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SEPTEMBER 1983

Rubin H. Landau*
Department ofPhysics, Oregon State University, Corvallis, Oregon 9733l

and Department ofPhysics, University ofSurrey, Guildford, Surrey, England
(Received 6 December 1982)

The states of kaonic hydrogen bound by the combined Coulomb plus nuclear potentials
are determined exactly in momentum space and a study is made of the dominant physics.
Couplings to the Xm., EC n, and Am. channels are included with different models for the
strong potentials and different wave equations. The existence of both open and closed chan-
nels demands an extension of the Kwon, Tabakin, Lande treatment of the Coulomb singu-
larity. Model studies indicate a high sensitivity to channel coupling and relativistic
kinematics. The calculated K p atomic shift and width agree in magnitude with recent ex-
periments, but the theoretical shift is towards the less bound whereas the experimental shifts
appear more bound.

NUCLEAR REACTIONS (K,K ),(K, ),(K,K ), E = —(0.8
keV —20 MeV); I hadronic atom, momentum space, coupled channels,

exact Coulomb, nonlocal potentials, relativistic kinematics.

I. INTRODUCTION

In this paper we study the bound K p system,
kaonic hydrogen. Since the low energy KX scatter-
ing data are fit most conveniently with a nonlocal
separable potential model, and since we use that
same model for the bound states, it is simplest to
solve the relevant integral Schrodinger equations in
momentum space. Since even zero energy K p cou-
ples strongly to the stable strangeness —1 baryons,
with some in the continuum,

K p+0 MeV,

K n —5MeV,
K p~ ' Y&(1405)+35 MeV,

~X~+100 MeV,
Am. +180 MeV,

(l.la)

(l.lb)

(l.lc)

(1.1d)

( l. le)

the equations are coupled. And since the K p atom
is bound predominantly by the Coulomb force, we
employ a new procedure' to solve in momentum
space the combined Coulomb plus nuclear problem
for coupled bound and continuum states.

Whereas the variety of physics present in this ex-
otic hydrogen system may make it appear compli-
cated, it also produces much interesting structure
with something of interest for everyone. Firstly, it
is the simplest kaonic atom and understanding this
problem may further the understanding of the more

complicated K -nucleus atoms, where the strong
absorption channels (1.1c)—(l.le) are dominant.
Secondly, one of the ways to investigate the sub-
threshold Yo (1405) resonance, (1.1c), is by studying
K p bound states. (Since the structure of this Yc is
uncertain, determining whether it truly is an un-
stable KN bound state embedded in the Xrr continu-
urn is important. ) And finally, the exact calculation
of coupled Coulomb, nuclear, and open channel
states is a challenge to theoretical and computational
physics.

In discussing the strong interactions shift e and
width I of a Coulomb level, we adopt the Warsaw
convention:

bE = —e —iI /2, (1.2)

so that a positive shift, e & 0, describes a state more
bound by the strong interaction and e & 0, less
bound. To avoid confusion, we call potentials —but
not shifts —repulsive or attractive. This distinction
is important since it is related to one of the most in-
teresting phenomena to occur in kaonic atoms,
namely, the Krell oscillations. This is a nonmono-
tonic dependence of e and I upon the depth of the
strongly absorptive optical potential, U, which
occurs when the absorption is too strong for pertur-
bation theory to be correct. The real parts of bE
and U then can have opposite signs, the imaginary
part of the energy, I, can decrease as

~

ImU
~

in-
creases, and, as found in kaonic atom fits, the opti-
cal potential produces negative shifts even though
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its real part is attractive.
Although these interesting effects have been

known for some time, they have recently been called
into question by the experimental discovery '0 that
the 1S level in kaonic hydrogen does not follow the
trend of all other nuclei. In all other nuclei the lev-
els are shifted upwards to less bound (e(0) posi-
tions, whereas K p appears to be more bound than
a pure Coulomb level. Furthermore, the expected
proportionality of the shift b,E and the scattering
length for this elementary system lead to Re
a(K p)(0 in disagreement with all analyses of
scattering data. Although the extreme difficulty of
these experiments suggests some caution in their in-
terpretation, " their interest and importance makes
further study appealing.

One possible explanation of the hydrogen mystery
is that the Trueman or Deser formula' which
directly relates the level shift to the (Coulomb
corrected) complex scattering length and Bohr ra-
dius,

b,E„E„n Rg
(1.3)

may not be sufficiently accurate. Deloff and Law'
have argued that the Coulomb corrections may
change "a" entirely from its strong interaction
value, but the change depends so sensitively upon
the strong interaction model that no conclusion can
be drawn. Other calculations of this sort, e.g., those
of Stepien-Rudzka and Wycech, ' have not found
overwhelming corrections.

