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The exciton model for the pre-equilibrium emission of light composite particles proposed and ap-
plied to the (p,a) reaction of Iwamoto-Harada is further investigated for the energy spectra of the
(p,d), (p,t), and (p,*He) reactions with incident energy of several tens of MeV’s. Calculated results
could reproduce an overall feature of those spectra. The dominance of the pickup-type contribution
which occurs in the course of the equilibration process was found to be common for all composite
particles. The degree of fitting to the data is excellent for (p,t) reactions to the same extent as for
(p,a) reactions, and is somewhat less for the high energy part of energy spectra of (p,°He) and (p,d)
reactions. The relative ratio of yields of high energy composite particles was also reproduced fairly
well with our model. These facts suggest that the simple reaction mechanism assumed in our model
accounts for characteristics of the pre-equilibrium emission of light composite particles.

NUCLEAR REACTIONS Exciton model, composite particle emission mecha-
nism; (p,d), (p,t), (p,"He) on ¥’Al, *Ge, *Ni, ¥Y, 1°Sn, "’ Au; calculated energy
spectra.

I. INTRODUCTION

In a recent paper! two of us (A.L. and K.H.) proposed a
model for the pre-equilibrium emission of light composite
particles in the framework of the exciton model. (In the
following, Ref. 1 will be referred to as 1.) It generalizes
the exciton model>~* so as to include the effect of the in-
trinsic structure of the emitted particle. This model has
been applied to several (p,a) reactions in I and calculated
results have nicely reproduced the experimental energy
spectra.’

In the present paper we apply the model to the (p,d),
(p,t), and (p,SHe) reactions and calculate those energy
spectra in order to study whether the model works well
even for the pre-equilibrium emission of light composite
particles consisting of two or three nucleons. The model
proposed in I introduced the formation factor Fj ,(€) con-
taining the adjustable parameter AR which affects the
overall normalization of it, and in turn the absolute value
of the cross section. It is, therefore, very interesting to see
whether or not the model can also give a good fit to d, t,
and He emission reactions without adjusting the parame-
ter value used in I. In Sec. II we will calculate the forma-
tion factor of the composite particle consisting of two or
three nucleons quasiclassically with the Fermi gas model
in the same way as in I. Support of the use of the quasi-
classical method was given by Tonozuka et al.,® who cal-
culated the alpha formation factor Fj,,(¢) quantum
mechanically with the shell model and got essentially the
same results as I. Calculated results of energy spectra are
presented in Sec. III for (p,d), (p,t), and (p,3He) reactions

28

for several targets and incident energies. We will make
the comparison between the calculated results and the ex-
perimental data. Also, the decompositions of the calculat-
ed results to the contributions from various exciton states
and to the type of pickup processes are made and dis-
cussed. A conclusion is given in Sec. IV.

II. CALCULATION OF COMPOSITE PARTICLE
FORMATION FACTOR

In the present section, we will calculate formation fac-
tors of the triton, the *He, and the deuteron following the
quasiclassical method with the Fermi gas model described
in I. We adopt the method for the following reasons:

(1) We are interested in studying bulk properties of the
formation factors.

(2) With this method we can get simple analytic expres-
sions, for the formation factors, which are very convenient
for the exciton model analyses of light composite particle
emissions.

(3) For the alpha particle the plausibility of the quasi-
classical calculation with the rms approximation was
shown in Ref. 6. We expect that it also holds for two or

" three nucleon systems to some extent.

In order to obtain the formation factor of the composite
particle consisting of two or three nucleons, we need to
calculate the integral
n,—1
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which corresponds to Eq. (3.17) in I. In Eq. (2.1) n, is the
number of constituent nucleons to form the composite
particle and the range of integration S extends over the
phase space volume for the intrinsic motion bounded by
the ground state trajectory under the following conditions:

(1) |Pi| 2pp fori=1~I
and

|B; | <pF forj=I+1~n,, (2.2)
where pr is the Fermi momentum;

(2) |Tj| <Rofori=1~n,, (2.3)

where Ry =R +AR is the effective radius of the parent
nucleus.

The center of mass coordinate R, of the composite parti-
cle x is set equal to the radius R, of the residual nucleus
and the center of mass momentum isx is fixed, which is
connected to the emission energy of the light composite
particle. The explicit definition of the internal coordinate
system § "D g;) will be given in the following subsections.

