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The sequences of states found in a microscopically derived ' O-' O potential are identified by en-

ergies and quadrupole moments as candidates for shape isomeric and molecular bands in S. The
8 (E2) transitions within and between the bands and the capture cross sections into shape isomers
and molecular states are calculated.

NUCLEAR REACTIONS S; calculated shape isomeric and molecular bands;
microscopically derived potentia1 model; electromagnetic transitions.

Long-lived, highly deformed states in light nuclei like
S have been predicted in several theoretical ap-

proaches. ' Shell model and constrained Hartree-Pock
calculations give evidence for the existence of so-called
shape isomeric states with high clustering found in a
second minimum in the potential surfaces. ' Microscop-
ic as well as phenomenological models predict long-lived
quasibound states found in the pocket of the heavy-ion
potential. These states, often referred to as molecular
states, are assumed to be responsible for the intermediate
resonant structure found in excitation functions of several
heavy-ion systems.

Although predicted on strong and diverse theoretical
grounds, the existence of shape isomers and molecular
states in light nuclei has not yet been confirmed experi-
mentally. The experimental search for long-lived de-
formed states in light nuclei is much more difficult than
for fission isomers in the actinide region, since these states
cannot be detected by the conventional isomer spectros-
copy due to much stronger background. It is therefore be-
lieved that an experimental identification of shape
isomeric or molecular states in light nuclei has to rely on
some conjectured level sequences whose band properties
agree with the picture of deformed states. Obviously the
experimental searches are aided by theoretical estimates of
the properties of these deformed states, such as energies,
quadrupole deformations, and 8 (E2) transition strengths.

In the present paper we report theoretical predictions
for the properties of shape isomeric and molecular states
in S. This calculation is based on the local &6O &6O po-
tential microscopically derived from the exact potential
kernels of the generator coordinate method. Consequent-
ly, the study satisfies conditions which are indispensable
for a meaningful investigation of long-lived, deformed
states: antisymmetrization and angular momentum projec-
tion are taken into account exactly. Our calculation
differs from previous studies in that it also allows us to
study excited deformed states and nonresonant states in an
easy and microscopically consistent way. In the present
case of S, our Hamiltonian predicts two sequences of
long-lived deformed states, which in accordance to other
theoretical approaches can be envisioned as shape isomeric
and molecular states, respectively, and for which there

might be some experimental support. This allows us to
calculate the electromagnetic transitions within a shape or
molecular band as well as the cross sections into shape
isomeric and molecular states, both of which might be
quite useful for an experimental identification of these
states.

In accord with previous studies, we assume in our cal-
culation that the deformed S states (angular momentum
1) are described by antisymmetrized products

~iC'o(ki )I'o(k2)gt(x))

The fragments are described by their harmonic oscillator
shell model ground states, while the unknown wave func-
tions gt(x) are determined by solving the Schrodinger
equation of relative motion:

d l (1 +1)R'
, +V(x)+, —E g, (x)=0.

2p dx 2@x
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The Pauli projector A, which projects off the Pauli forbid-
den states, ' is a consequence of the fact that exchange
antisymmetrization between the two fragments is con-
sidered in Eq. (1). Since the internal degrees of freedom
of the fragments are described within the harmonic oscil-
lator shell model, the Pauli forbidden states are known ex-
actly. In principle, Eq. (2) is the exact orthogonalized ver-
sion of the resonating group, but in practice the potential
V(x) is taken as an approximation to the exact potential
kernels of the resonating group or the generator coordi-
nate method (see Ref. 9 and references given therein). To
retain the microscopic character of our approach as much
as possible, the nucleus-nucleus potential in (2) is adopted
as the four Csaussian potential of Ref. 7, which is micro-
scopically derived from the exact GCM kernels. The
Coulomb part is assumed as the potential of a homogene-
ously charged sphere with radius 3.8 fm. '

Let hl and kI denote the relative wave function of a S
bound state or narrow resonance" of type (1) as deter-
mined by Eq. (2). Then the E2 transition between these
states is given by

TI = (@oeohi
i
~Q~

I
eoeol t &,
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where Q Q0, 1+Q0, 2+ Qrel (5)
32

Q= $ —(1—r~)x; F2(x;) . (4) where Qo &
and Qo 2 only act on the internal coordinates

of fragments 1 and 2, while Q„,~
is given by

For simplicity we suppress the index m throughout this
paper. Since states of type (1) are T =0 states, only the
isoscalar part of Q (denoted by Q ) can contribute to (3).
Furthermore, Q can be factorized into

Q„,i ——p —x I'p(x ),re (6)

where p is the reduced mass. Equation (3) can be rewrit-
ten as'
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with
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about shape isomers and molecular states in S. By solv-
ing Eq. (2) with this potential, we find three series of
bound or resonance states. The ground state band of the
potential has a band head at E, = —8.14 MeV (corre-
sponding to an excitation energy of E*=8.40 MeV in S)
and a rotational constant of

B(E2,l'~l)=,
I Tf; I

~.
(Zl'+1)

The radiative E2 capture cross section or I(E) from a
scattering state W

I
@o4~t & at energy E into a bound

state or narrow resonance at E0 is given by
5

0
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where v„1is the relative velocity in the entrance channel.
We first want to show that the microscopically derived

' 0-' 0 potential of Ref. 7 makes reasonable predictions

The functions u„~(x)are radial harmonic oscillator wave
functions of width P =b /p, where b is the oscillator pa-
rameter of the internal factors in (1) (b =1.58 fm). The
quantities p2~+L are known analytically, ' while the
evaluation of the remaining matrix elements in (7) can be
performed numerically.

