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The three body approximation of the pion-nucleus optical model is used to calculate effective
strengths to be used in conventional calculations. The resulting wave functions are used to calculate
pion elastic scattering and single charge exchange. It is found that observed energy shifts in elastic
scattering can be understood. Considerable change in the magnitude and shape (as a function of en-

ergy) of the charge exchange cross section is a direct result of these corrections.

NUCLEAR REACTIONS ' C(m+ m+)' C Li(m. +,m ) Be, ' C(~+,~ )' N
' N(m. +,~ )' O; calculated dcrfdO(0 ), 0.(0), cr(E); corrections due to binding and

Pauli blocking.

I. INTRODUCTION

A fundamental ingredient in the calculation of pion-
nucleus interactions is r, the scattering amplitude of the
pion on a bound nucleon. Since w involves coordinates of
all the nucleons in the nucleus it is a many-body operator
and is notoriously difficult to compute. If the energy of
the pion is much greater than Eb, the binding energy of
the nucleon, and if the pion-nucleon t matrix (t) is insensi-
tive to energy variations over the range E+EI„ then ~ can
be replaced by t, the free pion-nucleon t matrix (impulse
approximation). Since t is a two-body operator the practi-
cal simplification is enormous. Unfortunately, these con-
ditions certainly fail to apply at the energies most com-
monly used at the meson factories. Nonetheless, due to its
seductive simplicity many workers in the field have con-
tinued to use the impulse approximation in this regime.

To make up for the theoretical deficiencies of this po-
tential a common procedure is to replace ~ by a general
form with parameters chosen through use of pion-nuclear
data. A particularly interesting phenomenological calcula-
tion was performed by Cottingame and Holtkamp' who
find that the appropriate t matrix is approximately the
free one evaluated at a lowered energy,

tuh, „om(E) =ttlee(E D) . —

For a pion with laboratory kinetic energy between 100 and
300 MeV, D is found to be around 30 MeV with generous
error bars. Cottingame and Holtkamp make the eminent-

ly plausible suggestion that the energy shift is due to nu-
cleon binding effects.

The idea of introducing an energy shift in the free
pion-nucleus t matrix to represent binding effects was in-
troduced by Schmit in 1972. He attempted to make esti-
mates of the size of this shift, but in models available at
that time even the sign was uncertain. The calculation of

the energy shift is improved through the introduction of a
three-body model in which ~ is obtained (in principle)
from the solution of three-body equations in which the
pion interacts with one nucleon and this one nucleon in-
teracts with a central core. As the reactive content of
the optical model became better understood applications
of truncated forms of the three-body model were made.

Recently, calculations have been performed in which
the interaction of the intermediate nucleon is kept, one for
pion scattering on ' 0 with a nonrealistic pion-nucleon t
matrix' and one for pion scattering on ' C with a realistic
pion-nucleon t matrix. " These calculations have the ad-
vantage of including effects left out of previous work (e.g.,
a realistic intermediate potential, Saxon-Woods including
Coulomb) but they have the disadvantage that no simple
physical parameters are visible, such as the energy shift.
They also, at present, must be tailored to a given nucleus
which makes general understanding of the effects as a
function of nuclear mass very difficult. For the calcula-
tion of reactions, distorted waves are needed for
distorted-wave impulse approximation (DWIA) matrix
elements, and these models are too complex, at present, to
yield these wave functions on demand.

In this paper we treat a model which is intermediate in
the sense that the core interaction is taken into account
but has a discrete spectrum and can be calculated for any
(closed-shell) nucleus. In calculating pion charge ex-
change it has been noted that Pauli blocking effects are
important. These blocking effects were included in elastic
scattering by Landau and Thomas and by Landau and
McMillan. ' They were also included in the calculation of
charge exchange by Landau and Thomas. ' These authors
used a nuclear matter approach whose validity (especially
on light nuclei and for surface peaked reactions) is not
clear.

In the fixed scatterer approximation it was possible to
introduce Slater determinants and provide a partial in-
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elusion of the effects of fermion antisymmetry. ' ' Al-
though these models are rather different, the size of the
blocking effects is similar. The Appendix of this paper
presents a discussion of the relation of Pauli blocking to
classical notions.

Section II develops the necessary formalism for the gen-
eral case starting from the work of Ref. 11. In Sec. III the
approximate reduction of the multiterm separable poten-
tial derived in Sec. II to the more standard nonlocal form
is made. Both on-shell and off-shell corrections are con-
sidered, the former being discussed in terms of energy
shifts and Pauli blocking and the latter in terms of inter-
mediate state (mostly delta) propagation. This section is
done with the intermediate state being described by the
spectrum (and wave functions) of an infinite square well
and for isoscalar nuclei. Section IV relaxes these two as-
sumptions by considering a harmonic oscillator intermedi-
ate state and both isoscalar and isovector parts to the opti-
cal potential. Also discussed are improvements to the
Pauli blocking expressions. Section V gives the results of
D%'IA calculations using distorted waves calculated with
methods of Sec. III. Noticeable changes in shape and
magnitude (over traditional DWIA calculations) occur.
Section VI discusses the shortcomings of the present cal-
culation and suggests improvements.