A. Triton

First, we will define the coordinate system of the triton
as

— —

P1—P2)»

=4

Uy

=Fi—T2, B, 0

ey

1=3(F1+T2)—T3, Bg=73(F1+P2—2P3)

where T; and P; are the coordinate and the momentum of
the ith nucleon. The intrinsic Hamiltonian of the triton is
written as

ho=-1pt 4+ ima?E 4 —pl +imael (2.5)

= Pe T3 T amPea™ 2> .

where m is the nucleon mass and » the harmonic oscilla-
tor parameter. The intrinsic wave function of the triton
corresponding to the ground state of this Hamiltonian is
given explicitly by

/4
B B B B
o= [f‘ ep |~ 56— 8|, 06
where
2 mo
B=" 2 2 and B,= 3 7 (2.7)

The oscillator parameter o is fixed so as to reproduce the
experimental rms charge radius r, of the triton. If we

denote by R, the center of mass coordinate of the triton, r,
is calculated by

A
mo

—R)? | @ |dEd E,= 2.8)

=3 [2@

The center of mass coordinate ﬁt of the triton and the
corresponding momentum P, are given by
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R’:%(r1+r2+r3) (29)

P,=PB1+PB+7P; - (2.10)

The energy of the triton, E,, is given with this P, by the
relation

pi

Et= ’
2M,

(2.11)

' where M, is the mass of the triton. The energy E, is relat-

ed to the physically observable energy €; as will be shown
later in Eq. (2.25). The ground state trajectory is written

as

1

;pgl +imoEi=3to (2.12)
and

3 2

yi. 2 +1me’Ei=3t0 . (2.13)

To calculate the triton formation factor quasiclassically,
we must integrate Eq. (2.1) within the phase space bound-
ed by Eqgs. (2.12) and (2.13) with particle x taken to be the
triton. Before integration, we introduce a new coordinate
system for convenience:

§1=761, Pg=DP¢ >

= 12 — 1 — 2.14)
§r=73&2, Pg,=7P¢,-

The formation factor is written in the new coordinate sys-
tem as
Fymle)=J d §1d Bd £rd Be, »

res

1
(2m#H)S fﬂ
|R¢’=

P fixed
(2.15)

where the range of integration s is the region defined in
the new coordinate system which corresponds to S in the
old one. The Jacobian J of this coordinate transformation
is equal to 2°-3%, In order to perform this twelvefold in-
tegration, we will make the approxnmatlon of replacing
the magnitudes of relative vectors § i»Pg,) with their rms

values, the rms approximation, in the same way as I.
Then integrals of the space and the momentum coordi-
nates are decoupled. So we rewrite Eq. (2.15) in the prod-
uct form of them as

6

Fim(e)= FRE] . (e) , (2.16)

1 5
2mh)°

where FR means the coordinate space integral and FII_D m(€p)
the momentum space one. The validity of this approxi-
mation will be discussed later. Then we can get the final
form of the formation factor which is expressed by ele-
mentary functions. We will show, however, only the nu-
merical result of it in the next section for economy of
space.
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B. ’He

The form of the formation factor for the *He is quite
the same as in the triton case. But the rms radius Fipe is
set equal to 1.88 fm instead of the 1.7 fm of the triton,?
which corresponds to the change of the oscillator parame-
ter, as is shown in Table 1.

C. Deuteron

The coordinate system, the intrinsic Hamiltonian, and
the intrinsic wave function of the deuteron are defined by

E=T\—T;, Be=75(B:1—P2), (2.17
= pit+ima’€?, (2.18)
m
and
g " B
=\ - A 2 ’ 2.19
Pa - exp 2§ (2.19)

respectively. The center of mass coordinate of the deute-
ron Ry and the corresponding momentum P, are given by

Ry=+(F14+7>), Py=P1+P;. (2.20)
We will fix the oscillator parameter @ from the rms radius
rq of the deuteron which is taken from Ref. 7. The rela-
tion between the rms radius 74 and the oscillator parame-
ter » of the deuteron is given by

- 3 > 3 #
ra=3 [ Z(Ti—Ro’|ga?d E=5 . @21
The ground state trajectory is written as
—rl;pg—k%mwzgz:%ﬁw . (2.22)

