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Higher-order field effects in pion absorption on two nucleons
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We estimate the importance of rescattering diagrams involving intrinsically third-order
effects in the pionic field for the process of pion absorption at rest on a pair of nucleons.
The calculation is performed using a chiral bag model adapted for the correct description of
higher-order pionic effects. The model provides the form factors needed in order to achieve
a convergent result. The third-order diagrams cancel in part; nevertheless, the net result is
as important as the conventional second-order s-wave rescattering mechanism for reasonable
bag radii R —1 frn and becomes dominant for bag radii R (0.7 fm for internucleon dis-
tances less than about 2 fm.

[ NUCLEAR REACTIONS (m, 2N), pion absorption, chiral bag models. ]

I. INTRODUCTION

The process of pion absorption on a pair of nu-
cleons is often described in terms of direct absorp-
tion (Fig. 1) and s or p-wa-ve rescattering diagrams
(Fig. 2). It was shown some time ago' that rescat-
tering terms are quite important for the calculation
of the absorption rate. More recently, it was
demonstrated that the nn lnp emission ratio in nu-
clei after m absorption is very sensitive to the in-
clusion of rescattering terms in the absorption
operator.

The question of the possible importance of
higher-order rescattering diagrams must be treated
within the framework of some field theory model.
These terms often appear naturally as higher-order
elements in a Lagrangian whose lowest orders give
rise to the interactions of the direct absorption and
s or p-wave -rescattering. Weinberg's chiral La-
grangian is widely accepted as a good basis for this
purpose. If one attempts to calculate the diagrams
of higher-order rescattering using this Lagrangian
one encounters the diagrams depicted in Fig. 3, and

a divergent result is obtained for point interactions,
so that the need for cutoff factors is immediately
apparent. These form factors are unfortunately not
well known, and especially the m.trtrNN vertex re-
quires a model for its treatment, so that the calcula-
tion of these diagrams inevitably requires specific
assumptions concerning the internal behavior of the
hadrons.

In recent years chiral bag models have become a
helpful tool for the investigation of pion-nucleon in-
teractions. In particular, one version ' of the
bag model allows for the description of pion-nucleon
processes up to third order in the rrNN coupling
constant g. To first and second order the effective
Lagrangian of this approach is identical to the
cloudy bag model (CBM), ' while for reactions that
depend on the third-order interaction g, such as
trN~trtrN, it yields more immediate agreement
with experiment. This form of the chiral bag model
is especially well suited to clarify the extent to
which the higher-order effects of Fig. 3 enter in the
(m, 2N) process.

Chiral bag models are most straightforwardly ap-
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FICx. 1. Direct absorption diagram (previous or subse-
quent NN interactions have been suppressed). FIG. 2. Single-pion exchange rescattering diagrams.
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FICs. 3. Rescattering diagrams (of order g').

plied at moderate nucleon energies (say less than
about 100 MeV) at which the nucleon can be ap-
proximately considered to be at rest, so that one may
use the static cavity solutions of the MIT bag
model. ' At the present time no translationally in-
variant chiral bag model is available, especially be-
cause of the lack of physical understanding of the
bag surface in terms of field operators. Neverthe-
less, the bag model determines the m.N form factor
as a function of the bag radius R, and thus gives a
direct answer for the calculation of the diagrams of
Fig. 3 if recoil effects are neglected or treated ap-
proximately. In this spirit we use our version of

the chiral bag model to calculate the third-order dia-
grams. As a benchmark for comparison we consider
them in relationship to the well-known and often-
used second-order rescattering graphs' of Fig. 2.
We note that there exist other categories of diagrams
of the same order as those of Fig. 3, which for one
reason or another are not considered here. For ex-
ample, the cases shown in Fig. 4(a) vanish identical-
ly for pion absorption at rest. This is because the @-
wave vertices (with one or three pion lines) and
momentum conservation introduce a symmetric fac-
tor k+ k' in each graph, while the s-wave, two-pion
vertex involves the antisymmetric combination
co(k) —co(k') for pion energy co, so that after integra-
tion over the internal variables k, k' the contribution
is zero. The graphs of Fig. 4(b) are omitted because
they represent part of the conventional rescattering
process which is a straightforward extension of the
usual methods of calculation. ' Naturally there are
still other effects which may enter into the
NNrr~NN interaction, as for example, b, admix-
tures, but our purpose is merely to establish the sig-
nificance of the third-order effects for use in con-
structing the two-nucleon transition operator on
(m. ,2N), and so we have not considered these compli-
cations here.

