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A hybrid quark model for two baryons is developed. The short distance part is represented by

six-quark wave functions, while the long distance part is described by conventional wave functions

representing the relative motion of three-quark baryons. Formulae which give the probabilities of
the six-quark configurations as a function of energy, in terms of the exterior NN interactions and ex-

perimental phase shifts, are derived and applied.

NUCLEAR REACTIONS Quark structure of nuclei, hybrid quark-baryon

model of two baryons. Derivation of interior quark amplitudes from phase shifts

and exterior forces. Numerical values for interior six quark probabilities for

0 & E (800 MeV nucleon-nucleon states.

I. INTRODUCTION

In recent years there has been a great surge of interest in
models of the nucleon which incorporate the underlying
quark structure. Such models have stressed the spectro-
scopic and static properties of the nucleon and its excited
states. They have been extended to the structure of the
deuteron as seen in electron scattering at high momentum
transfer' and to the nucleon-nucleon scattering problem,
and to the study of high momentum electron scattering
from He. ' In many of these cases bags are used to con-
tain the quarks.

The model we develop and propose herein also contains
some of the above features. It makes use of theoretical
characteristics which have been shown to be valid experi-
mentally. Thus, there is good evidence that the long range
force between nucleons is mediated by single pion ex-

change; for instance, the scattering amplitude in high par-
tial waves in nucleon-nucleon scattering is totally deter-
mined by the one-pion exchange force. On the other hand
there is increasing evidence that the short distance hadron-
ic force, such as that between nucleons, is given by pertur-
bative quantum chromodynamics (QCD). It is the inter-
mediate range nucleon-nucleon force, say, between
O.3—1.5 fm which is most difficult to characterize and to
handle in a quantitative manner. Meson exchanges and
phenomenological models have been used to characterize
this region, but additional short range features, e.g., soft or
hard cores, are often required. In QCD nonlinear and
nonperturbative effects are known to be important; con-
finement of the quarks must be one of the features of the
theory. Models which describe the N-N force in this re-
gion generally require many parameters.

In order to develop a model which bridges the gap be-
tween the short-distance perturbative QCD region and the
long-range pion exchange force without a multitude of pa-
rameters, we adopt the point of view that there are two
connected regions of space: the first region is an "exter-
nal" one in which the baryons remain undeformed (unpo-
larized, in the classical sense), and therefore the dynamics

can be determined by conventional nuclear potentials for
which the one pion exchange is an important part; the
second region is an internal one determined by quark-

gluon dynamics. The quark states are represented by a
complete set of states confined to the internal region. The
connection between these regions is described below. It is

akin to the R-matrix description of the compound nucleus

in nuclear reactions.
We restrict ourselves to the nonrelativistic energy region

for nucleons, although the model is readily generalized. If
one wishes to represent the quark states by definite wave

functions, this can be done, but it is not required. A
model which makes use of such wave functions connected
to pions on the outside was introduced by one of us (Kiss-
linger ) and is related to the MIT bag model and to the

cloudy bag model. This model of two-baryon systems
has been used for the study of nuclear A decay, pion ab-

sorption, and weak p-p asymmetry.
Our motivation in the model described below is to see

how much can be learned about quark wave functions
from our knowledge of the asymptotic behavior of scatter-

ing amplitudes without introducing specific models for the

dynamics of the quarks and with minimal assumptions.
Of course, specific models, such as the MIT bag wave

functions can be introduced for the quarks, but this speci-
fication is not necessary for our model.

Our work is related to other approaches, but is different
from them. Unlike many authors, ' we do not restrict
ourselves to large momentum transfers and asymptotic
conditions, but rather consider arbitrary momentum
transfers at nonrelativistic nucleon energies. Nor do we

develop or attempt to develop nuclear forces from QCD.
Rather we attempt to develop information on the (inner)
quark region which is adequate to make contact with ex-
periment and for further developments.

