If emitted, the
particle-unstable excited states should be included in the
experimental data as part of the yields of neighboring nu-
clei. Some criterion is necessary to determine which
particle-unstable resonances must be included. This cri-
terion is an important consideration in any model of parti-
cle emission and has a significant influence on the predict-
ed yields and spectra and thus can be tested. The formal-
ism given in this paper provides a time scale, namely, the
mean time until emission of particle species b,
(dNb/dt) '. We include resonances with lifetime, A/I b,
long with respect to the emission time

—1

dNb
A/I b ))

dt

Conversely, resonances with
—1

dNb
A/I b ((

dt

are not included. We find most resonances satisfy one of
these criteria.

For T,„10—20 MeV the emission rate is sufficiently
fast to require inclusion of particle unstable isotopes of
hydrogen and helium, both of which experience little
Coulomb inhibition and are light masses and hence are
easily emitted. For the heavier elements AdN/dt corre-
sponds to widths of the order of 1 keV or less and hence

we exclude the particle unstable states of these nuclei. The
emission of unstable states of few nucleon systems influ-
ences the detected ratio of yields of p, d, t, He, and a par-
ticles. The emission of particle stable states of the heavier
elements greatly enhances the detected yield of these nu-
clides.

For our purposes the emission of an excited state in-
volves a process similar to the emission of the ground state
but differing in spin and in binding energy by an amount
equal to the energy of excitation. In principle, one should
include each excited state as a statistically independent
particle in the analysis of the previous sections. We find
that the emission of the heavier nuclides occurs in a rela-
tively narrow temperature window during the cooling pro-
cess. We make use of this feature in approximating the
emission of heavy nuclei in particle stable excited states.
These are included simply by multiplying the ground state
yield by the factor Yb,

Yb = ge ' (2S +1)/(2Sp+ 1)
—t.E,.*)/( &b )

i=0

where the sum on i runs over the ground state and all the
particle-stable states with excitation E;* and spin S;, and
where b labels the isotope, and ( Tb } is the mean tempera-
ture for emission of the ground state of that nuclide. The
exponential cutoff reduces the influence of discrete high
lying excited states since (Tb } is typically 5—7 MeV for
T „=20MeV.

V. DISCUSSION

The method for calculating the particle emission
described above assumes the existence of statistical (equili-
brated) distributions of states during the process. The
method, however, also provides a means of calculating a
definite time scale associated with the emission. Thus for
any given system this calculated scale can be compared
with other characteristic periods in order to evaluate the
validity of these underlying assumptions which rely on
time. We used this procedure in the previous section for
the case of the emission of resonances. The availability of
this time scale is one of the attractive features of our ap-
pl oach.

It is explicitly clear that the calculated particle spectra
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FIG. 3. Derivatives of the emitted particle yields with respect

to temperature dN/dT for light and heavy emitted particle
species displayed for a parent nucleus with initial parameters
A, ( T „)= 133, Z, (T,„)=55, T,„=18, and e~ ——38. (a) shows
dX/dT when the emitted particle is a proton. (b) is the corre-
sponding prediction for ' C nuclei emitted in their ground states.
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FIG. 2. Evolution of the instantaneous parameters A, (T),
Z, (T), Bb(T), and Vb(T) as a function of temperature for a nu-
cleus with initial parameters A, (T,„)=133, Z, (T,„)=55,
T,„=18, and eF ——38. (a) and (b) indicate the decrease with
temperature of the parent nucleus mass and charge. (c) and (d)
show the variation with temperature [and implicitly with A, (T)
and Z, (T)] of the separation energy Bb(T) and Coulomb barrier
Vb(T) when the emitted particle is a ' C nucleus in its ground
state.

FIG. 4. Energy spectra with and without the random source
velocity correction of Eqs. (3.15)—(3.17). Crosses indicate spec-
tra calculated without the velocity corrections and dots indicate
spectra calculated with the velocity correction. (a) demonstrates
the importance of the random source velocity to a typical heavy
particle spectrum for a ' C nucleus emitted in its ground state.
(b) shows the comparative insensitivity of lighter mass fragments
to the random source velocity. Above 20 MeV the two calcula-
tions merge and only the dots are plotted.



2S STATISTICAL FORMALISM FOR PARTICLE EMISSION 23

involves an integration over the evolution of the cooling
system and hence are shaped by more complicated factors
than the initial temperature energy distribution. We find
that among these features are the isospin of the excited
system, the recoil momentum of the target, the reduction
of the Coulomb barrier which accompanies charge emis-
sion as well as the range of temperatures traversed. The
heavier particles are much more sensitive to the latter ef-
fects than are the light particles.

The effects due to the charge and isospin of both the
emitted species and the compound nucleus are quite sub-
tle. The two competing features here include the Coulomb
barrier which favors emission of particles with no, or low,
charge and the binding energy which favors a path for
emission along the valley of nuclear stability. The results
of these two features can affect both the spectra and mul-
tiplicities. In this regard, the model shows sensitivity to
the liquid-drop parameters.

The excited states of nuclear species can play a large
role with regard to multiplicities. As we indicated in the
previous section the observed yields are especially sensitive

to the level densities of the emitted nuclei at low excitation
energy. There are sensitivities of this model to other prop-
erties of the emitting system which have not been illustrat-
ed in the paper but are worthy of note. One property is
the mass density of the emitting system. This enters the
formalism through the choice of a mean Fermi energy for
the excited decaying nucleus. The value of the Fermi en-
ergy especially seems to affect the relative yield of the
heavy particles.

The results are also sensitive to the initial mass and
temperature of the decaying system. This sensitivity may
be useful in providing information about processes in
which only a portion of the nucleons of a colliding system
are participants.

In this paper we have presented the essential and the de-
tailed features for our model formalism for statistical par-
ticle emission. We have also mentioned in very general
terms some of the features which determine the calculated
results. In succeeding papers we will examine the results
of applications of this formalism to particle emission from
specific systems.
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