A step towards performing more exact calcula-
tions for kaonic hydrogen was recently taken by Bar-
rett, ' who included Coulomb corrections by using
potentials to calculate the 1S level. For the strong
interaction he used some of the coupled channel se-
parable potentials fit by Henley, Alberg, and Wi-
lets' (HAW). To simulate the Coulomb interaction,
Barrett added in another nonlocal separable poten-
tial with range and strength adjusted so that by itself
this potential gives the correct pure Coulomb bind-
ing energy of the 1S state. Again, in disagreement
with experiment, the 1S state is less bound than a
pure Coulomb state. No further conclusions were
drawn.

A possible cause of discrepancy between the K p
experiment and the pseudopotential formula (1.3) is
the uncertainty in the value of the scattering length.
Firstly, the number of low energy data is low.
Secondly, the scattering amplitude, which is what

I

should be used in (1.3), is highly energy depen-
dent, ' ' and must be extrapolated from fits to
medium energy scattering data (200—300 MeV) to a
subthreshold value near —8613 eV. Typical
values ' of the scattering lengths at threshold are

a(K p)= —lim (k cot5)
k o

=(a0+a |)/2
0.89—i0.62 fm(von Hippel and Kim)

(1.6a)

(1.6b)

At present these experimental uncertainties do not
appear large enough to support a complete sign re-
versal for Re a (K p), and the subthreshold extrapo-
lation for hydrogen is so small that there is little
change in the amplitude. '~' (Because of binding
and Feriiii motion effects, the extrapolation for a
heavy nucleus is much larger, =25 MeV, and a sign
reversal occurs. )

The calculation we report upon here is our first in
a study of coupled bound and continuum "eigen-
states. " It is similar in spirit to the HAW' and Bar-
rett'~ calculations. It differs in being a general
momentum space calculation with no restriction to
separable potentials, and in its exact treatment of the
Coulomb force for open and closed channels via an
extension' of the Kwon, Tabakin, and Lande pro-
cedure. ' We thus can calculate all the states for hy-
drogen (not just 1S) and extend the foiirialism to
heavy nuclei where the strong potentials are no
longer separable. In Sec. II we describe the theoreti-
cal forn|ulation, in Sec. III we present some results
of a model study, and in Sec. IV we give our con-
clusions. Although we are keenly interested in
understanding the experimental results, our goal at
this stage is weighted more towards understanding
the dominant physics and developing the needed
theoretical tools.

II. THEORY

A. Strong interaction channels
and potentials

We wish to apply a potential model to describe
the bound and scattering states for the KN, Xm, and
Am channels, (1.1). In an isospin basis these states
are

~

K p & = —v'1/2
~

00& +&1/2
~

10& 1,
~+~ & =V'1/6120&'+&1/2110& +V'1/3

~

00&': 2a,

(2.1)

(2.2)
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~

X 7T+ & =Pl/6
~

20&' —v'1/2
~

10&'+&1/3
~

00&': 2b,

i

X'w'& =v'2/3
i
20 &'+0 —Y1/3

~

00&': 2c,
K'n &=&I/2 IOO&+&I/2

I
1O 3 p

~A' '&=
~

lo&" 4

(2.3)

(2.4)

(2.5)

(2.6)

where 1—4 refer to the channel numbers. The chan-
nel numbers will be used as subscripts later. Since
we always start in the K p channel, isospin conser-
vation forbids transitions to the I =2 pieces of the
X~ state, and so we drop them. To keep the number
of channels (and computing) relatively low in this
initial study, and to make use of potentials already
in the literature, ' ' we truncate our space in two

'ways. First, we completely eliminate the Am chan-
nel, 4, and account for transitions to this pure I =1
state by making the I = 1 piece of our resulting po-
tentials complex (since we must deal with complex
matrices anyway to describe coupling to open chan-
nels this is a savings). Second, we follow the ap-
proach of Ref. 15 in considering the three Xm. chan-
nels as one effective, pure I =0 channel,

(K n
~

V
~

K n &=(V'+ V )/2

33

(K n
i
ViK p&=(V' —V )/2

= V13 = V31

(x~~ v~r~&=v'„'=v„,
(K-p

~

v
~

x~&= —v'1/2v'

= Viz= Vzi

{,K n
~

V
~

Xrr & =V'1/2V

12

= V32= vz3 ~

(2.10a)

(2.10b)

(2.11a)

(2.11b)

(2.12)

(2.13a)

(2.13b)

(2.14a)

(2.14b)

(2.14c)

The three channels are thus

(2.7)
We assume the potentials have the Legendre polyno-
mial expansion

( p i

v
i

p') = f d r d r ,z2 ('r
i

v
i

r ')
(2n. ) /

K p —+ Xm:2,
K'n 3.