H=H N(p, r)+HJ, (P,R),
where

2

H N(p, r)=- + V„N(r),

(2)

p N M„M——N/(M +MN),
and we have used the approximation

VJ, (&~ —r, )=—VJ, (R) . (4)

Here p and r refer to the relative coordinates in the m-N

system and P, R refer to the center of mass coordinate of
the m-N system relative to the core. The approximation in
Eq. (4) is a good one if V N is short-ranged relative to VJ„
i.e., if the pion-nucleon interaction is short-ranged com-
pared to the nucleon-nucleus interaction. The small mass
of the pion improves this approximation as well. "

%'ith this approximation

true absorption parts, ' regardless of the behavior of the
actual pion-nucleon t matrix.

Following Ref. 11 we make an approximate decomposi-
tion of the Hamiltonian,

II. FORMALISM

The t matrix (r) describing the interaction of the pion
with the jth nucleon satisfies the equation

~=~ N+~ NGV N

=~ N+~ NGo&

where

p2
HJ, (P, R) = + VJ, (R),

2p~w, c

p N, ,=(M +MN)M, /(M +MN+M, ),
and the spectrum separates into a product space

H NI&.&=:e„~x.&,

(S)

Go (5' Hp+——i e)'—, Ho ——T', + TN + T + V, ,

G=(S' H+ie) ', H=T—, +TN+T +VJ, +V N,

and T„TN, and T are the core, struck nucleon, and pion
kinetic energies. Ho includes the nucleon-core interaction
Vj„but not the pion-nucleon interaction V N.

Note that it is the operator ~ which is used to generate
the optical potential, hence the properties of r (not t, the
free pion nucleon t matrix) determine the rate of conver-
gence of the series for the optical potential. If ~ has a
large nonlocality then higher order terms will be small,
both for the quasielastic (Lorentz-Lorenz) parts' and the

The nuclear single-particle states are eigenstates of

2

H,', (q, p) = + V;(p),
2PJ'c

where p=rj —r, is the nucleon-core separation and q is
the relative nucleon-core momentum. The functional
forms of HJ, and HJ, are nearly the same (p~N, =-pj, to
about 1S%) so they have nearly the same spectrum. We
make the approximation that the spectra (and eigenstates)
of these systems are equivalent. Taking matrix elements
of Eq. (1) with respect to the eigenstates of Eqs. (6) and
(7), we are led to [see Ref. 11, Eqs. (21) and (23)]

&1 '[ V.„(E)t
k&=y Jdq'dqy;(q') gyes(P')&p'~ V,. ~

p&yA(P)

-, ~ &p'I V I&&&& I
V

I p&~. (p) y ( )E+Ez @„E~+i~— —
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where

p= —aq+bk, P=q+ck

IJ(m +mj+m, )b=
(m~+m )(mj+ m, )

(=—1),

C=
rnc

mj+mc
(—= 1),

and k is the pion momentum in the three-body c.m.

(10)

The Watson restriction to include only excited inter-
mediate states in the Green's function part of Eq. (9) can
be enforced, at least approximately, by confining A' to
nonfilled levels. Note that 2 labels occupied orbitals in
the target nucleus so that A' is summed over a comple-
mentary set to A in the second term. We will generally
refer to this as a Pauli blocking requirement, although the
procedure is just the approximate calculation of the Wat-
son optical model. The sum over 3' in the first term of
Eq. (9) arises from closure and hence includes the entire
spectrum.

Considering the 3' sum in two parts, i.e., one sum over
the set of occupied states 3'HO and another over unoccu-
pied states 3'E- -0, and recognizing that the free t matrix
is given by [Eq. (26), Ref. 11]

&p'It N«) I
p&=&p' v N I p&+2

(p' v. x„&(x„v. p)

( k '
I

vopt(E)
I

k & =g fd q d q'0''~ ( q' )g l 4~ (P ')
& p

'
I

8""
I p & A (P ) j4~ ( q»

where

&p'I()
I 1 &=

(p'
I v„N I p) if A'Eo

(p '
I
t N(E+E, —E„)

I p) tf W'e -O .

(14)

(k'I v.„(E)I
k)= g g(k'I&"'I k& fdqdq'pg(q')p (q'+k')p (q)p~(q+k) .

At low incident pion energy the "blocked" terms have strongest weighting and considerable mixing of V may occur,
but at high energies the "t" pieces will dominate and the energy shifted sum of the t matrix produces the optical poten-
tial. Note that in principle, the t matrix must be known to all energies down to —oo. In practice our results are not sen-
sitive to this region, hence for E &0 we have used the threshold amplitudes. This process is presumably the cause of the
energy shift and Pauli blocking effects. We neglect recoil effects taking the (rather extreme) approximations a =-0, b = 1,
and c = 1, so that the equations simplify:

p=k, P=q+k,

For orientation, note that if we neglect Pauli blocking and the energy dependence of the t matrix then

( k '
I

V, ,(E)
I

k ) = ( k ' t (E)
I

k ) g fd q d q 'Pq ( q ')Pq ( q )gP~ ( q '+ k ')Pq ( q+ k )

AGO

= ( k '
I
t(E)

I
k ) g fd q d q 'Pz(q ')Pz(q)6(q '+ k ' —q —k)

AHO

=&k ~ It(E)I k& y fdqy*„(q+k k )y, (q)
AGO

=(k'I t(E)
I
k)p(k —k')

and the "t-p" approximation is recovered.
If either the energy dependence of the t matrix is impor-

tant or the energy is low enough for the Pauli effects to be
important the t-p approximation will be poor. Note that if
all intermediate states are kept (no Pauli) and the energy
dependence of t is neglected (as above) then whether the
eigenfunctions of Eq. (5) or (8) are used is immaterial since
both are complete. This means that the error introduced

by our approximations is only in the correction to closure
and not in the total potential.