The reduced B(E2,1'~1) matrix element between two
states is finally given by

AE/I ( I + 1)=95 keV.

The members of the ground state band with I & 10 are
bound states, for l & 10 they are narrow resonances. The
first excited band is formed of narrow ("molecular" ) reso-
nances with a band head at E, =3.59 MeV. The third
band starts at E, =10.8 MeV, close to the Coulomb
barrier. Its members are rather broad ("shape") reso-
nances with widths of 1—3 MeV. It should be noted that
the S ground state band cannot be described by a cluster
ansatz of type (1) and is therefore not included in our cal-
culation.

In Table I we have listed the energies and electric quad-
rupole moments Q for the lowest band of the potential
with l (10. These results correspond to a sequence of ro-
tational states with an internal quadrupole moment
Qo ——2. 19 b with deviations of less than 0.5% between the
different members of the rotational band. The energies of
these states agree to within 100 keV with those of the S
states recently suggested as experimental candidates for
the S isomeric states. The present results are also in ex-

TABLE I. Energies and quadrupole moments of the ' S
shape isomers as predicted by the '60-' 0 potential of Ref. 7.
For comparison we also list the energies E,„~of the experimental
candidates for the S shape isomers as suggested in Ref. 6. The
energies are excitation energies in ' S. The resulting internal
quadrupole moment is Qo=2. 19 b. (MeV) (e fm)

TABLE II. Energies and quadrupole moments of the S
molecular states as predicted by the ' 0-' 0 potential of Ref. 7.
The energies are c.m. energies in the '60-'60 system. The result-
ing internal quadrupole moment is Qo

——3.09 b.

0
2
4
6
8

10

(MeV)

8.40
8.90

10.31
12.52
15.47
18.88

—62.7
—79.5
—87.9
—92.6
—95.0

Eexp
(MeV~

8.51
9.06

10.28

0
2

6
8

10
12
14
16

3.59
4.41
5.43
7.03
9.09

11.43
13.32
16.88
22.72

—88.0
—112.3
—123.9
—130.5
—132.4
—124.6
—122.5
—143.4
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6
8

10
12
14
16

0
2
4
6
8

10
12
14

Shape
isomeric

960.4
1361.8
1500.3
1577.7
1607.3

Molecular

1855.1
2700.9
2989.5
3131.2
3155.7
2787.3
2588.7
2715.8

TABLE III. Reduced 8(E2, l;~l~) matrix elements for the
transitions within the shape isomeric and molecular bands.

8 (E2, l; —+lg)
(e' fm4)

In a recent study' based on the same microscopically
derived ' 0-' 0 potential, it has been shown that many of
the resonant structures observed in inelastic ' 0-' 0 reac-
tions can be interpreted as the interaction of molecular
and shape resonances in the elastic and the respective in-
elastic channels. Moreover, the potential of Ref. 7 gives
simultaneously a reasonable description of the predicted

S shape isomeric states, as well as the ' 0-' 0 elastic and
inelastic reaction data. Consequently, it seems justified to
place some confidence in the capture cross sections and in-
traband 8 (E2) values calculated with this potential.

The reduced B(E2) matrix elements for the E2 transi-
tion within the shape isomeric and molecular bands are
given in Table III, while the B(E2) values for transition
from the molecular band to the shape isomers are listed in
Table IV. Compared to a single particle Weisskopf unit
of -6. 1 e fm, the calculated 8(E2) values clearly indi-
cate a strong collective phenomenon. For comparison, the

cellent agreement with previous calculations; i.e., in a vari-
ational study using the o.-particle model, Schultheis and
Schultheis predicted a band of shape isomers starting at
E, =7.12 MeV with an internal quadrupole deforma-
tion of Qo ——2.08 b, and in a self-consistent heavy-ion po-
tential calculation (although without angular momentum
projection), Zint and Mosel predicted a shape isomeric
band starting at an excitation energy of 8—9 MeV and
with Qo ——1.95 b.

The energies and the quadrupole moments of the first
excited (molecular) band are given in Table II. Except for
a small antistretching effect in the partial waves /=12
and 14, whose physical significance is unclear, all
meinbers of the excited band have the same internal mo-
ment Qo ——3.09 b with deviations of less than l%%uo. Due to
numerical convergence problems the deformations of the
broad resonant states cannot be calculated as outlined
above. The energies of these states are given in Ref. 16.

