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Coulomb plus separable potential in coupled channels
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The two-potential formalism for long-range forces is generalized to coupled channels. Assuming the

short-range potential to be separable we treat the proton-proton interaction in the coupled partial waves

P2- F2. We derive the corresponding Coulomb-modified nuclear transition matrices in closed analytic

form and calculate the Coulomb distortion of the phase shifts and of the mixing parameter. The separable

parametrization proposed for the p-p interaction in P2- F2 yields an accurate fit to the experimental data

available for these channels. The potential completes the description of the N-N interaction by the Graz-II

separable model.

NUCLEAR REACTIONS Coupled-channel problem with long-range forces; p-p in-
teraction in P2- I'"2', separable potential proposed; rigorous treatment of Coulomb

distortion; closed analytic formulas for transition matrices.

In a recent paper' we proposed a separable representation
of the nuclear part of the proton-proton (p-p) interaction in
angular momentum states I =0, 1, and 2. The separable
form factors were chosen as rational functions in momen-
tum space. Thereby it was possible to treat the Coulomb
distortion of the nuclear interaction exactly and to derive
the corresponding p-p T matrix in closed analytic form.
With our choice of form factors we could precisely repro-
duce all experimental data currently accepted for elastic p-p
scattering. In addition, the off-shel1 behavior of the purely
nuclear T matrix was modeled after the Graz-II n-p poten-
tial. For simplicity, however, we then treated the P2 state
as uncoupled.

In this article we provide the generalization of our ap-
proach to the problem of coupled partial waves. We derive
analytic formulas for the Coulomb-modified nuclear T ma-
trices and phase shifts as well as mixing parameters. For
the 'P2-'I'2 coupled states we construct a separable represen-
tation of the nuclear p-p interaction, which yields an accu-
rate fit to all experimental data available for this channel.
Thereby we complete the description of the N-N interaction
by the Graz-II separable potential.

We follow the notation used in Ref. 1 but allow for spin-
dependent short-range forces. Let us begin with the ap-
propriate partial-wave decomposition of the relevant T
operators. For coupled partial-wave states with angular mo-
menta i& =j—1 and I) = j+1 (j)0 being the total an-
gular momentum of this channel) the partial-wave Topera-
tors consist of

T„,= T,I5„,+ T „(I,l'= l(, l))
T,( is the Coulomb T operator in the 1th partial wave. The
Coulomb-modified nuclear T operators are defined by

T „,=(I +TiGog)r,„,(1+G,, T,.)

where the t, operators satisfy the set of Lippmann-

Schwinger equations

(3)

The resolvents Go( and G,( correspond to the free and
Coulomb Hamiltonians, respectively.

Now we assume the short-range potentials V„.to be
s((

separable of the form

(4)

so that Eq. (3) can be solved algebraically. It is convenient
to introduce a matrix notation. After solution of Eq. (3)
the operator T „canthen be represented in the form

T = lg')5((1 —AG, ) 'Ah (g'l

Here lg') represents the (nI +nI )-dimensional row ma-

trix

Ig') = lgI', i), . . . , Igl' ., ), Igf i), . . . , lgl
I

))

(6)

containing the Coulomb-modified form factors

le) =(1+T,IGoI) I gs) (i =1, . . ., nI)

(g'l is the transpose of Ig') The (n( +nl )(nI +«
matrices 6(, A, and G' are defined by

n(& ll &
1 5

n( Il ~1 S
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with 1„being the n-dimensional unit matrix

A A1(1( 1(10
1)1( 1)10

TABLE I. Numerical values of potential parameters as ob-
tained by fitting the phenomenological phase shifts of Ref. 9
(energy-dependent solution). In our system of units the dimen-

((

sions are (p) fm
—

& (y) fmo a„d ( & ) MeV fm —(1 +1 + I )
1!

with

and

(IO)

Pii =1.833 890

Pi2 =3.087 726

p3i =1.826304
f832 =3.514 753

y) = 8.177706
y3 = —25.67956
z"= —830.4213

3481.064
= —42 065.41

6 c
I (

6 c1) partial-wave state. In accordance with the Graz-II poten-
tial, ' we adopted the form

with

(Gf)(j= (g((l Ge(lg(j) (Ij=I, ,«) (12)
with

Vg. = Ig, )x" (g, I (l, i'=l, l ) (16)

In the above equations we suppressed the dependence on
the (generally complex) energy variable E in the T opera-
tors, the resolvents, and the Coulomb-modified form fac-
tors.