We may write Eq. (14) as

( k '
I
v.„(E)

I

k ) = g g & k
I

0"

Xl~~ (k)1~~ (k')
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where

I~ {k}=fdq 4~ (q+k)4~(q) . (17}

Assuming that the pion-nucleon t matrix is separable
[see Eq. (33)], Eq. (14) represents a multiterm separable
pion-nucleus potential. The explicit form of this potential
is developed below.

Since

}
—3/2 f deere i q—re

we have

I~g (k) =4m+i I~~ (k)
A,p

1/2
(2A, + 1)(21'+1)

4'(21 + 1)

1 1'A, 1

m oo o ~»{k}

(20)

P&(r)=P„t(r)&t (r)=P—(r)&t (r)

and expanding the exponential in spherical harmonics, we
obtain

I„„.(k)= fdr p„* (r)p„(r)e'"'' . (18)

where

I ~.(k)= f r dr&~(r)p~(r)j i( kr) (21)

Using nuclear wave functions of the form
and the expressions in the brackets represent Clebsch-
Gordan coefficients. The optical potential now becomes

2
/ l' A, ,

&k'l v,p, (E)
l
k)= y (21+1)(21'+1)I (k)I (k') 0 0 0 &k'lo

l
k)Pg(x),

A,aa'

where x =k.k '

Finally we decompose the (spin averaged) AN t matrix into partial waves,

& k '
l

O
~'

l
k ) =yet (E,k, k')PL (x),

L

to obtain

&k'I V.pi{E) lk&=XVi.{k k')Pi.«»

(22)

(23)

(24)

V, (E,k, k') =g gH.'..,(k, k')O, '(E,k, k') (25)

and

A. I.
H t (k, k')=g(21+1)(21'+1) (26)

In Eq. (25} a is summed over occupied levels and a' over
all levels. Equations (22)—(26), which incorporate binding
effects and Pauli blocking in the pion nucleus optical po-
tential, are the principal results of the work to this point
and constitute the basis for the remainder of the paper.

At pion energies of less than 400 MeV, t and U are well
described with L, =0 and 1; thus we need only

2

I / l' 1

H .o(k, k')=(21+1)(21'+1) 0 0 0 I "~ (k)I" (k')

aa' aa'I,—I—:HL (k, k')OL (E,k, k') . (28)

I
Note that Ho" (k, k') is just the closure result, i.e., the 1

projection of the density

Equation (25) suggests a natural definition of the aver-
age over u and cx',

L(k, k')OL (E,k, k')= gH L {,kk) —
OL {E, ,k k)

I
Ho (k, k') = f r drji (kr)p(rj)t (k'r) . (29)

H", {k,k')= H. o (k, k'}+ H o (k, k') .
2/ —1

' 2l +3
Equation (28) may also be used to define an average en-

ergy by
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g dtJ
=-tr (EL )+ i (E+E E ~ —E—L, ),dE z~

so that, upon averaging

ti (E)=tr (EL )—

(31)

(32)

where Eqs. (28) and (30) have been used. Note that the ef-
fective energy is a function of L and l~. The more general
off-shell case is discussed in the next section.

III. REDUCTION TO STANDARD FORM

One could carry out the solution of the equations given
in the last section and indeed this is s useful pursuit. In
fact, it has been done for the two nuclei ' C (Ref. 11) and
' 0 (Ref. 10) for the difficult case in which intermediate
continuum nuclear states are treated. In this section, how-
ever, we wish to calculate the effects on the more common
forms of the (finite or zero range) pion nucleus optical po-
tential. The reason for this is twofold. First, the correc-
tions can then be inserted into any optical model code
(coordinate or momentum space) so that distorted waves
for reactions can be calculated. Second, this reduction
gives physical insight into the nature of the corrections,
the physical effects included, and the errors due to
neglected higher order terms.

We take the form of the m.N t matrix to be

t(E k, k )-bo(E)uo(k)uo(k )

+b, (E)u, (k)ui(k')k. k ', (33)

where the strengths bL(E) depend only on the mN center-
of-mass energy and may be evaluated in terms of mN
phase shifts. For this form the pion-nucleon momentum
dependence (uo or ui ) factors out of the energy sum in Eq.
(25) and the standard form of the optical potential is
recovered except that the b's are replaced by

H r (k, k')bL, (E+E —E )
b;(E,k, k )=g

aa HL (k, k')

The effective strengths have gained two dependences
that they did not have before. These are a dependence on
the pion-nucleus partial wave (I ) and a dependence on
the off-shell momenta (k,k'). The I causes no problems
since optical model codes solve each pion-nucleus partial
wave separately and a different strength can easily be in-
serted for each value of l . The k, k' dependence is more
of a problem since br is solely a function of energy in the

l
H L (k,k')(E+E E—~ )

aa' Hi (k, k')

where k =k =ko and ko ls the on-shell rnornentum.
For a t matrix which is not too rapidly varying with en-

ergy, this is the effective energy to be used in the evalua-
tion of t. To see this, expand the on-shell t matrix tL(E)
about E L,

tL(E+E~ E ~—)

standard optical codes. Later in this section we will dis-
cuss an approximate way to incorporate this off-shell
dependence. For the present we consider only the on-shell-1
values of b L .