To calculate the deuteron formation factor quasiclassical-
ly, the following coordinate transformation is performed:

E=5E, B:=Pe, (2.23)
and the formation factor is now written as
1 _
F; . (e9)=J—— dédps. (2.24)
1,m(€q 2nf) fs_} §dPe
| Rg[ =R
—fd:ﬁxed

The Jacobian J is equal to 2°. If we adopt the rms ap-
proximation, double integrals of the space and the
momentum coordinates are decoupled as noted in Sec.
IT A, and we can easily obtain a very simple expression for
the formation factor Fj,,(€4). For the two nucleon system
such as the deuteron, however, we can integrate the right-
hand side of Eq. (2.24) analytically without making the
rms approximation. The result will be presented in the
Appendix. It is expected that the error due to the rms ap-
proximation becomes largest in the deuteron system, since
this type of approximation is thought to become worse the
smaller the number of degrees of freedom. The compar-
ison of the two kinds of the integration in the deuteron
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system is, therefore, worthy to check the validity of the
approximation.

D. Properties of the formation factor

We show in Figs. 1—3 the formation factors Fj,, of the
triton, the *He, and the deuteron, respectively, as a func-
tion of the particle energy. Two energy scales on the
abscissa stand for the energy E, in the Fermi gas given
by, for example, Eq. (2.11) for the triton, and the energy
€, which is physically observable. They are related to
each other by the relation

€x :Ex —hy gF+E)icnt+Qx s
with
EM=13(n,— 1o ,

(2.25)

where & is the nucleon Fermi energy and E™ the intrin-
sic kinetic energy of the composite particle x, and Q, the
binding energy. In Figs. 1—3, however, we plot the case
for Q, =0. Thus in the realistic case, the abscissa shifts to
the right or left by an amount |Q, |. We use the value
&r=33.5 MeV throughout our calculation. Table I
shows the rms radii ,,”® the harmonic oscillator parame-
ters #iw, and the experimental separation energies Q, of
the composite particles from six different targets used in
our calculation. Those values of the alpha particle taken
from I are also added for reference purposes. The abso-
lute value of Fj,, depends sensitively on the parameter
AR =Ry —R, through the surface condition Eq. (2.3).
Once we make the rms approximation, the functional
form of F,,, as a function of €, becomes independent of
AR and only the overall normalization factor depends on
AR, as is seen from Eq. (2.16). For the value of AR >>r,,
the condition Eq. (2.3) is no longer effective, and this
leads to

z F‘I,m(ex)=1 ’

l+m=n,

(2.26)

which corresponds to Eq. (3.30) in I. Figures 1 and 2
show the numerical results for this case. The formation
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FIG. 1. The triton formation factor Fj,, for AR >>r, as a
function of the triton energy €,. In the abscissa the triton energy
E, in the Fermi gas is also shown. The relation between €, and
E, is given in the text, although we set Q,=0 in the figure.
Fy,,’s are normalized to unity in a classical manner.
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FIG. 2. Same as Fig. 1, but for *He.

factors Fj,, used in our calculation for energy spectra are
calculated fixing the parameter AR to 1.0 fm, and the sum
of their values are listed in Table II.

In the deuteron formation factor shown in Fig. 3, the
solid curve is the one for the exact integration and the
dashed curve is for the rms approximation. The solid
curve changes with AR not only in the absolute value but
also in the shape since the momentum and the coordinate
variables are coupled in this case. Therefore, we show two
results calculated with AR =1.0 fm.

In the next section, we deal with the energy spectra of
the triton, the *He, and the deuteron emitted with several
tens of MeV’s of energy. For the triton and the *He in
this energy region, the values of F; , are about equal to or
less than % of total EF,,,,,, and F, ; are much larger than
F; 0, as can be seen from Figs. 1 and 2. For the deuteron,
the value of F,  is over half the total of ¥, F,,, there and
the component F; ; comes to have a significant value in
the energy region below about 40 MeV. The components
Fy 5 and F;, are not shown in these figures because they
have the finite values only for €, <0 region. The value of
€x at which F, , takes the asymptotic value is strongly

dependent on the value of #iw, the oscillator parameter of
the composite particle, as well as on the number of intrin-
sic degrees of freedom. For the deuteron, which is the
quite loosely bound system and is assigned a small #iw
value, the F,, component is dominant in this energy re-
gion. For the triton and the 3He, on the other hand,
pickup-type components (F,,,F;,) are very large, al-
though smaller than in the case of the alpha particle.
Comparing Fig. 1 with Fig. 2, we can see a small but
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FIG. 3. The deuteron formation factor F;,, for AR =1.0 fm
as a function of the deuteron energy €4. The solid curves corre-
spond to the calculation with the exact integration and the
dashed curves to the calculation with the rms approximation.

