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Inversion formula for the internucleus potential using sub-barrier fusion cross sections
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Subject to the assumption that sub-barrier fusion is described by an effective one-dimensional
energy-independent local potential barrier, the Jeffreys-Wentzel-Kramers-Brillouin approximation
for the fusion cross sections is inverted to determine this effective potential. Potential barriers, with
their associated experimental errors, are presented for ' C+ ' C and ~Ca+ Ca, and the assumption
of a local effective potential is shown to be inadequate for Ni+ Ni.

NUCLEAR REACTIONS Inversion formula relating fusion cross sections to
ion-ion potential.

Cross sections for the fusion of two nuclei at sub-barrier
energies are of interest both for what they reveal about the
nucleus-nucleus interaction and for their astrophysical im-
portance. The traditional approach to the interpretation
of such cross sections is to assume that fusion is governed
by the penetration of a one-dimensional energy-inde-
pendent local potential barrier, to describe its height, loca-
tion, and shape in terms of a few parameters, and then to
vary these to fit the cross sections. The systematics of in-
ternucleus potentials obtained in this way have been dis-
cussed in Ref. 1. However, several recent measurements
of fusion cross sections show significant deviation from
the behavior expected. These data included unexpected
excesses in the sub-barrier fusion of intermediate-mass sys-
tems2 and the nonsystematic behavior of systems involv-
ing two p-shell nuclei. Whether such discrepancies are
due to the inadequacies of the parametrization used, the
structure of the particular nuclei involved, the quantum
fluctuations of the nuclear surfaces, ' the multidimen-
sional dynamics of the fusion process, or some combina-
tion of these effects remains an interesting, but
unanswered, question.

In this paper, we present a simple framework for the
analysis of sub-barrier fusion data which may help to clar-
ify the situation. It is based on the Jeffreys-Wentzel-
Kramers-Brillouin (JWKB) approximation, and allows an
effective one-dimensional potential barrier to be deter-
mined directly from the experimental data. This barrier
can then be used to determine the validity of phenomeno-
logical potentials or, should it be pathological, the validity
of the one-dimensional barrier-penetration picture itself.

We assume that the effective potential between the two
ions, V, as a function of the separation of their centers of
mass, r, has a single quadratic maximum at a barrier ra-
dius Rz of height V(R~)=B and that inside the barrier
complete absorption into the fusion channel takes place.

The fusion cross section is given by a sum over all partial
waves

Tt (E)=(1+e )
' 1/2

(2a)

(2b)

The limits of the "action" integral (r& &r2) are deter-
mined by the zeros of the integrand. (We assume that
there are only two such turning points. )

To obtain tractable expressions, we suppose that, at a
given E, the L dependence of TL (E) can be reproduced by
simply shifting the energy. That is,

T (E)=T E —L(L+1)A
2mR (E)

where R (E) characterizes an effective moment of inertia.
This amounts to assuming that the centrifugal term in
the integrand of (2b) is independent of r To study .the va-
lidity of this approximation we compared two sets of cross
sections from the phenomenological potential of Krappe,
Nix, and Sierk [Eqs. (17)—(20) of Ref. 11, hereafter denot-

o= Q (2L+1)TL,(E),
2mE ~

where E is the center-of-mass energy and m the reduced
mass. (In the spirit of our semiclassical treatment, we ig-
nore symmetry constraints which might restrict the sum
to even or odd L only. )

At energies E &B, we adopt the JWKB form of the
penetration coefficients TI (E), as extended by Hill and
Wheeler' to the case of barriers with a quadratic max-
imum
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ed the KNS potential] for the Ni+ Ni system. In one
set Eq. (2b) was used and for the other set the term
L(L+1)/r was replaced by L(L+1)Irz, where rz is
the actual position of the barrier of the KNS potential.
These cross sections differed by less than 10%, which is
smaller than realistic experimental uncertainties. The va-
lidity of our assumption (3) in cases of physical interest
will be demonstrated further below.