In this section the functions P«, introduced in Eq. (19),
will be taken to be solutions in a spherical box

P«(i') =J'i(k«r) r (R
=0 r)R,

where k« is defined by ji(k«R)=0.
This model crudely reproduces the true single particle

spectrum and is similar to the harmonic oscillator spec-
trum considered in Sec. IV.

Note that for this case there is no difference between the
eigenfunctions of Eqs. (5) and (8) so that the Pauli block-
ing does not require an additional approximation. The en-
ergies in the 9 matrix are taken from Eq. (5) using a rela-
tivistic generalization of p N „ i.e., by replacing the
masses by total energies. We consider here only the iso-
scalar case. The generalization to the isovector case is de-
ferred until Sec. IV.

As indicated in Eq. (13) the effect of blocking is to re-
place the t matrix of a filled level by the corresponding po-
tential; hence the potentials describing each individual
partial wave in the pion-nucleon system must be known.
There is indeed a large variety of such potentials in the
literature and the results of our work will depend upon the
details of these functions. Since the potentials are real
below the pion production threshold, the imaginary part
of 8 is zero for the blocked terms. In this section we make
the additional approximation that the real part of 8 (i.e.,
the potential) is also zero for the blocked levels. In Sec.
IV we discuss the effect of using the potential for the s
waves; we find a substantial correction only at low ener-
gies.

The effective strengths for a leadlike nucleus are shown
in Fig. 1. The plots are given as a function of l/k so com-
parison with nuclear size can be made. For this large nu-
cleus the Pauli effect is nearly a constant multiplier for
partial waves corresponding to impact parameters smaller
than the nuclear radius. Thus the use of a single reduction
factor, such as one from s nuclear matter description, is
not unreasonable.

Figure 2 shows the p-wave effective strengths for ' O.
Here the effect of the finite size of the nucleus is clear as
the blocking effect becomes smaller at the surface. Note
that the larger reduction of bl with increasing density can
mock up the nonlinear p dependence of the I.orentz-
Lorenz effect and would be difficult to 'distinguish from
L,-L, behavior if the geometry of the scattering were exam-
ined empirically. '

For elastic scattering (at least near the 3-3 resonance)
the surface partial waves are the most important and are
approximately the same as the l„=0 unblocked wave. In
Fig. 3 the real and imaginary parts of b& are compared
with the results of Ref. 1. For the large component
(Imb i ), the agreement is excellent.

Consider the half-off-shell amplitude defined by Eq.
(34),
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FICx. 1. Effective strengths for a heavy nucleus. Both the real
(a) and imaginary (b) parts of the p-wave strength are shown.
The dotted curve is the result of including the t matrix (energy
shifted) in all terms of the sum in Eq. (25). The solid curve is
the result of replacing the t matrix by zero for the occupied
states.
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FIG. 2. Effective strengths for a light nucleus. For the mean-
ing of the dashed and solid curves see the caption of Fig. 1. The
dashed-dotted curve is an estimate of what might be expected
from an effective Lorentz-Lorenz effect.

—l»= b&(E ) + b)(E)dE E',lHi" (kp, k)

l
gH~~ )(kp, k)b)(E+E E ~)—

b I (E,kp, k) = aa'

l —l
, (k„k)(E+E —E,—E,")

lII i"(kp, k)

Note that the term with lowest order dependence on k is proportional to the derivative of b, (E) which is proportional to
the derivative of the amplitude which is, in turn, proportional to the lifetime of the intermediate state. The additional
off-shell behavior is equivalent to a change in the nonlocality of the pion-nucleon amplitude. This is physically due to
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the propagation of the intermediate state in that an additional size of the pion-nucleon system is associated with its
motion during the interaction time. This effect is well known in delta-hole models' and is thought of as "delta propaga-
tion. " It has been pointed out previously that such considerations lead to an additional effective nonlocality in the in-
teraction.

If we wish to use "standard" (i.e., Kisslinger or finite-range-separable) optical model codes we are at an impasse since
the strength parameters bI in such codes are momentum independent. As a first step we rearrange Eq. (34) to get

T

bi (E,k, k')
b l. (E)

b I"(E,kp kp)
Hl. (k,k')—:b L (E)WI (E,k, k')HL (k, k'), (36)

where

-1
b I (E)=b I (E—,kp, kp)

and ko is the on-shell momentum, which corresponds to
energy E. The off-shell behavior induced by the sum over
the energy spectrum (a,a') has now been concentrated
into a correction factor Wl which is unity on the energy
shell.