non-negligible difference between them, which reflects the
fact that the *He is a little more loosely bound system
than the triton. This difference is partly responsible for
the difference between their relative yield, as we shall see
in the next section.

Finally we comment on the difference between the exact
and the rms approximate calculations in the formation
factor of the deuteron. As is clearly seen from Fig. 3, the
rms approximation formation factor is less in the absolute
value and in the gradient than the exact one. This tenden-
cy is enhanced as AR—0. Fortunately this discrepancy

does not greatly affect the cross section, as will be shown
in the next section.

III. NUMERICAL CALCULATION
OF ENERGY SPECTRA AND COMPARISON
WITH EXPERIMENTAL DATA

In this section, we show the calculated results of the an-
gle integrated cross sections for the pre-equilibrium emis-
sions of the triton, the *He, and the deuteron. Owing to
the use of the “never come back approximation,” our cal-
culation of energy spectra does not contain the equilibri-
um and near-equilibrium components. In the following
calculation, we always start from the 2p-1h state and sum
up the contributions until the one of the 6p-5h state. Ac-
tually, the states above the 4p-3h state give negligible con-
tributions to the high energy spectra. As for the parame-
ter values relevant of the exciton model, we use the same

TABLE I. The rms radius 7, and the harmonic oscillator parameter #io of light composite particles x
are listed. The separation energy Q, of the light composite particle x from the parent nucleus is also
listed for 2’Al, 3*Fe, %*Ni, *Y, '%°Sn, and '"’Au targets. The values for the alpha particle are taken from

Ref. 1.
Q, (MeV) for targets
Particle ry (fm) fiw (MeV) 27A1 SFe SN 8y 1208 197A0
d 1.96 8.1 —22.4 —16.4 —13.4 —17.6 —12.7 —13.0
t 1.7 14.4 —-27.5 —20.6 —17.4 —20.5 —12.9 —134
SHe 1.88 11.7 —23.2 —18.2 —15.3 —18.8 —17.1 —13.1
a 1.6 18.2 —10.0 —8.2 —4.8 —6.7 —3.1 1.3
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TABLE II. The values of X F,, for light composite particles in the six proton plus target systems.

The parameter AR is fixed to be 1.0 fm.

Target
Particle 77A1 S4Fe 3Ni 8y 1208y 19740
g2 0.55 0.57 0.57 0.59 0.59 0.60
d° 0.35 0.38 0.38 0.40 0.41 0.43
t 0.27 0.31 0.31 0.33 0.34 0.36
‘He 0.18 0.22 0.22 0.24 0.25 0.27
a 0.36 0.41 0.41 0.43 0.45 0.47
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2Calculation with the exact integration.
Calculation with the rms approximation.

values as adopted in I. Those are the single particle level
density, spreading width, and absorption cross sections of
the nucleon, and the complex particle and radius parame-
ter of the target nucleus, and so on. The quantity AR de-
fined in Eq. (2.3) is set to be 1.0 fm throughout the
present calculation.

Numerical calculations have been performed for the
proton incident reactions on targets of 2’Al, *Fe, **Ni,
8y, 1208n, and "’Au. In Fig. 4, we show the results for
the deuteron, the triton, and the *He spectra from the pro-

102_ '205n+P ]
- P Ep:62 MeV
>
g .
~
L
13 |
w
= —
<
b
o T a
10" ~ n
1o’ .
10'F .
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FIG. 4. Angle-integrated energy spectra for (p,d), (p,t),
(p, *He), and (p,a) reactions on '2Sn with E, =62 MeV. The bar
graphs show the data and the solid curves represent our calcu-
lated results. In this figure, we also show the calculated result
with the rms approximation for the deuteron by a dotted curve.
Types of emitted composite particles are indicated near the ap-
propriate curves.

ton incident reactions on '?°Sn with E p=62 MeV. We see
from this figure that the data® are well reproduced by our
calculation, although we see some discrepancy in the high
energy part, especially for the deuteron emission. In this
figure, we also show the calculated result with the rms ap-
proximation for the deuteron by a dotted curve. It will be
discussed later. For reference, the calculated energy spec-
tra of the proton and the alpha particle which are taken
from I are also included in Figs. 4—7.