II. THE RESCATTERING DIAGRAMS

The chiral bag model that we use is defined by the
following Lagrangian:

q, Qq, —8 8—„——, gq, q, b,,+ gq, y [gysr B&~ gq. (m XB„—m)]q, 8„.
1 1 1 1+ ..8"m" B„~—— m ~
2 (1+g2~ ) 2 (1+g m )

qq
———g gq, y ~.(m'XB„m. )q, 8„', (3)

3~ — p
qq g ~q y ys'r 8 77% q 8„ (4)

where q, is the quark field of flavor a, n is the pion-
ic field, 8„=e(R r) is the step —function for the
bag of radius R, b., is the bag surface delta function,
and g is the m.N coupling constant. The terms enter-
ing the calculation of the diagrams of Figs. 2 and 3
are the following:

~~qq =g Q qay"ys'r dp~qa8u ~

The time components (p =0) of Eqs. (2) and (4) van-
ish when the static cavity solutions ' are used. (In
the case of Weinberg's Lagrangian these terms van-
ish in the nonrelativistic reduction. ) Equations
(2)—(5) have equivalent expressions in Weinberg's
Lagrangian when the nucleon field is used instead of
the quark field; the construction here of the nucleon
out of quarks produces the appropriate form factors
for the vertices of Eqs. (2)—(4). When these vertices
are used in the calculation of the diagrams in Fig. 3,
the expressions involve linearly either the momen-
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FIG. 4. (a) Two diagrams of fifth order that vanish
here. (b) A fifth-order diagram that we classify as a re-
scattering effect.

each outgoing nucleon.
In order to evaluate the importance of the dia-

grams of Fig. 3 as compared to those of Fig. 2, we
chose the case of n. absorption on a deuteronlike
pair of nucleons. For the initial state we assume the
presence of an s-state wave function for this initial
deuteron, and, similarly for the final state, we sup-
pose plane waves for the outgoing nucleons multi-
plied by a spherically symmetric function (such as a
correlation function). The particular choice is ir-
relevant for purposes of comparison with the dia-
gram of Fig. 2, since in the following expressions we
keep only the plane wave function that is necessary
for the angular integrations and omit all the other
radial functions. We also suppress the overall
momentum conservation 5 function.

The matrix element for the s-wave rescattering,
Eq. (3), is then

S, =V 2 130m g i(a t+o 2)pmj~(pr)

turn of the external absorbed pion or the momenta
of the rescattered pions. For the (s-wave) absorption
of low momentum pions, only the latter case sur-
V1VCS.

In Eq. (2) the most important contribution comes
from the time component (p=0). In order to per-
form the calculation, and in the spirit of the recoil-
less approximation, we fix each of the two nucleons
at its respective position, r

&
and r z, throughout the

dynamic process, and subsequently vary the internu-
cleon distance r =

~
r& —r2 ~. This is equivalent to

the assumption that the intermediate nucleon
momentum q of Fig. 3 is small compared to its mass
M. This is a reasonable approximation because

q &p —V'mM «M, where p is the momentum of

oo Ji P Ji R
O 2+3 2 g

In Eq. (6) we have chosen the final nucleons to have
equal energies,

DZ
E12 ——M+

this is appropriate to the kinematical situation in
which all three initial particles are at rest.

Using Eqs. (2)—(5) we obtain the matrix element
for the diagrams of Fig. 3. Summing the contribu-
tions from the first two and the last two diagrams,
amongst which there is some cancellation, we find
(neglecting small terms)

3 3 i i(k —k') r —i p r'
v 2i108g r

(2m)' (k'+m')(k'+ —,m')((k —k')'+ —,m')

j,(k'&) j,(k'&) g, (
~

k —k' &)
X [O)(k, k')o ).(k —k') —02(k, k')cr2. (k —k')] k k'

[k —I ~Z

where

O)(k, k')= —,m + —,k ——,k' +2k k'

02(k, k') = —,m +k' —k

[We also checked Eqs. (6) and (7) by direct calculation using standard prescriptions for relativistic Feynman di-
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FIG. S. Single-pion rescattering (full line) and third-order pion contribution (dashed line) for R= 1 fm [(a)], 0.8 fm [(b)],
and 0.6 fm [(c)]. The ordinate is to be multiplied by 24W2 to obtain the quantities of Eqs. (6) and (11).

agrams, taken to the nonrelativistic limit. ] We next exploit the relation

(
I

k —k' lR)

l
k —k'lR

3Z el(k —k') x j ~~ R j& ~~ R
8'(coo —1)jo (roo)R

I' . ' 2+ j j
2(roo —1)jo'(roo)R ' '

r =o

X (j o (roox /R ) +j & (roox /R )), (10)

where coo ——2.04 is the lowest bag eigenmode, and develop the denominator (k —k') + —,m in Legendre poly-
nomials Pr(k. k ), obtaining a double series whose convergence was checked numerically. The maximum error
in the overall third-order amplitude caused by this procedure was -2%. To this accuracy the expression of
Eq. (7) becomes

k~dk k'~dk'x dxj i(prj)i(kR)ji(k'R)
S,= —28((g'(V2 J . . . [f,(k, k')a, p f, (k, k')o;p(, —