(2.8)
~ ~gtp . r

X (2~)'" (2.15)

If we assume isospin conservation, the potentials in
and between the KN and Xm. multiplets are

1 00

, g (2L +1)VL, (p
~

p')
2'7l L 0

(K-p
~

v
~

K p&=(v'+v')/-2, (2.9) XPL, (cosO&~ ), (2.16)

TABLE I. KN, Xn. separable potential parameters (I. =0). Subscripts: 1=K p, 2=Xx, and 3=K n

Set

HAW4B

HAW2C

SGK

I=0'
V (10' Mev')'

A, ii ———35.8 ( —326P )

A, )2
———12.3 ( —112p }

A,22
———45.2 ( —412p )

—39.5 —i 3.62
{—n. /2(6. 45+i0.5928} fm )

P (MeV}

1097
(0.18 fm)

1097

1096
(0.18 fm)

I=1 (KN}
A,

' (104 MeV )

—7.66—i3.45
( —388 i 175 MeV—fm ')

—0.608 —i 0.422
( —30.8 —i22.4 MeVfm '}

—23.58 —i 18.97
{ n/2(3. 855+i—3.101) fm )

P' (MeV)

789
(0.25 fm)

395
(0.5 fm}

1096
(0.18 fm)

SGB

V '"'(RCB)

—476 —i 20. 1

{n/2 (77.89 + i3.289) fm )
—1.2~ 10-'

2582
(0.076 fm)

2.4
(84 fm)

—336—i101
{ n/2(54 94+—i 1.6.55) .fm }

2582
(13.08 fm ')

'The I=0 parameters are identical for both HAW sets, I= 1 differ.

A, =—A, 'sg /(2n. }3.
2
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and restrict ourselves here only to L =0. For the
potential coupling channels i and j (=1,2,3) we as-
sume the simple separable form:

(P&'+p')(P, '+p')
In the future we plan both to use the KN, X1r, and
An potential fits of Toker et al. , and fit the reac-
tion data with more general forms than (2.17).

The strengths and ranges for the potential models
used are given in Table I [converted to the conven-
tions of (2.17)]. The HAW (Ref. 15) potentials used
are from their recent fit to the actual scattering data
for pk &250 MeV/c, and to the scattering length of
Martin' (which has the opposite sign to Kim's' for
I =1). The HAW48 and HAW2C potentials in-
clude K p, K n, and Xn, but differ in their value
for the inverse range P (4 and 2 fm ') and in their
complex A, for the I =1 potentials. We do not con-
sider their fit A since its complex range can lead to
unphysical results.

The other two potentials are Schick and
Gibson's' "single channel" fit to the K matrix
analyses of Kim (SGK) and Berley et al. (SGB).'

{In our charge basis, the single channel means two,
K p and K n. ) Although the SG potentials are one
step further removed from the data than HAW's
fits, and do not reproduce all the effective ranges,
they permit us to see the effect of truncating the Xn
channel and to compare the Kim and Berley et al.
analyses (Kim's produces a larger scattering cross
section). In any case, the potential has large uncer-
tainties arising from the poor quality and quantity
of the experimental data, and it seems valuable to
gauge the model dependence of our answers by try-
ing several models.

We can see from Table I that the KN potential is
attractive in all channels (Rek, (0) and stronger in
I =0 than I = 1. As Dover and Walker indicate,
this is due to the coherent exchange of e and cp

mesons reinforcing the isovector p exchange. In
fact, the HAW I =0 potential, V„, produces a
strong bound state at —4.4 MeV, although the
linear combination (2.9) is not strong enough until
the coupled channels are included. It is also in-
teresting to note that in Table I the fits with a longer
range 1/P compensate by having a decreased
strength A, . The 1S equivalent Coulomb potential of
Barrett, ' V '"'(RCB) in turn, is some 500 times
longer in range than the strong potentials —but
—10 times weaker.

Coulomb potential V' in channel 1 (Ref. 1):

V» &—K p-~ V ~K p)-+V',
Ze 1

2m /p —p'f2
Ze

, Qp(~~~ )
&PE

Vi =p(p I
p') =—

, ln
Ze p +p'
2pp p p

„=(p'+p')/2pp' .