Next, as examples of the heavier and the lighter target

IOZ | 197Au +P |
Ep- 62 MeV
o'k /—\ i
0
10 J: y
0 .
-1
16']) - ]
= 10qu N
D
=
210 .
E r—
-2
oy :
B 10 .
=]
10°1 j
a
10° b N -
10" - .
1 1 1 1 | 1
0 10 20 30 40 50 60
€ (MeVv)
FIG. 5. Same as Fig. 4, but for a 1°’Au target.



1532
102 = S%Fe +P 4
i _-__ P Ep =62 MeV

P

; —
(5]
=
~

) 1

£ K
w

~ —
=
o

-c -

ﬂ‘r

o't 7 - a .

10°H T .

10" -

102} - .

1 1 e ! " |

" 1 1 .
0 10 20 30 40 50 60
e (Mev)

FIG. 6. Same as Fig. 4, but for a *Fe target. Dashed curves
are the calculated results in which the excitation energy U of the
residual nucleus is replaced by U +1.6 MeV for the *He emis-
sion and by U —1.6 MeV for the triton one. The dash-dotted

curve for the *He is the calculation taking the rms radius to be
1.7 fm.

nuclei, calculated results for reactions on *’Au and **Fe
with E, =62 MeV are shown in Figs. 5 and 6, respective-
ly. As is seen from these figures, the quality of the fitting
" is better for an Au target than for one of Sn. The fitting
for the Fe target is nearly the same as for that of Sn.
Better fitting for a heavy target gives favorable support to
our calculation since the heavier the system, the better the
Fermi gas model works. We see in Figs. 4 and 5 that the
experimental yields of the *He are several times less than
those of the triton for Sn and Au targets. This fact is well
reproduced by our calculations. The lower yield of the
He originates from the smaller F;, of *He by about a
factor of 2 than those of the triton and the higher
Coulomb barrier.
The experimental energy spectra of the *He are dif-
ferent in shape from those of the triton and the alpha par-
ticle in heavy target nuclei, as is seen from Figs. 4 and 5.
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FIG. 7. Angle-integrated energy spectra for (p,t), (p,’He), and
(p,@) reactions on *®Ni with E,=90 MeV. The solid curves
show the data and the dotted ones represent our calculated re-
sults.

This can be understood by noting their differences in
Coulomb barriers and binding energies. For the statistical
emission of complex particles the lower end (the minimum
of the emission energy) strongly depends on the value of
the Coulomb barrier, and the upper end (the maximum of
the emission energy) on that of the binding energy. The
lower ends of the *He and the alpha particle are about
twice as large as that of the triton. On the other hand, the
upper end for the emission of the triton and the 3He is
about 10 MeV less than that of the alpha particle (see
Table I). These make the energy region for the *He emis-
sion narrower than those for the triton and the alpha par-
ticle, and lead to less yield of the *He. Then the direct
type reaction seems to have large influence on its energy
spectra. In light targets such as **Fe, on the contrary, the
suppression of the statistical emission of the complex par-
ticle by the Coulomb barrier is expected to be weak. This
brings the similar behavior of the energy spectra, both in
absolute value and in shape for the triton and the *He, as
is seen in Fig. 6. Figure 6 shows an underestimation of
about 50% in the calculated cross section for the *He, in
contrast to a small overestimation for the triton as com-
pared with the data. The *He emission leads to the odd-
odd residual nucleus, but the triton emission leads to the
even-even nucleus. Dashed curves in Fig. 6 are obtained
by replacing the excitation energy U of the residual nu-
cleus after the *He emission by U +1.6 MeV and that
after the triton emission by U —1.6 MeV, in the estima-
tion of the level density of the residual nucleus. For the
*He emission, furthermore, the calculation taking the
same rms radius as the one of the triton is performed and
is shown in Fig. 6 by the dash-dotted curve. These trials
suggest that the discrepancies seen in the cases for the tri-
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ton and the *He emissions can be removed mostly by the
adjustment (to a not considerable extent) of parameters.
As for calculated results for the reactions on 3°Y and ?’Al
with E, =62 MeV, we have found the same quality of fit-
ting as in the cases of Sn and Fe, respectively, although
the agreement of the absolute cross section for the Al tar-
get is a little worse than that for the Fe target.