(k +m )(k' + —,m )

where f i and fz are given in the Appendix.
Perforirling the integrations of Eqs. (6) and (11)

numerically, we evaluate the importance of the dia-
grams of Fig. 3 relative to those of Fig. 2. We find
that the contributions due to fz are greater by
roughly an order of magnitude than those offi, and
so we have dropped the f i terlll. Note that for the
specific spin states the contributions of f i may not

be negligible; we present here results for the coeffi-
cient of i ( o i+ o z). p in St and i o i.p in Sz. Fig-
ures 5(a)—(c) display these results for bag radii of
R= 1, 0.8, and 0.6 fm, which are in the range of ac-
ceptable values. It is readily seen that the diagrams
of Fig. 3 are as important as those of Fig. 2 for in-
ternucleon distances r & 2 fm, but of course, are less
important for r & 2 fm; they may dominate for r & 1
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fm for a bag radius of R=0.6 fm. These charac-
teristics arise because the diagrams of Fig. 3 involve
more massive exchange than the single pion in Fig.
2. Note that the two-pion exchange of Fig. 3 carries
the opposite sign compared to the amplitude of Fig.
2, and therefore tends to cancel the one-pion ex-
change. This is similar to the usual effect of p ex-
change, itself a (resonating) two-pion exchange ef-
fect." If instead of a bag model forir| factor one
chooses to use the customary monopole vertex func-
tion A /(A +k ), k being the momentum transfer
and A a cutoff parameter, we find analogous results
provided that there is a straightforward identifica-
tion between R and A. The one pion exchange po-
tential calculation suggests that R= 1, 0.8, and Q.6
fm correspond well with A=3, 4, and 5.5 fm ', and
we have verified that similar results are then ob-
tained for our process here.

We have also calculated the soft pion limit m ~0
of Eq. (11) and obtained the results displayed in Fig.
6. The curve shows almost constant behavior for 50
MeV~m (140 MeV, and then an abrupt fall to-
wards zero. A similar trend was found by Afnan
and Thomas' for the sum of the terms of first and
second order, Figs. 1 and 2, using an explicit deute-
ron wave function in rr+d ~pp.

Finally, we conclude that the third-order rescat-
tering diagrams calculated in the framework of a
chiral bag model Lagrangian make a very appreci-
able contribution to pion absorption on two nucleons
and thus must be included on the same level as other
higher-order effects such as the s-wave rescattering
with single pion exchange. In a complete calcula-
tion, one must also consider graphs in which the
inner baryon lines become isobaric resonances, rath-
er than nucleons, as well as diagrams where heavy
mesons are exchanged. This latter extension would
be better perfoiined without the inclusion of p ex-
change, which risks being redundant with isovector
parts of the two-pion transfer included here. Unfor-
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r= l. 5fm
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Flax. 6. Soft pion (m~O} limit for the diagrams of
Fig. 3 for three internucleon distances, from top to bot-
tom: r=0.5, 1, and 1.5 fm; R=0.6 fm. The curves are
normalized to one at m = 140 MeV.

tunately, there does not seem to exist at present a
well founded theoretical basis on which to distin-
guish between such effects, so that their further
study would have to be carried out phenomenologi-
cally.
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APPENDIX

The functions f, ,f2 are given by

ga;
I —24

(up —2.5u2)QI+, g a;
Zi=2

3QIlup+, (u i
—3.5u3 )

2Q4 3l u2QI 7.5lu2 17.5QIu3
,-(ui —3.5u3)+7. 5 +a~(kk') (kk') (kk')

(Al)
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where

z =k2+k'2+ —m2, (A2)

and

u„(x)= 2 ~ (j o (ropx/R)+j, (roox /R))J„(kxj)„(k'x),
2(rpp —1)jp (rpp)R

Q2 ———,m + —k ——,k'17 2 2 1 i2
2

Qi ———,m +k +k'

(A3)

(A4)

(A5)

Ci bia|= b t kc2 — +c| k'b2— kk',

c2 kbici
aq —— b2 kcq — +, +c2 k b3-

x k'x
b2 +

k'bici
(kk')2,

(kk')
a~ ——[2kb qc4 —12bqc~/x +3b|(kc2 —c|/x)+ 2k'c~b4+ 3c

&
(k'b2 b& /x)—]

kbic& k'bic&
a4 ——'Skb4cs 64b4c—4/x+8k'c4b5+30 b2(kc3 6c2/x)+, +c2k'b3+k'x kx

(kk')4—3(kboci+k'cobi) .

with

bi=jI(k'x), c, =j,(kx) .
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