(2.18)

(2.19)

(2.20)

(2.21)

61V11 G1V12 G1V13

[F]= 62V21 62V22 62V23 ~

G3V31 63V32 63V33

(2.23)

The technique requires Green's functions defined for
real E by

(p
~
G;

~ p ) =(E+EM1;+i@ p /2p;)—
(2.24)

which are continued into the complex plane after the
e limit has been carried out. 1u; is the reduced mass
in channel i, e.g.,

Although both the use of experimental masses and
the inclusion of V' break isospin symmetry, our ap-
proach is dictated by the presence of Coulomb
bound states in channel 1 (we ignore Coulomb ef-
fects in other channels).

The logarithmic singularity of the Coulomb po-
tential (2.20) at p =p' makes a direct numerical
solution of the Schrodinger equation difficult.
Kwon and Tabakin' showed how to obtain a non-
singular equation for the pure bound state problem,
whereas Landau' extended this technique to the cou-
pled continuum plus bound state problem. In the
latter work a Green's function technique was used to
include the pure outgoing wave boundary condition
in the open channel. Since there is no incident wave
in either the open or closed channel, the Lippmann-
Schwinger equation takes the form

(2.22)

B. Coulomb interaction and coupled channels

To include the Coulomb force we use charge basis
states with experimental particle masses and add the

@1=m mp/(m~ +mp ) ~

and ~1; the difference in total mass, e.g.,

~12——(m +mp) —(mx+m ) .

(2.25)

(2.26)
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The "eigenenergies" (since the bound states are in a
continuum, the energy is really continuous) follow
from the condition for a nontrivial solution of the
discretized form of (2.22),

det[1 F]—=0 . (2.27)

The Kwon, Tabakin, and Lande procedure' re-
quires that the integrals be replaced by sums over a
discrete grid and that the Coulomb part of Vt t con-
tains a "correction" terrr| along the diagonal which
removes the singularity, i.e.,

V'0(I

m 0 ~jm

(2.28)

where IVI is an integration weight.
Since G2, (2.24), is a complex function of p if

channel 2 is open, (2.27) produces complex eigenen-
ergies even for real potentials.

In addition, as we search to obtain our complex E
we also produce a complex channel momentum k2,
the on-shell momentum for the strong potential in
channel 2, (2.26). If we then evaluate the on-shell
potential term in channel 2 (the t'e part) at this com-
plex momentum, we are analytically continuing our
solution into the complex plane and simultaneously
requiring a self-consistent complex solution. Since
the Coulomb binding energy, —9 keV, is very small
compared to the mass difference, —100 MeV, this is
a small continuation for our problem and causes no
noticeable change in the "eigenvalue. " The effect on
strongly bound states, however, may be more signifi-
mnt.

800— 1S

I
I

I

Davies ef g/.

400 —
Mote
Bound 2S

B. Model study

Since two of the goals of this work are to under-
stand the physics of the K p system and to test our
technique, we describe some theoretical experiments
in which we varied the parameters at our disposal.
To start, we performed a computer experiment in
which we took the potentials and varied the strength
A, of the coupling to the K n, Xvr, and Am. channels
(Atr indirectly by varying ImV ='). The result is
shown in Fig. l. A, =O is the pure single channel
with real potentials, whereas A, =1 is the full cou-
pling which reproduces scattering data. We see that
for A, =O there are large positive (more bound) shifts
e, but very small widths I for the K p 1S and 2S
states. This is as expected for an attractive real po-
tential. However, as the coupling increases to
A,=0.65, the shifts pass through zero and the widths
simultaneously attain large maxima. Further in-
crease in the coupling actually decreases the width,
and beyond A, =0.8 the state becomes more bound as
the coupling increases. As A, increases still further
no additional sign changes occur, and e remains neg-
ative. The behavior shown in Fig. 1 is both an indi-
cation of a high sensitivity to the channel coupling,
and a version of the Krell oscillations for coupled
channels.

For couplings below the crossover point our nu-
merical search procedure found no strongly bound

III. RESULTS
(eV) 0 I

0.2
Less

Bound it

I

04

A. Accuracy: Single channel bound states

Cfood accuracy with momentum space techniques
requires an appropriate choice of grid points. ' '' We
determined our best grid by considering the single
channel problem where analytic solutions make
comparisons easy. First, we found the grid which
produced the most accurate 1S binding energies for
the pure Coulomb K p potential ( —8613 eV), and
then found the grid which produced the most accu-
rate binding energies for the pure strong potential
ReV (I =0) ( —4.40, —19.8, and —38.0 MeV for the
HAW, SCrK, and SCAB potentials, respectively). The
two grids were then combined for the Coulomb plus
nuclear problem. Note that since only V(I =0)/2
contributes to (K p l

V
l

K p), (2.9), there is no
strong bound state in the single channel problem
(there is for coupled channels).