In order to see how the result changes as the incident
energy increases, we show in Fig. 7 the result for ®Ni
with E,=90 MeV. The solid curves are the experimental
data’® and the dotted ones represent our calculated results.
Calculated results can almost reproduce the absolute
values of the angle integrated cross sections, except those
in the high energy region. From Figs. 6 and 7 it can be
seen that the underestimation of the highest energy spec-
tra becomes large with the incident energy. This fault
seems to come from the fact that there is no counting in
our model of the nonstatistical component which is ex-
pected to increase with the incident energy. As an exam-
ple for a low incident energy, we have calculated the spec-
tra for **Fe with E,=39 MeV, and find a nice fitting to
the data, although this is not shown in the figure.

Together with the results shown so far, we can say that,
below incident energy with several tens of MeV’s, our ex-
citon model calculation nicely reproduces the experimen-
tal data for the pre-equilibrium emission of light compos-

12950 (p, 1)

Ep =62MeV

(mb/ MeV)

d0 /d€

S,
N
I

10-3 1 ] 1 1
10 20 30 40 50 60

€ (MeV)

FIG. 8. Decomposition of the calculated energy spectra of
the 'Sn(p,t) reaction with E,=62 MeV into the contributions
from various particle-hole states. The curves labeled by 2p-1h,
3p-2h, etc., indicate a two-particle one-hole, three-particle two-
hole, etc., state of the parent nucleus.

1533

ite particles, except the highest energy part of the deuteron
spectra and of the *He. If we note that the parameter AR
is always fixed to be 1.0 fm in all cases, the agreement be-
tween our calculated results and the data is considered to
be remarkable. As the incident energy increases (~90
MeV), the discrepancy between the data and our calculat-
ed results in the highest energy part of the spectra be-
comes larger for all composite particles. It is conceivable
that the nonstatistical reaction mechanism will play an
important role in such a high incident energy region.

In order to see the structure of our calculated results,
we show in Fig. 8 the decomposition of the result for the
triton emission shown in Fig. 4 into the contributions
from various particle-hole states. As is clear from this
figure, the 2p-1h state is most responsible for the high en-
ergy triton spectra. As the energy decreases, the contribu-
tions from 3p-2h and 4p-3h become more effective. The
similar decomposition of the result for the deuteron emis-
sion shown in Fig. 4 is given in Fig. 9. From this figure
we see that the behavior of each component is very similar
to the one of the triton. Though not shown in the figure,
we can say the same thing for the *He emission. Our re-
sult, together with the result for alpha emission in I, indi-
cates that the behavior seen in Figs. 8 and 9 is a common
feature of the present model.

In order to see the relative importance of various Fj,,

'%%n (p,d) Ep=62MeV

exact

total

10°

(mb/ MeV)

do’/de

102

1 0'3 1 1 1 ] |
10 20 30 40 50 60

€ (MeV)

FIG. 9. Same as Fig. 8, but for the deuteron emission.
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FIG. 10. Decomposition of the calculated energy spectra of
the 'Sn(p,t) reaction with E,=62 MeV to various components
of the triton internal structure. The curve labeled Fi, is the
contribution to the cross section of the triton formed from /-
particles above the Fermi level and m particles below. F,y
means the total sum.