To proceed further we assume that the major effect of
Wi (E,k, k') is to modify the range of the off-shell form
factors (Ul ) of the mN r matrix [Eq. (33)]. This is clearly
an approximation as the k, k' dependence of 8' does not
factor. To estimate the range we study the half-off-shell
potential, which consists of terms of the form

I I
b L (E)WL (kp, k)HL (kp, k) .

Table I gives values of WI (kp, k) for k =kp+ I (fm ').
The general form of WL can be seen from Fig. 4 which

1
compares HI (kp, k) with the modified nuclear density

—I I
H L (kp, k) = Wi (kp k)HL (kp k)

I
WL (kp, k) is further simphfied if T is below 200 MeV,
being approximately expressible as

ko+Ag2 2

W) (kp, k)=
k +AI

6—
E 5

4—
E

6
5

v- 4E

3
2

Q

50 IGG

I I

I 60 12C (0)
Full calculation

————Free phase shifts
F' d h ft 28MeV

I I I

60- l2C

I

(b)

alculation
phase shifts
shift = -28 MeV

l50 200 250 300 350 400
T~ (MeV j

where A„ is an empirical range parameter whose values77 I

are given in Table I.
For comparison, the distance of travel of the delta dur-

ing its lifetime (-0.35 fm) corresponds to a range in
momentum space of —560 MeV/c. The addition of this
nonlocality to the natural nonlocality of the pion-nucleon t
matrix in the 33 channel (now thought to be around
500—600 MeV/c by comparison with the ~NN vertex '

makes the effective off-shell momentum range rather
small ( —300—400 MeV/c). This, in turn, makes the
higher order optical potential less important. ' In other
words, the combination of the size of the pion-nucleon
system and the motion of the delta decreases the impor-
tance (observability) of nucleon-nucleon correlations.

In this paper we have used the correct values of bL (E)
as computed from Eq. (34) with k =k'=kp. Instead of

I
the off-shell factor 8'L we have adjusted the off-shell
range of the m.-N t matrix to 300 MeV/c as just discussed.

TABLE I. Rough extraction of the effective modification to
the off-shell range as a function of pion kinetic energy. The
behavior above 200 MeV does not follow the simple form given
by Eq. (37).

0
—

I

I i I I I I I I I ] I

50 l00 l50 200 250 300 350 400
T (Mev I

FICx. 3. Effective p-wave strengths for light nuclei as a func-
tion of pion energy. Both the imaginary (a) and real (b) parts are
given for I =0. The points are taken from Ref. 1.

T
{MeV}

100
150
160
170
180
190

b i(ko+ 1)Ib i(ko)

0.95
0.71
0.71
0.76
0.86
0.99

1470
531
S27
618
920

1040
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IV. VARIATIONS OF THE MODEL

Ko = I.2Q fm A. Dependence on pion-nucleon potentials

To estimate the effect of replacing t by U in the blocked
partial waves we use the finite-range separable model of
Thomas. ' The (real) potential in the (I,I,J) partial wave
is given by

~/IJ(k k ) ~lIAIIJ(k )glIJ(k) (38)
0.2

where gttj(k) are form factors given by Eqs. (3.13) and
(3.14) of Ref. 21. The corresponding t matrix is

tlIJ(k ~k&E) UtlJ(k ~k)/Rl, 21,2j(E) ~

O. l

The resulting potential was then inserted into a standard
optical model code. The value of the off-shell range was
not extremely important in the elastic scattering but was
important in the charge exchange calculations presented in
Sec. V. The calculation of the ~+ elastic scattering on ' C
at 162 MeV is shown in Fig. 5. The agreement is con™
sidered very good for a calculation, not a fit.

I I I I I I I I I I I I

IOO— + ' C Elostic
T~ = l65 MeV

IO—

~~ ~ O~

OI I I I I

IO 20 30 40 50 60 70 80 90 100 IIO l20 l30
e (c.m. )

FICx. 5. Elastic scattering from ' C at 165 MeV. The data are
from Ref. 1.

I

0
K (frn )

FIG. 4. The off-shell effect in ' C. It is the relationship be-

tween the solid [H(E,ko, k)] and dotted [H(E,ko, k)] curves
that is expressed by Eq. (37) and Table I. The labels give the
values of l .

+i re(k)AttjkgttJ(k), (40)

and P denotes principal value. Below threshold the irna-
ginary term is not present. p(k) is the pion-nucleon re-
duced energy and E(p) is the center-of-mass kinetic ener-

gy of the pion-nucleon system.
For the s waves

I
Rsii I

=0 g and
I Rs3& I

=2.6 in most
of the region of interest. The replacement of t by v in
blocked levels induces a substantial change in Rebp. This
is especially evident at low energies in the isoscalar ampli-
tudes

{+) 1b'+'=
3 (bsii+2bs3i) .

The delicate cancellation of the t matrix near threshold
(due to chiral symmetry) does not occur for the potentials.
This is illustrated clearly in Fig. 6. The b s have been
plotted as a function of T for peripheral (I =kR) and
(for one case) the central (I =0) partial waves. The ex-
ample is for 3 which is an N =Z nucleus; hence only the
isoscalar amplitudes contribute. The steep rise of Rebp at
low energies was seen in the phenomenological fits of
Auerbach et a/. who also suggested its possible origin.
Also shown in the figure are calculations without blocking
and with t replaced by zero for the blocked states. It is
evident that Imbp is suppressed at low energies in accord
with empirical studies. The effect is most prominent in
the central partial waves.