-800—

2400—

2000—

1600—

1200—

800—

400—

I
I

K —
p shift and width I

vs channel coupling l
/

/
/

/
1Sy
l

/

2S

1.0
0 ~ t ....l."""""~""'"'"I"'-''

I I
"'"'I ~ ~ ~

0.0 0.2 0.4 0.6
A Coupling Strength

FIG. 1. The shift e and width I of the 1S and 2S K
hydrogen levels as a function of k, the coupling strength
to the Xm., K n, and A~ channels. A, =1 is the HAW2C
potential. The data are from Davies et al. (Ref. 8)
(boxes), Izycki et al. (Ref. 9) (circles), and Bird et al.
(Ref. 10) (triangles).



E p BOUND STATES WITH COUPLING TO HYPERON CHANNELS 1329

~K

200—

(eV)
0

-200—

-400—

~{K-, I:)
o(K K Ko)

SG
+ Reltv

-
I CHANNELSI

~ (K-, r)
1000—

I MODELS I

800—

K p 1S SHIFT L WIDTH

izycki
X

I ~~ Bird

Ii DaVieS

[ EXPERIMENT ]

both have the same energy and we have a level split-
ting or crossing effect. Since our simple K p se-
parable potential (2.17) produces only one bound
state, there are no further oscillations. This leaves
the sign of E negative and, like the scattering length,
with a value which can also be obtained with a
weakly "repulsive" potential. In future studies we
plan to study simultaneously the above threshold
scattering solutions.

The hadronic bound state we calculate with
HAW2C has binding energy E~ ———(16.4, 11.1i)
MeV for nonrelativistic kinematics or El, ———(14.1,
9.4i) MeV for relativistic kinematics

K=(m +k )'

600—

{eV)

400—

200 0 (K, ~, K )

[

Ii

FIG. 2. The shift e and width 1" of the K p 1S level.
The effect of coupling different channels (with otherwise
the same potentials) is shown by the filled circles, filled
squares, and open circles. Different potential models (see
text) are indicated by the 2 HAW2C, 4 HAW4B, B SGB,
and K SGK. R2 represents the results obtained with the
HAW2C potential if the pseudo-Coulomb approximation
of Ref. 14 is used. Reltv indicates how the computed
shifts change when relativistic kinematics are used. The
data are from Refs. 8—10.

state (Yo) below the K p threshold which also satis-
fied our imposed boundary conditions. Above the
crossover we find a deeply bound, strong (inner)
state and many Coulomb (outer) states. At A,=0.65

Although our strong K p state is not pure I =0, it
is hard to keep from identifying this state with the
Yo which has binding energy'5

E ( Yo ) = —(10—30, 10i —i 27) MeV .

Our state is a K p bound state in the Xm continu-
um ' and is thus unstable.

In Fig. 2 and Table II we display some of the
model dependence of our calculated E and I . The
experimental findings of Davies et al. , Izycki
et al. , and Bird et al. ' that Eis is more bound is in
disagreement with other K -atom shifts, ' and our
calculations. In the left-hand portion of Fig. 2 we
present another "theoretical" experiment in which
the HAW2C potential is used with different com-
binations of channels turned on and off (again we
note that only the results with all three channels in-
cluded are realistic). When only the K channel is
used (filled circles), the shift is positive (more
bound) and the width large. As the other channels
are switched on (filled squares and open circles), E
enters the less bound region (E& 0), whereas I ulti-

1

mately assumes ——, of its former value. If we turn

TABLE II. K p level shifts in eV. E '"'(1S,2S)= —(8613,2153).

Potential Channels
&&s r is &2s

Nonrelativistic
I2s &&s I is &2s

Relativistic
12s

HAW48
HAW2C
SG1
SG2

K ,K,X
K ,K,X
K,K
K,K

—383
—328
—350
—228

270
223
258
222

—41
34

—33
—13

—341 924
—269 873
—147 126
—58 37

—38
—28
—19
—6

107
98
10
4

Expt. {Ref. 8)

Expt. (Ref. 9) K p

Expt. (Ref. 10) IL p

40 0
(+60) (+ 230)

264 544
(+76} (+256)

200 80
(+60) (+ 220

—80)
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off the absorption into the I =1, A~ channel by
making the potentials pure real, the 1S level be-
comes more bound but its width larger, another ex-
ample of strong absorption/coupling acting like a
repulsion. Note, that although the potentials are all
real in this case, the eigenenergies are complex be-
cause of channel coupling.