components, we give in Fig. 10 the decomposition of the
triton energy spectra shown in Fig. 4 into various Fj,,
ones. We see that the dominant contribution comes from
the F,, component, which corresponds to a two-particle
pickup-type reaction. The contribution of the F,; com-
ponent, which corresponds to a one-particle pickup type,
is several times less than that of F, ,, except the highest
energy region. These can be easily understood by compar-
ing the level densities of the residual nuclei in both cases.
Our calculation indicates that the contribution of the tri-
ton formed by three particles above the Fermi level is very
small. The same situation holds for the *He, although it is
not shown in a figure. Kalbach'® has pointed out the im-
portance of the pickup reactions in calculating spectral
shapes, based on a purely semiempirical approach. Our
Fig. 10 gives a physical interpretation and supports her ar-
gument. In Fig. 11, we show the same decomposition for
the deuteron emission presented in Fig. 4. In this figure,
the dominance of the pickup type F; ; component is also
clearly seen. In the energy region below about 35 MeV,
two calculations for F;; with and without the rms ap-
proximation give nearly the same results. In the region
above 35 MeV, on the contrary, a large discrepancy of
about a factor of 3 occurs. This stems from the more
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FIG. 11. Same as Fig. 10, but for the deuteron emission. The
solid curves correspond to the result with the exact integration
and the dashed ones that with the rms approximation.

rapid falling off of F, ; obtained with the rms approxima-
tion than that with the exact integration. We expect, how-
ever, that such a discrepancy in the high energy region be-
comes less for three- and four-nucleon systems because
their internal degrees of freedom are larger and the rms
approximation works better. The underestimation of the
high energy spectra seen in every system (Figs. 4—7) is
especially large for the deuteron. It is conceivable that the
direct neutron pickup reaction which is not counted in our
model will give a large contribution in the high energy re-
gion.!! The remaining shortage seems to be ascribed to
our quasiclassical estimation for the formation factor.
This method neglects quantal fluctuation and penetration,
and is considered to be the worst for the system of the
smallest #iw and of the fewest internal degrees of freedom
(see Table I).

IV. CONCLUSION

In the present work, the exciton model for the pre-
equilibrium emission of light composite particles proposed
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in I was applied to the (p,d), (p,t), and (p,’He) reactions
with an incident energy of several tens of MeV’s. As was
shown, calculated results could nicely reproduce the
overall features of those energy spectra. The relative ratio
of yields of high energy composite particles is also repro-
duced fairly well. The fitting to the data was within a
factor of 2 or 3 for almost all systems without adjusting
the parameter values used in I. It is concluded that our
model can account for characteristics of the emitted pre-
equilibrium d, t, and 3He spectra as well as the a particle
and can point out the importance of the pickup-type
mechanism during equilibration. The energy spectra in
the highest energy region are, however, underestimated by
our model, especially for the deuteron.
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APPENDIX

In this appendix we present the expression for the ex-
actly integrated deuteron formation factor Fj,,(e4). The
convention of #i=1 is used. For the present purpose we
consider the integral

I — f’d _ﬁg f’d El
in the region surrounded by the ground state trajectory
(2.22) under the conditions (2.2) and (2.3). Let us define
the radius of the target nucleus R°=R,,,, the momentum
P =Py/2, the intrinsic energy E =(3/2)o, and the upper
end point in the § integral as

1 5
E - —
mP*t

172
<gp=

172

E
mo?

1
Solpe)= [ i

(A1)

First we consider the E integral. If we define the angle
a between two vectors R and &, the conditions (2.3) for 1
and T, are written as

ri=R>+4+E*—2R¢cosa <R3

or (A2)
R>+§2—ri R?4+§*—R}

cosazT >&r E———EEE'——-

and
r3=R?*+E+2R¢cosa <R3

or (A3)

R§—R*—¢?

cosa <§UE——‘"2—R—§'——‘“ .

Then we have
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[rag= [ cac [ a0,

Loteg) ¢y
= [, " gdiam [ dcosa. (A4)

Now noticing

Ry—R —{)Rp+R +§)
gu_1=( ° E)Ro £ , (A5)
2R¢
we have

(y<1 for AR=Ry—R <¢, (A6)

§U>1 for AR =R0—R >§ .
Using the above equations, we can divide the E integral
Eq. (A4) into the following three cases:
(i) AR > &
Lo 4
Jrad==res
(i) £ > Solp¢) > AR:
N AR Solpg)
[1dg= [ gdcan+ [, Sdtanry

=Co+Cor3+Cyré; (A7)
(1ii) é‘{,““zAR >§0(P§):
= 4
Jlag="6;
where
Co=2T AR+
o= 3 Ry’
C,=mAR |2+ 2R || (A8)
Ry
T
Co=—Sx -

Next we consider the P, integral. Let us define the an-
gle B between two vectors p and Pg. Then in the calcula-
tion of F, ¢ the conditions (2.2) for p, and P, become

pi=p*+p;—2ppccosP>pp
or (A9)

_p+pi—pi

p2+pi—pi -
v 2pp¢

cosfB=
2pp¢

and
p3=p*+pi+2ppecosP > pi

or (A10)

2 2 2
PF—p —P
COSB)pLE—IiTp;_Q .