Figure 6 also displays the strengths for p waves. Since
the potentials are real the form of the potential is ir-
relevant for Imb~, the results being the same as if t were
zero in the filled shells. As with the s waves the suppres-
sion of Imb

&
is evident at low energies.

The situation is less clear for Reb~. In the model of
Thomas ' the large P33 wave corresponds to a rather
small potential; the large phase shift is due to the small-
ness of

I
Rz33 I

. The small P 31 and P 11 waves both have
IR I—:1 and so also will contribute little. (Actually, as

Thomas points out, the P11 potential is not to be trusted
since the wave is not well fit by a single term separable po-
tential; see Refs. 23 and 24.) For the P33, P31, and P 11
waves the replacement of t by zero for blocked levels is a
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I
I

I
I I

I
I

l

R=(rz) ~ =2.7I fm

I60
200

/X /

I
r

0.6

0.5—
Q4—

0.3—
o 02—

t = Q Filled
—t = v States

Im b

IOO —X,

4

3—

-Re bo 50—

I

50
I I I I

I OQ 150 200 250 300
(MeV)

FICx. 6. Blocking effects in " A." Note that there is a large
difference for the s-wave strength with the use of the potential

instead of zero.

reasonable approximation. The F13 wave presents prob-
lems, however. It is small and not well determined. The
model of Thomas gives

~
Rp&3

~

=-20 and thus the corre-
sponding potential is very large. This may be an artifact
of the model and we have hesitated to apply it in our cal-
culation. Consequently we have used the t~u prescrip-
tion for s waves alone.

To get some indication of the effect of blocking we have
as in Sec. III replaced t~ by zero for the blocked levels.
Actually, the phenomenological results of Ref. 22 for
Reb~ are rather closer to the unblocked results. A fuller

!

l I ) I i I I I

0.4 0.8 I . 2 l.6
irKR

FIG. 7. The effective energy for pion scattering from ' 0 as
defined by Eq. (30). represents a calculation with harmon-
ic oscillator potentials (no blocking); )& && &, harmonic oscillator
potentials (blocking); ———infinite square well (no blocking);
and ———,infinite square well (blocking) ~

study of the "small" p-wave amplitudes with an eye to
evaluating the effective potentials would clearly be
worthwhile.

B. Isovector nuclei

When dealing with nuclei having N&Z we rewrite Eq.
(25) as

&k'~ y.'-„(~)
~

k&= g [N g + (k, k')+Z ~ + (k k')]H I.(k k')&i (x)
Laa'

where (2l+1)Z and (2l+1)N are the numbers of neu-
trons and protons in the a shell. We have taken the
neutron- and proton-core potentials the same except for a
possible additive constant. A constant added to the poten-
tial will have no effect upon 0 as it is a function of the
difference E —E

C. Harmonic oscillator nucleus

The square well model we have used in the previous cal-
culations is not particularly realistic. To assess the model

dependence in our average b's due to the choice of radial
wave functions we have recomputed some of our results
using oscillator states. We have, for comparison, picked
examples in which the same shells were assumed filled.
The spin-orbit potential is absent in both models and
hence the shell closings do not occur at the proper magic
numbers. In future work we expect to use more realistic
nuclear models, but for a study of the general trends with
nuclear size our models should be adequate.

The dependence of the effective energy [Eq. (30)] upon
the choice of radial wave functions is shown in Figs. 7 and
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50 MeV FIG. 10. Dependence of the effective strengths of the pion
partial wave.

I 1 I

0.4 O.S l.2 l.6

FICi. 8. The effective energy for pion scattering from
Th." See Fig. 7 for an explanation of the curves.

5.0

4.0

3.0

2.0

1.0

0,0

0,3—
0.2—
O.I—

~' 1I

7.0—
6.0—
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I.O—
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—I.O—

I I I I I I I I I I

gm bo
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50 IOO I 50 200 250
T (MeV)

FICx. 9. Effective strengths for the scattering of pions from
Th," central partial waves. The dotted curve js for a har-

monic oscillator potential and the solid curve is for an infinite
square we11.

8. The curves for a heavy nucleus (Th) are flatter for
small l~ but otherwise quite comparable with those of a
light nucleus (' 0). The oscillator and square well effec-
tive energies differ widely for very large I„/kR; however,
these peripheral waves contribute less to the cross section.
Also shown is the effect of Pauli blocking upon energy
shifts; terms in Eq. (30) are omitted if the intermediate
level is filled. Since the blocking affects only the partial
waves I &2l,„+1,where l,„ is the highest l present in
the nuclear wave function, the effect is most prominent
for large nuclei at low energies. At energies below 1SO
MeV and for the lower partial waves the effective shift
due to the Pauli exclusion is comparable to the binding.
This "Pauli shift" becomes smaller at higher energies.
(This prescription makes more sense for Imb since Im8=0
for blocked levels. ) It is also of note that at T & 150 MeV
the Pauli shift affects only impact parameters of less than
the nuclear radius and hence would not be important for
extreme surface peaked reactions.