C. Potential model and wave equation dependence

In Table II and Fig. 2 the 2's, 4's, 8's and K's
represent the range of values scanned for (e, I ) using
the four potential models of Table I. (Table II also
presents results for the 2S state. ) Whereas @1' varies
significantly with these models, it always remains
less bound; our calculated I"s, on the other hand,
fall within the range of the data, not a great achieve-
ment considering the range of the data. It is in-
teresting to note that the Schick, Gibson-Kim poten-
tial with only the K and K channels gives results
similar to the three channel (K, K, X) HAW po-
tentials. The SG-BEA two channel potential, which
has a much smaller I =0 scattering length, produces
smaller (

~

e ~, 1 ).
We also note in Fig. 2 (point R 2) and Table III,

the equivalent Coulomb calculation of Ref. 14. The
differences between our calculations are larger in the
coupled channels case than in the single channel
case; this is probably caused by the high sensitivity
of these results to the channel coupling and the dif-
ferent treatments of the i e prescription.

In the calculations described up until now we
have used the Schrodinger equation with nonrela-
tivistic kinematics. However, since we are in
momentum space we can change the definition of
our Green's function (2.24) to

(p i 61 ip) = —lmg+m1 +E—/e

(m 2+p2)1/2 (m
~ 2+p2)1/2

and obtain a Schrodinger equat1011 wltll 1elatlvlstlc
kinematics. Since there is an energy release of
—100 MeV in the Xm channel, the pion is always

relativistic and (3.1) is preferred; yet since it is some-
what inconsistent to use this equation with poten-
tials from a nonrelativistic Schrodinger equation, we
do it only to gauge the size of the effect. As we can
see in Fig. 2 (+ Reltv) and Table II, the width is
greatly increased by relativistic corrections. This is
a reflection of the significant changes (25%) in the
channel 2 momentum, k2-177 MeV/c, and the im-
portance of this momentum in determining the
strength of the coupling to channel 2. In fact, we
have found that just using relativistic' or nonrela-
tivistic definitions of the reduced mass in channel 2,

p2(NR) =m~mz/M2 —125 MeV, (3.2)

p(REL) =(M1+M2)[M1 —(mg —m ) ]/8M1

=158 MeV,

M) ——mg +mp, M2 ——m~+m

(3.3)

(3.4)

in an otherwise nonrelativistic calculation, can pro-
duce similar changes.

D. Comparison with the pseudopotential formula

Since the energy level shifts are small compared
to the binding energy, it seems obvious that some
type of perturbation theory should be valid (al-
though since the potentials are large, V/E»1).
Indeed, for pionic atoms the pseudopotential Deser'
formula (here for S states)

EE„4E„n R21
(3.5)

Rs Pg ' ——A' /Ze p=——83.6 fm,

E„= pZ e /2A n —= —8613 eV/n

(3.6)

(3.7)

p=m~ m~/(m~ +m~)=323. 48 MeV, (3.8)

has proven to be quite accurate. ' In (3.5), AE„
(= e il—/2—) is the shift of the S state, E„ is the
energy of the Coulomb bound state (principal quan-
tum number n), Rs is the Born radius, and a is the
hadron-nucleus scattering length. For the K p sys-
tem we take

TABLE III. Shift of 1S level. Comparison with pseudo-Coulomb potential.

V, (RCB)'
I

inexactCV, (RCB) via RHL
I

—417
—386

—383
—328

Strong potential (eV) (eV) (eV)

HA&48: E,E,X 381 —416 350 270
HAW2C: X,K,X 488 —364 301 223

*Reference 14. A recent corrigendum (personal communication) changes shifts and widths to
( —393,659) eV.
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a(K p):—(ao+a))/2 (3.9)

b,E„4a,/nR&—

E„ 1 +3. 154a,Rg
P

(3.11)

Q~ Q
—1 —1 + n +0.5777

2 1 4

(3.12)

E„=—K /2p, (3.13)

and amount to only a few percent for K p.
Kumar et al. , in turn, have examined Deloff

and Law' s' suggestion that an anomalously large
Coulomb effect may exist in K hydrogen. They
conclude, however, that such an effect would cause
a serious conflict with the scattering data above
threshold.

= (0.892—0.582i ) fm: SGK, (3.10a)

=(0.483 —0.389i) fm: SGB, (3.10b)

where values of ao and a& in (3.10) are from the
pure strong SGB/SGK potentials of Table I. Values
of a(K p) obtained directly from fitting scattering
data are given by (1.6).

If the scattering length in (3.5) has Re a & 0, then
RehE is &0 and e is &0. Since all K p models
give Re a & 0 we would expect e ~ 0, in agreement
with our calculations but not with experiment. Con-
versely, since K -nucleus levels have b,E&0, (3.5)
implies Re a(K —A)&0. Yet since K -N and
K -A potentials are attractive, this sign reversal
from that of a weak attraction implies strong K -A

bound states (if there were no absorption). While
this cannot as yet be ruled out, it is also known that
(3.5) requires some corrections.