Noticing
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(p —pe¢—pr)p —pe+DF) po=0 for AR > 5™,

py—1= , (A11) (A13)
2pp; po=Vm(E —mw?AR?) for 0<AR <P,
we have we have the following correspondences:
AR (p¢) ,
pu<1 forp—pp<p¢, (A12) <Golpg)pe <po (A1)
pu>1 forp—pr>pe . AR > Golpg)ope > po -
Then the integration is performed separately according to
Introducing the momentum p, as the following four cases:
]
@) pr+V'm <P‘
I=4r [ P;chf
_417f Ppe(Co+Crbo+Cald) +4"Tf Pfd g“g‘é’o,
(ii) pr+po <P <Pr+VmE:
2,,2 2
P2 2 PR g AT e VmE 5, P HPLTPF 4w
I=47rf0 Pedpe(Co+Cr8 +C4§“)+47rfpo PgdP;'Tgo-*'z’fT p_ppp;dp; 7 3 (A15)
(iii) pr <P < Pp+po:
P p*+pi—pi
I1=4r [ pldpy(Cot Cogb+ Cutt 4 2m [° ) plpe P2 (Co 4 Colh

bpe

VmE 5, P +PL—PF 4r
+27rfp0 pédp; e 3 &o;

(iv) P < pp:

Py,
I=f0 pdp2m

VmE p’+pi—pi 4n
S, pep2m————=F

2 2 2
P +pe—p
£ E (CotCrld+Calld)

£ -
Similarly the P integral in the calculation of F; ; can be performed separately according to the four cases. Carrying

out those P, integrations and rearranging the overall normalization we finally get expressions for F),,. In order to write
the formation factor Fj ,, in a compact form, we introduce the following four functions:

Ql(x)—%ll%( 1 3 | —Bx(mE —x?) 4 2mEx (mE —x2)3/2+3(mE)2x(mE—x2>’/2+3(mE)sin~17’%_El . (Al6)
128 2572 1 2\7/2

0,(x)= —————[—(p —pEAmE)mE —x¥?_ (mE —x%7"?] (A17)
277 (mw)’p

Qg(x)=z6—1%x3[§C0+C2W(%mE—%x2)+C4( 1)4 7[(x mE)z—%mE(xz—mEH—l—Bs(mE)z]], (A18)

2 2

1 X
LimE —2—
2z m 3

Q4(x)=

Cyx
912 {Coxz(pz—p§+%x2)+ (p2—pENmE — +x?)+x?
P

2
(mw)?

C
+ m(xZ—mE)3(p2—p§+x2+ %mE)’ . (A19)
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Both F,, and F;; are classified into four groups accord-
ing to the value of the momentum P as follows:

F,, (two particles are above the Fermi level):

i) pp+V mE <P:

Fp0=1-Q(po)+Q3(po);

(i) pr+po <P <pr+VmE:
F0=01(p —pr)—Q1(po)+Q2(p —pr)+Q3(po);
(A20)
(iii) pr <P <pp+po:

Fr0=05po)+Q3(p —pr)+Q4(po)—Q4(p —pr);
(iv) P <PFr:
Fi0=04(pg)—Q4(0)+Q5(py) .
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F,, (one particle is above the Fermi level and the
remaining one is below):
(i) pr+V mE <P:

Fy,1=0;
(i) pr+po <P <pr+VmE:
F1,1,=1=01(p —pr)—Qa(p —pr); (A21)
(iii) pr <P <pp+po:
Fi,1,=1—-01(po)—Q2(po)+Q4(p —pr)
—Q4(po)+Q3(po) —Q3(p —pr);
(iv) P <pg:
F1,1=1-=05(po)—Q1(po)+Q3(po)
+0Q4(0)—Q4(po) -
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