TABLE IV. Reduced 8(E2,l;~ly) matrix elements for the
transition from the molecular band into the shape isomeric
band.

8(E2, l; ~lg)
(e fm )
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2
0
2

2
4
6
4
6
8
6
8
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8

10
12

0
2
2
2

6
6
6
8
8
8

10
10
10

549.5
2910.4

776.6
788.6

1411.9
724.2
874.7

1289.3
739.1

1009.3
1276.1
789.7

1187.7
1306.5
883.8
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FICx. 1. Capture cross sections into the molecular states at
E, =13.32 MeV (l =12+) and 16.88 MeV (l =14+).



SHAPE ISOMERS AND MOLECULAR STATES IN 3 S 1577

experimental 8 (E2) values for the shape isomeric states in
Si are of the order of tens of Weisskopf units. '

The measurement of the gamma-particle decay branch-
ing ratios is generally believed to be a proper tool for the
identification of molecular states. Using the 8 (E2) values
as listed in Table III the y width of the transition between
the l =14 and 12 states in the first excited band is calcu-
lated as I

&
——1.1 eV. Assuming a reasonable total width

not larger than several hundred keV for these states (a
one-channel calculation gives an entrance channel width
of less than 1 keV), the predicted strong deformation of
these states can in principle be tested with present-day ex-
perimental facilities by measuring the gamma-particle de-
cay branching ratios. ' ' Unfortunately, there is yet no
experimental evidence for a long-lived resonance with
1=14near E, =17 MeV in S.

The prediction of ' 0-' 0 molecular states might be
tested by measuring the gamma-particle decay branching
ratio for one of the long-lived resonances with spins J= 8
and 10 which have been observed ' ' in the range
E, =15—17 MeV. However, one should consider that
these resonances are likely to be due to molecular states in
aligned ' 0-' 0 inelastic channels excited via a double-
resonance mechanism rather than to molecular reso-
nances in the elastic channel. Since similar resonance
structure is expected in the elastic and various inelastic
' 0-' O channels, the experimental detection of molecular
states in inelastic channels might be envisioned as an in-
direct test for the existence of molecular states in the elas-
tic channel. The fact that these narrow structures might
arise from resonances in aligned inelastic channels would
have strong consequences for a measurement of the
gamma-particle decay branching ratio: Assuming an
l (l + 1) energy dependence within the molecular band, the

observed y energy for an intraband transition in an
aligned inelastic channel will be noticeably smaller than
for a transition within the elastic band, since the transition
in the aligned channel will occur from a molecular state
with relative angular momentum 1 =J I (I—is the channel
spin of the inelastic channel) rather than from a state with
1=J.

In Fig. 1 we have plotted the radiative capture cross
sections for the partial waves 1 —2, 1, and 1+2 into the
molecular states at E, = 13.32 MeV (1= 12+), and 16.88
MeV (1 =14+), as calculated from (10). One clearly sees
that the cross sections exhibit structures which can be
traced back to resonances in the different partial waves.
The broad bumps with a magnitude of about 10 pb reflect
the barrier resonances. The pronounced narrow structures
found in the transitions l~l —2 correspond to the intra-
band transition of the molecular band; for this transition
the cross section approaches 100 pb. The zeros found in
the partial cross sections reflect a sign change in the ma-
trix element (3). They may be viewed as consequences of
the exact treatment of the Pauli principle, since they van-
ish if antisymmetrization is switched off.

In Fig. 2 we have plotted the cross sections for the tran-
sition into shape isomeric states at E, = —8. 14 MeV
(l =0+) and E, = —7.64 MeV (l =2+). The cross sec-
tion always exhibits peaks near those energies at which the
incoming partial wave has a broad barrier resonance.
Despite the fact that the energies of the photons are
= 15—20 MeV, the cross sections only approach a few pb,
since the deformations of the shape isomeric states are
quite different from those of the barrier resonances. To
detect the head of the S shape isomeric band, a much
higher cross section can be expected from a transition be-
tween a molecular state and a shape isomeric state, as is

Io'

IO IO'-

Io

IQ
IO

II 15

Ec ~(MeV)

IO
II

E, (Mev)
I5

FIG. 2. Capture cross sections into the shape isomeric states at E, = —8. 14 MeV {I=0+) and —7.64 MeV {I=2+).
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suggested by the B(E2) matrix elements of Table IV. Un-
fortunately a direct excitation of molecular states with
small l values in the elastic ' 0-' 0 channel is rather un-
likely, since these states are located well below the
Coulomb barrier. A possible way out of this dilemma
would be to use the experimentally observed narrow reso-
nances at 10—12 MeV (Ref. 23) as doorway states into the
shape isomers, since these states have been suggested as
molecular states in inelastic ' 0-' 0 channels excited in a
double resonance mechanism. ' Another possibility to

detect the isomeric states is discussed in Ref. 6, which
suggested the a- Si channel as a proper entrance channel
to excite these states.
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