Trueman, ' Stepien-Rudzka and Wycech, ' and
others have indicated that the scattering length in
(3.5) should be corrected for the presence of the
Coulomb field and for the difference in energy be-
tween the bound state E~ (K) and the zero energy
scattering. These corrections have the form'

The question still remains as to how valid this
pseudopotential formula is for the K p problem,
where there are coupled channels and nonlocal po-
tentials. [The obvious answer is that (3.5) is perfect-
ly valid if the right a is used. ] We have tried to
answer this question by comparing the results of
Schrodinger equation solutions with (3.5) for the dif-
ferent potential models and wave equations. Since
other uncertainties are much larger than the correc-
tions given in Eqs. (3.11)—(3.13), we examine only
the simpler (3.5) here. The difficulty is that a mean-
ingful comparison requires "a" to be calculated in a
coupled channels formalism consistent with the one
used for the bound state. Unfortunately, since we
used a charge basis with different channel masses, it
is no longer true that

a(K p) =(ao+a] )/2,
and we need a coupled channels scattering code to
determine the correct a(K p) to use in (3.5). Al-
though we are still working on a scattering analysis,
for present purposes we must content ourselves with
Table IV, where we calculate the shift (3.5) with
(ac+a ~ )/2 and compare with computed eigenener-
gies. We do, however, give in row 3 the value of
(e, I ) calculated with a value of a(k p) deteriained
in a preliminary coupled channels calculation by
Barrett. '

We find & 85% agreement with our eigenenergy
calculation for the shift e, but the computed I 's are
—50% too small. Since the width is directly related
to the strength of the K p~Xm coupling, and this
in turn is a sensitive function of the channel masses,
channel energies, and relativistic kinematics, the
disagreement is somewhat understandable. Howev-
er, firm conclusions must await further calculations.

IV. CONCLUSION

We have solved the Coulomb plus nuclear poten-
tial problem exactly in momentum space for the
coupled K p, Xvr, K n, and Am systems. Since

TABLE IV. Comparison of scattering length formula and computed eigenenergies.

Model

SGK
SGB
HA%'2C

K,E,
K,K

K ,K,X

ap+Q)
2

(fm)

0.892 —i 0.582
0.483- i 0.389
0.995—i 0.801'

(~, 1 })s

Eq. (3.11)

—368,480
—199,320
—394,660

(e, I })s

Computed

(eV}

—350,258
—288,222
—328,223
—269,873

Method

NR
NR
NR
REL

'K p scattering length calculated by Barrett (Ref. 19}for coupled channels with experimental
masses.
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there are both open and closed channels, we extend-
ed the Kwon, Tabakin, and Lande procedure to the
Lippmann-Schwinger equation. The unbalanced
ranges and strengths of the Coulomb and nuclear
potentials make this a difficult problem, but our
coupled channels results do display the behavior ex-
pected for strong absorption.

We have found that an accurate description of the
K p system requires a careful treatment of channel
coupling, relativistic kinematics, and very general
forms of the potentials, requirements most easily
met in momentum space. On the technical side, the
development of this exact procedure represents pro-
gress in the reliable extraction of two body interac-
tion information from exotic hydrogens.

Although it may sound like a ritualistic chant by
now, ' ' ' our understanding of the KN and KA'
systems is still severely limited by the poor quality
and limited quantity of KN data. In particular, a
different approach to experimental measurements of
kaonic hydrogen seems worthwhile. " If, however,
the value of the 1S shift in present experiments
remains, then a major change in the low energy KN
analysis seems needed; e.g. , a simultaneous fit of
KN, Xm., and Anreactio. ns and atomic bound state
data. Our present work still indicates that the posi-
tive e~s for K p (more bound shift) is incompatible
with the existing potential fits. In order for other
potentials to produce a positive shift, however, they

need to produce a second strong state (or none).
Some of the questions in our K p study may be

answered by a future study of the K He atom
where the experimental identification of the K line
is more certain. We are presently working at apply-
ing some of the techniques developed for the rr He-
problem to the K He -problem.