If large values of L are important in the sum (la), we
can approximate it by an integral over L, and, using (3)
obtain

lows. Near the top of the barrier, it is a reasonable ap-
proximation to describe the barrier as a parabola, in which
case Eq. (4) may be integrated analytically to obtain the
familiar result'

aRg2

E~(E)—=y(E) = ln(1+e'E-"),

where a is inversely proportional to the oscillator frequen-
cy of the parabola. In this parabolic approximation, 8 is
determined by the condition

Ecr(E)=mR (E) I dE'&o(E') .

Upon using (2a) to relate To and So, we find

(4) I"i
f'f' E ~

So(E)= —,log (5)

Thus, if R (E) is specified (see below), So(E) is completely
determined by the experimental data, o(E). Furth. ermore,
8 is also specified, since So(8)=0, which requires that

d Eo.
dE 2 (6)

1/2
2
7T 2777

(7)

As expected from the semiclassical nature of our treat-
ment, Eq. (7) shows that t(V) is determined only by o(E)
for V &E &8.

To complete our method, we must specify the radius
R (E) associated with the angular momentum dependence
of Tl (E). On physical grounds, we expect that
r~(E) &R(E) &rz(E). Since the nuclear contribution in
the internucleus potential is expected to be short range, at-
tractive, and changing rapidly near r =R~, we may ap-
proximate r

&
(E)=Rz and

Z), Zpe
r, (E)=R,(E)=

where Rc is the Coulomb turning point (Z& and Zq are
the atomic numbers of the nuclei). Thus, a plausible
choice is

R (E)=qRg+(1 —g)Rc(E)

with 0 (g ( 1, independent of E.
The barrier peak position, Rz, may be taken from a

physical phenomenological potential, such as the KNS po-
tential, or determined approximately from the data as fol-

With So(E) known, Eq. (2b) can be inverted to obtain
information about V(r). This procedure is closely related
to the solution of Abel's problem in classical mechanics'
and has been applied to one-dimensional barrier penetra-
tion by Cole and Good. ' We find that the distance be-
tween the inner and outer L=O turning points (thickness
of the barrier) at energy V &8 is given by

t( V) =rz( V) —r, ( V)

from which Rz is determined using Eq. (6).
We have verified the accuracy of our inversion method

by applying it to cross sections generated from
phenomenological internuclear potentials for ' C+ ' C
(the universal Woods-Saxon potential of Ref. 15) and

Ni+ Ni (the KNS potential), which span the region
for which we analyze experimental data. These potentials
and the thickness functions, t (E), reconstructed from the
cross sections using Eqs. (5)—(7) are shown in Fig 1, .
where the left-hand panel refers to the ' C+ ' C system
and the right-hand panel pertains to the Ni+ Ni sys-
tem. For the ' C+ ' C system, when the exact value of
R~ is used, the choice rj=0.5 in Eq. (g) allows t( V) to be
reproduced to within 0.05 fm, except for V very close to
8, where there is a discrepancy because (6) underestimates
the barrier height by 0.15 MeV. Similarly, for the

Ni+ Ni test case the choice of g=0.5 results in a
difference of less than 0.03 fm except close to the barrier
maximum. Figure 1 also demonstrates the relative insen-
sitivity of the results to the choice of Rz. Except near the
top of the barrier, variation of R~ by +1 fm introduces er-
rors less than 0.05 fm for the ' C+ ' C system and 0.04
fm for the Ni + Ni system. We have therefore adopt-
ed g=0.5 in all our analyses below and expect that the
combined errors arising from the selection of Rz and g
will be less than 0.1 fm.