The strengths corresponding to the previous energy
shifts are given in Figs. 9 and 10. Figure 9 gives the b s as
a function of energy for the central partial wave and Fig.
10 gives the b's as a function of l at 125 MeV. These re-
sults confirm the rather weak dependence of the effective
b's on the single particle potential except at large impact
parameters.

D. Isotope effects

The final set of figures in this section compares the b's
corresponding to the pair of isotopes, Th and Th.
Figure 11 shows a comparison of the strengths of the cen-
tral partial wave (I =0) as a function of energy. As may
be seen, the effect is not large. All curves were calculated
with single particle wave functions taken from the infinite
square well. The strengths at 125 MeV for various partial
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waves are plotted in Fig. 12. Note that the effect
displayed is the minimal one expected (barring cancella-
tions from other sources). The changes in radius due to
the increasing number of nucleons and true pion absorp-
tion will also affect these differences.

This section has presented some examples of quantities
which can be computed with this type of model. Clearly,
considerable improvements are needed (primarily in the
single particle model, the pion-nucleon potential, and the
addition of true absorption).

V. PION CHARGE EXCHANGE

I I I

228Th

222 Th

Reb

(unblocked)

03—
0.2—
0.1—

blocked Im bo

10—
9—
8—
7—
6—
5—
4

93—
2—

1

0

228Th

50 100 150 200 2 50
T~ (MeV)

FIG. 11. The effect of different shell closures for l =O. The
strengths for Th (dotted) have the last shell 1h and the ones
for Th have an additional 3I' shell filled.

In this section we present the results of the calculations
of analog charge exchange in three nuclei. The calcula-
tions are done in distorted wave impulse approximation
with the transition t matrix given by

t, =AO(E)+A)(E)q q'.
Here we have neglected spin flip (about 10% in the ' C to-
tal cross section but a substantial error in the Li case).
The quantities q and q

' are treated as gradient operators
on the initial (m+) and final (n ) wave functions. The pa-
rameters A,o and A,

~ are calculated from the charge ex-
change amplitude obtained from the phase shifts. Two
possibilities are considered: The phase shifts are evaluated
at (1) the incident energy or (2) the shifted (but not
blocked) phase shifts from Sec. III are used. We are not
presenting a theory of this t matrix but investigating the
effect of medium corrections on distorting waves used in

1.5

0.25

0.20

0.15—

I I I I I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.4
l/KR

FIG. 12. The effect of shell closure as a function of the pion-
nucleus partial wave at T =125 MeV.

the calculation of the charge-exchange cross sections. An
extension of Sec. IVB may provide such a theory in the
future, but since the present paper deals only with closed
shells (clearly we already make an approximation to apply
our results to most nuclei), charge exchange on an odd
particle is not included in our medium corrections.

Since our present model is restricted to closed shell nu-
clei the distorted waves are calculated with ' Q shell struc-
ture, but with a body density scaled to the appropriate nu-
cleus. The blocking effect is probably fairly estimated for
' N and ' C but may be poorly estimated for Li. The
transition densities are obtained from the product of wave
functions which are solutions in a Saxon-Woods well with
the proper binding energy (and Coulomb potential in the
final state). The overlap of these two functions is nearly
unity. Data used for comparison in this section were tak-
en at the m spectrometer at the Los Alamos Meson Phys-
ics Facility (LAMPF). The cross sections can be found in
Refs. 25 and 26. More details are available in the thesis of
I3oron.

Figure 13 shows the 0' cross section for the analog
charge exchange cross section on ' C. The two dashed
curves use free phase shifts for the transition t matrix.
The short dashed curve has no blocking while the long
dashed curve has blocking. The solid curve uses the tran-
sition t matrix computed with energy shifted phases and
blocking in the distorted wave. Note that the blocking ef-
fects diminish above 240 MeV, being largest around
120—140 MeV. The energy shift effects are small at low
energy. A substantial increase in the calculated cross sec-
tion is obtained from the blocking of the distorting waves.
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FIG. 13. Zero degree analog cross section on "C. The two
dashed curves use free phase shifts in the transition t matrix,
while the solid one uses energy-shifted phase shifts. The long
dashed and solid curves include Pauli blocking effects in the dis-

torted waves. The small "3" and "4" mark the position of
qR =3 and 4.

' C(n. +m )' N

165 MeV

1.0
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I
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I
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I I
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I

50
I

60

e (c.m. )

FIG. 14. Angular distribution of pion charge exchange on ' C
at 165 MeV. Both curves include Pauli blocking effects in the
distorted waves. The dashed curve uses free phase shifts in the
transition t matrix.

Note that when a certain set of waves is blocked (here we
are considering ls and lp waves) the m.-nucleus waves af-
fected must be & 21,„+1 I see Eq. (26) with 1 =I'= 1 and
L = 1 for the case in question here]. When this wave is at
the surface of the nucleus we may expect the maximum
effect. For the carbon case this point in energy is marked
with the small "3." If a (more realistic) spin-orbit model
were used one would expect the condition to be

FIG. 15. Integrated cross section for pion charge exchange on
"C as a function of incident pion energy. See the caption of Fig.
13 for the meaning of the curves.

&2j,„+1, which for carbon gives 4. The point for
kR =4 is marked with the small "4." Thus we may anti-
cipate that the introduction of a spin-orbit force would
probably push the blocking effects to slightly higher ener-
gies.