ACKNOWLEDGMENTS

It is a pleasure to thank Dr. F. Tabakin, Dr. V.
Mandelzweig, Dr. R. C. Johnson, Dr. R. C. Barrett,
Dr. A. Gal, and Dr. E. Schmid for penetrating and
helpful discussions. I particularly wish to thank Dr.
Barrett for his cooperation in running his computer
program to generate intermediate results with which
to check, and Prof. E. Schmid and Prof. V. Madsen
for a critical reading of the manuscript. Some of
this research was conducted while I was on sabbati-
cal leave at the University of Surrey, and I would
like to thank the Physics Department there for their
hospitality and assistance. Shorter visits at the
Weizmann Institute of Science and the Hebrew
University of Jerusalem also provided rare and valu-
able opportunities. Financial support from the Sci-
ence and Engineering Research Council (U.K.), Ore-
gon State University, and the National Science
Foundation (U.S.A. ) has been essential and is grate-
fully acknowledged.

'Present address: Department of Physics, Oregon State
University, Corvallis, OR 97331

'R. H. Landau, Phys. Rev. C (to be published).
2G. Toker, A. Gal, and J. M. Eisenberg, Nucl. Phys.

A362, 405 (1981).
3A. Gal, G. Toker, and Y. Alexander, Ann. Phys. (N.Y.)

137, 341 (1981).
4R. H. Dalitz and J. G. McGinley, Lou and Intermediate

Energy Kaon-Nucleon Physics, edited by E. Ferrari and
G. Violini (Reidel, Dordrecht, 1981), p. 381; K. S. Ku-
mar and Y. Nogami, Phys. Rev. D 21, 1834 (1980).

5C. B. Dover and G. E. Walker, Brookhaven National
Laboratory report (unpublished).

6C. J. Batty, Nukleonika 25, 545 (1980).
7M. Krell, Phys. Rev. Lett. 26, 584 (1971);R. Seki, Phys.

Rev. C 5, 1196 (1972); J. H. Koch, M. M. Sternheim,
and J. F. Walker, ibid 5, 381 (1972.); C. J. Batty, Phys.
Lett. 878, 324, (1979); T. E. O. Ericson and F. Scheck,
Nucl. Phys. 819, 450 (1970).

J. D. Davies, G. J. Pyle, G. T. A. Squier, C. J. Batty, S.
F. Biagi, S. D. Hoath, P. Sharman, and A. S. Clough,
Phys. Lett. 838, 55, (1979).

9M. Izycki et al. , Z. Phys. A 297, 11 (1980).
'oP. Bird, Ph.D. thesis, University of Surrey, 1982 (un-

puMlshed).

C. J. Batty, in the Proceedings of the International
Conference on Hypernuclear and Kaon Physics,
Heidelberg, 1982, Max-Planck-Institute Report MP1-
H-1982-V20, 1982.

' S. Deser, M. L. Goldberger, K. Bauman, and W. Thir-
ring, Phys. Rev. 96, 774 (1954); T. H. Trueman, Nucl.
Phys. 26, 5? (1961); T. E. O. Ericson and W. Weise
(unpublished).

'3A. Deloff and J. Law, Phys. Rev. C 20, 159? (1979); W.
Stepien-Rudzka and S. Wycech, Nukleonika 22, 929
(1979).

i4R. C. Barrett, J. Phys. G 8, L39 (1982).
~5E. M. Henley, M. A. Alberg, and L. Wilets, Nukleonika

25, 567 (1980); M. Alberg, E. M. Henley, and L. Wilets,
Ann. Phys. (N.Y.) 96, 43 (1976).

~6J. K. Kim, Phys. Rev. Lett. 19, 1074 (1976); D. Berley,
S. P. Yamin, R. R. Kofler, A. Mann, G. W. Meisner, S.
S. Yamamoto, J. Thompson, and W. Willis, Phys. Rev.
D 1, 1966 (1970); 3, 2297 (1971); A. D. Martin, Phys.
Lett. 658, 346 (1976).
Y. R. Kwon and F. Tabakin, Phys. Rev. C 18, 932
(1978); A. Lande (private communication).

8L. H. Schick and B. F. Gibson, Z. Phys. A 288, 307
(1978).

~9R. C. Barrett (private communication).



28 K p BOUND STATES WITH COUPLING TO HYPERON CHANNELS 1333

2oW. E. Lamb, Jr., Phys. Rev. 85, 259 (1952); R. T. Ro-
biscoe, ibid. 138, A22 (1965); P. R. Fontana, Atomic
Radiatiue Processes (Academic, New York, 1982),
Chap. 9.

2tR. G. Newton, Scattering Theory of Waues and Particles
(McGraw-Hill, New York, 1966), p. 520.

2 A most recent work by J. Thaler on Coulomb corrected
scattering lengths, received as a Graz report (unpublish-
ed) still leaves the E p atom shift a mystery.
K. S. Kumar, Y. Nogami, W. van Dije, and D. Kiang,
Z. Phys. A 304, 301 (1982).

2~J. Sanudo, Phys. Rev. C 26, 2682 (1982).