We have applied our method to the experimental data
for the systems ' C+ ' C (Ref. 15), ' N+ ' N (Ref. 16),
' C+ ' 0 (Ref. 17), Ca+ Ca (Ref. 18), Ni+ Ni,

Ni + Ni, Ni + Ge, Ni + Ge (Ref. 2), and
Ge+ Ge (Ref. 19). In contrast to such systems as

' C + ' C and ' 0 + ' O, the excitation functions show no
structure, the presence of which would invalidate our sim-
ple barrier-penetration picture. Since Eqs. (5)—(7) require
energy derivatives of o'(E), for reasons of numerical stabil-
ity we have represented the logarithm of o. by a least-
squares-adjusted sixth™order polynomial in the energy.
For data and test cases from C to Ni, the total J is essen-
tially independent of polynomial order beyond sixth order
and results are insensitive to the precise order used. Fr-
rors in the thickness function are evaluated using standard
linear error analysis. Noting the explicit and implicit
dependence on the cross sections,

t (E)= t(R ( I o; I ),8( I o; I ), I
o.; I,E),

the variance in t is given by
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FIG. 1. Tests using model potentials for the ' C+ ' C system {left-hand panel) and the ~Ni+ Ni system {right-hand pane))
Upper portion: Inner and outer barrier radii, r&{V) and r2{V), for two phenomenological potentials. The nuclear interaction for the

+ ' C system is the "universal" Woods-Saxon form for p-shell nuclei of Ref. 15. V = —VoI 1+exp[i r —Ro}/a] I with Vo ——501/3 1/3MeV, Ro ——ro(A & +A2 ), ro ——1.27 fm, and a=0.4 fm, where A
&

——A2 ——12 are the mass numbers of target and projectile. The nu-
clear interaction for the Ni+ Ni system is the "Yukawa plus exponential" KNS potential of Ref. 11, Eqs. {17)—(20). In both
cases the Coulomb potential is that of two point charges. The exact barrier heights and positions {8=6.30 MeV, R~ ——7.81 fm for' C+ ' C and 8=97.74, Rz ——10.64 for Ni+ Ni) are indicated. Middle portion: Barrier thickness, t(V) =r2( V) —r&( V). Lower
portion: Error in the thickness determined by the inversion procedure. The solid and dashed curves show the results for various q
when the exact value of R~ is used. The dotted curves correspond to g =0.5 and the values of R& shown.
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where the variance in o.; is taken to be the quoted experi-
mental error. The error bands specified by Eq. (9) were
checked in several cases by generating up to 40 sets of
pseudodata in which data were perturbed by random er-
rors of the proper variance and then inverted using Eq.
(7). As will be seen subsequently in Fig. 2, typical error
bands in the thickness functions inverted from experimen-
tal data are 0.1 to 0.2 fm, so the ambiguities arising from
the choice g=0.5 or up to 1 fm uncertainty in R~ are
unimportant. Uncertainties in t are largest for V&~8
(where the data are less precisely determined) and for
V=B (where

I
t)t/t) V

I
is large).

In order to show how experimental errors in the fusion
cross section are reflected in the thickness function we
have used the ' C+ ' C system studied by Trentalonge
et al. ' The experimental fusion cross sections are shown
in the upper portion of Fig. 2. The barrier thickness

determined by our inversion procedure using RB 7.8 fm-—
is shown in the lower portion of Fig. 2, together with the
barrier height found from Eq. (6), 8=6.08+0.15 MeV.

Although the thickness function is essentially model in-
dependent within experimental errors a slightly more
model dependent but physically illuminating quantity is
the local one dimens-ional potential barrier itself. If the
outer turning point is specified by physical arguments, the
inner barrier may then be determined from the thickness
function. Certainly well below the barrier, the outer turn-
ing point is unambiguously determined by the Coulomb
potential. Up to the peak of the barrier, the nuclear
corrections to the pure Coulomb potential are sufficiently
weak that a phenomenological potential such as the KNS
potential should yield an adequate representation of the
outer turning point. In our analysis, we have taken Rz to
be the position of the peak of the KNS potential. [As em-
phasized above, the inversion formula. is sufficiently in-
sensitive to Rz that this does not affect t ( V) within exper-
imental errors. ] Since through Eq. (6) Rs and the data
uniquely determine 8, the two coefficients of the KNS po-
tential were slightly readjusted for each system to keep Rz
fixed but exactly reproduce this barrier height 8. In the
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plex one-dimensional potential by the appropriate physical
effects, and this present analysis thus motivates further in-
vestigation of the role of collective quantum fluctuations
of the nuclear surface and multidimensional dynamics of
the fusion process.
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