Figure 14 shows the comparison with the ' C angular
distribution at 165 MeV. The agreement with the forward
angles is very good for the free (transition t matrix) phase
shift case. There are several possible reasons for the lack
of agreement at back angles. First, the spin-flip charge
exchange (left out of this calculation) is largest there, and
second, the measurement is actually of the ground plus
first excited state. The major contribution of the first ex-
cited state is expected to be at larger angles.

Figure 15 shows the total cross section for ' C. The
same remarks about the spin flip and the first excited state
apply here as well. The presence of the strong dip around
60 MeV is notable.

In Fig. 16 the 0' cross section of charge exchange on
' N is shown. The solid curve uses energy shifted transi-
tion t-matrix phase shifts and blocked distorted waves
while the dashed curve has no blocking. The deep
minimum is in agreement with data. Figure 17 shows the
corresponding total cross section with the same conven-
tion for the curves. Figure 18 compares the calculation
with the two measured angular distributions. The agree-
ment is generally good with the exception of the second
maximum. It is possible that the neglected spin flip is
playing a role here as well.

For completeness we show (Fig. 19) the 0' charge ex-
change on Li. This nucleus is far from a closed shell so
the model is least applicable. The spin flip effect is known
to be large in this nucleus so the total cross sections are
expected to be in error (and are).
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FI(s. 20. Comparison of fo [as defined by (A3)] with k'.

titerm potential. The possibilities for doing this are also
under study.

What is the role of true absorption? This question is
difficult, especially when dealing with the surface peaked
reactions treated here. If annihilation takes place on two
nucleons it will occur slightly inside the surface region
(since its absorption potential follows a roughly p depen-
dence) and the effect on the reaction will be moderate. If,
in fact, the average absorption takes place on several nu-
cleons the effect will be much smaller since the absorption
will be more localized to the center of the nucleus and
hence away from the reaction region.

What is the effect of the spin-orbit potential in the in-
termediate well? From the arguments given in Sec. V for
' C we might expect moderate changes in Pauli blocking
effects.

What is the effect of the confining well assumed in the
present work? It may be expected that the approximation
used in this work is reasonable with the exception of the
effect of the Coulomb potential on the ejected nucleon.
This last effect is potentially crucial for m. +-~ compar-
isons and measurements of neutron radii. A solution to
this more difficult problem is being considered but may
require considerably more computation than the model
considered in this paper.

Two recent works which treat Pauli blocking effects in
a spirit similar to that of the present work (but do not
compute the effect on charge exchange) are those of
de Kam and Seki et al.

50 IOO I 50 200 250 300
(MeV)

FICx. 21. Comparison of f, [as defined by (A3)] with k'.

APPENDIX: SEMICLASSICAL DISCUSSION

It has been suspected for several years that the pion nu-

cleus optical model is too absorptive in the region of the
3-3 resonance. This is apparent when one considers the
fact that the simple t pprescr-iption is approximately
equivalent to the usual mean-free-path argument that
gives that A, =1/ap, where o. is the cross section and p is
the (in this case, nuclear) density. Plots of A, versus energy
are common and many people have noticed that, near the
resonance, the mean free path becomes less than 1 F,
which is smaller than the internuclear distance (around 1.5
F). This seems unlikely to happen in the physical world
since classically it is impossible to strike the next particle
until it is encountered, no matter how large the cross sec-
tion. This naive expectation may be wrong for two
reasons. The first is that we are dealing with extended in-
teraction regions. Thus it is possible to encounter two (or
many) particles at once. In this manner it is possible to
have continuous interactions and thus a zero mean free
path. The second reason is that we are dealing with a
quantum mechanical system.

It is useful to state the intuitive condition in terms of
the quantum language. %'e assume that the interaction
takes place in a single partial wave l. Thus we use an esti-
mate of the size of the interaction region as l /k so that the
condition (for spheres of radius l/k) becomes

1/po & 1/p' —2l /k (Al)
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l &rrp i 2lrrp/k . — (A2)

Note that the maximum cross section in a single partial
wave 1s
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so that the condition

k ((2l+1)4mp i k —8mlp(2l+1)=fi (A3)

results. For l&0 the second term is zero so the solution to
the limiting equation is trivial, giving k =321 MeV/c for
p=0. 15 fm . Thus we see that for zero size (l =0) ob-
jects our intuitive classical limit has the quantum analog
that the incident momentum must be greater than the Fer-
mi momentum in the nucleus. We plot the comparisons
of k vs fo and f~ in Figs. 20 and 21. One must deter-
mine in what region of the nucleus the transition density
peaks in order to know the effect of the blocking on any

particular reaction. If the pionic wave function in the
center of the nucleus is needed, the blocking effects extend
to high energies. However, few reactions sample this re-
gion so this may not be very relevant. More commonly,
transition densities and absorption effects (which will still
remain moderately large) limit the reaction to the region
between —,

' and, '0 of the central density. Thus one may
expect enhancements (of greater or lesser amounts depend-
ing on the details of the transition density) in the region of
the lower half of the 3-3 resonance (80—170 MeV). This
is the semiclassical picture which underlies the full quan-
tum treatment given in the text.
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