In order to calculate Coulomb-modified nuclear phase
shifts h„l and 5„1 as well as mixing parameters ~,~, one

has to know the physical on-shell matrix elements of
T ~ (I, I'=I&, I&). They can be obtained from Eq. (5) by

sandwiching between Coulombian asymptotic states"
Ik~ + ). In the Stapp parametrization' the relation between
the S-matrix elements and the (bar) phase parameters for
fixed J reads

S(( = exp(2i 5()cos2e„(I = I &,I & )
S( (

= S( ( =i exp(i 5( + i5( )sin2e„

where the total phase shift 5(= a-(+5„((a-( is the pure
Coulomb phase). The desired phase parameters can there-
fore be obtained from the Coulomb-modified nuclear
scattering amplitudes via the relations

pl pl +2
+ Vl

( 2+p 2)(+( y( ( 2+p 2)(+2 (17)

Using the closed formulas for the on-shell matrix ele-
ments of T

„

the phase parameters 5„('P2),5„(F2), and

2 could be calculated exactly in a coupled-channel ap-
proach including the Coulomb-distortion effect to all orders
in the fine-structure constant. To our knowledge this has
not been done before; only an approximate description of
the Coulomb distortion for such phase parameters was pro-
posed by Frohlich et a/. The parameters of the potential
were obtained by a least-squares fit to the data of Amdt
et a1. ; their numerical values are given in Table I.

Our results are shown in Figs. 1 and 2 in comparison with
the latest phenomenological data. ' With regard to the
phase shift 5('P2) there is a marked improvement as com-
pared with our previous work, ' where this state was treated
as uncoupled. The phase shift 5(3F2) and the mixing
parameter e2 are also reproduced satisfactorily. In order to
improve the fit even further we would have needed an addi-

1 Re Tcsll8„1=2
arctan

1 —Im Tcsll
(I = I (,I ) )

ReTcsl (1)
cs 2

arCS1 cos(5„( +5„( )

20-

where

p, kT (k) = 2rr e—xp( —i a( i(T ).—
csll A2

x (k —IT„„(k'+IO)lk +) .

In the argument of the T operator on the right-hand side
the abbreviation k has to be understood as the energy
t2k2/2 p, ( p, being the reduced mass).

Now it is evident from Eqs. (5) and (15) that the on-
shell, as well as off-shell, matrix elements of T „.(k'+iO)
can be calculated via the quantities (k~ —

I gf), (p I gf),
and (g(, IG,((k2+ iO) Ig(j). For arbitrary I the corresponding

analytical formulas for the separable form factors we are go-
ing to employ cari be found in our earlier work. '

Let us now turn to the special case of the 'P2-'I'2 coupled

0
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FIG. 1. Separable-potential results for P2 Coulomb-modified nu-

clear phase shifts compared with predictions of phase-shift analyses

by Amdt and VerWest (Ref. 9) ( ~ energy-dependent, ~ energy-
independent solution) and Amdt et al. (Ref. 10) (0 energy-
independent solution).
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FIG. 2. Same as Fig. 1 for 5„(F2) and ~„2.

tional term in F2 to take into account the short-range repul-
sion, which is claimed by theoretical" and phenomenologi-
cal ' analyses. However, in view of the discrepancies that
still exist in the phenomenological data we rather preferred
to stay with the simple form of Eqs. (16) and (17). This al-
lows a better applicability of the potential in few-particle cal-
culations. Our fit is certainly sufficient in view of the rela-
tive insignificance of higher partial waves in such applica-
tions.

We stress that the mixing parameter ~2 is appreciably dif-
ferent from zero and must not be disregarded. Notice that
at least at low energies (E~,b & 200 MeV) it is comparable in
size with e~, the mixing parameter in the coupled n-p state
S1-'D~. Thus spin-dependent p-p forces turn out to be

rather strong and should be included in the P2- F2 state,
even if one only considers P2 and neglects, say, I & 2 par-
tial waves. ' For the case of separable potentials our for-
malism provides a rigorous and practical approach to this
problem: We have constructed a separable parametrization
for the P2 state, which takes into account both the
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FIG. 3. Coulomb-distortion effects 5 =8„—5, or a„—e, .

Coulomb-distortion effect and the coupling of this partial
wave to F2.

In Fig. 3 the Coulomb-distortion effect for the various
phase parameters is demonstrated. Plotted are the quanti-
ties 6=5„I—h,I and e„—e,. In accordance with earlier
findings for I ~2 partial waves' this effect turns out to be
negligible for 5( Fq) and e2. It is still small for 5('P2), but
should probably be taken into account in connection with
few-body applications.
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