In Sec. II, below, we derive and introduce the main
features of our hybrid model. In Sec. III we give a simple
application of the model. In Sec. IV a realistic application
to the two-nucleon system is developed. In Sec. V some
examples of generalizations are developed. A brief sum-

mary appears in Sec. VI.
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II. HYBRID MODEL: THEORY

The hybrid model is based on a coordinate space repre-
sentation of nuclear systems: there are external regions in
which separated baryons are represented as color singlets
interaction via forces arising from the exchange of color
singlet objects (mainly pions), and internal regions where
the quarks associated with two or more baryons interact
with full color freedom. In the present work it is the rela-
tive motion of the two nucleons, considered as two sys-
tems of three quarks, which is our primary concern.
When the two nucleons overlap appreciably this relative
separation between two color singlet configurations can
still be defined. The dynamics of the internal motion for
separated nucleons is of secondary concern for us and is
not treated specifically.

The objective of the present work is to derive ghoba/ in-
formation about the interior NN six-quark wave functions
in each channel by using our extensive knowledge of the
exterior NN interaction and experimental NN phase
shifts. A specific quark effective Hamiltonian is not as-
sumed. The ultimate goal of the mode1 is to provide a
complete microscopic description of the hadronic and
quark structure of nuclei within the limits of quark
models with fixed numbers of degrees of freedom. For
this one needs the Hamiltonian in the internal as well as
the external region, and wave functions in each of the

quark variables must satisfy continuity conditions. Al-
though here we do not attempt such an amibitous goal, it
will be seen that we make progress sufficient to give the
present theory some predictive power for a number of
short range processes involving weak, electromagnetic, and
even strong interactions. However, the model is incom-
plete, and at the present stage should be thought of as a
framework which can be developed into a complete
theory.

The basic theoretical problem being studied in the
present work is the matching of the internal to the exter-
nal wave functions within the confines described in the
previous paragraph. The method makes use only of the
continuity of the baryonic four-current, so that it can be
applied for relativistic as well as nonrelativistic model". ..
There is a long history of nuclear and particle reaction
models which involve matching at a boundary. Although
we do not attempt a review of this vast subject, some rela-
tions between our present model and other theoretical ap-
proaches are given in the Appendix.

For simplicity the external and internal regions are de-
limited by a sphere of radius ro. Note, however, that de-
formed many-body systems can be represented by configu-
rations of particles with wave functions defined in a
sphere. Using projection operators defined by the relative
coordinate r, the wave functions for two (three-quark) nu-
cleons in the c.m. system can be written as

O'ENN
qIE ——Mp, (r& —r2, r2 —r3)pb(r4 —r5, r5 —r6)QE(r), r ) ro

4P(r&, . . . , r6), r (ro, (2.1)

where W is an antisymmetrization operator, P, (P&) are
the wave functions of the quarks inside nucleon a (b), and

QE is the conventional wave function which describes the
dynamics of the relative motion of the two nucleons. For
r ~ro, @P describes the complicated dynamics of six (or
more) quarks. Here, we neglect all but valence quarks.
The coordinates r&

. r6 should exclude the c.m. coordi-
nate, as for the outside wave function; these coordinates
can be chosen so that the separation between two three-
quark color singlet configurations is one of the dynamical
variables. (If shell model wave functions are used inside
the region ro, then the c.m. is not treated correctly and
projection methods or other techniques are required to
correct for the defect. ) Although we do not specify P,
(Pb ) it should be noted that the nucleon confining region
need not have a radius ro. These internal quark wave
functions must readjust when the two nucleons overlap ap-
preciably. This readjustment is ignored herein. In Eq.
(2.1) color, spin, and isospin labels are not shown explicitly
but are assumed to be present.

For the discussion which follows it is convenient to de-
fine the projection operators P&,P & by

with the notation of Eq. (2.1). In terms of these projection
operators one can define an outside and an inside Hamil-
tonian,

H& =P&HP&,

a&=P&HP& .

(2.3a)

(2.3b)

H& & =P&HP&,

a&&=P&aP& .

(2.4a)

(2.4b)

In any case, the stationary solutions (2.1) are obtained by

II@NN E@NN (2.5)

The general form of the inside wave function (2.1) is

The outside Hamiltonian consists of quark interactions
within the nucleons and an external NN potential. The in-
side Hamiltonian in a bag model would typically consist
of, say, single-quark Dirac Hamiltonians and qq hyperfine
potentials. In some models there can also appear terms in
the Hamiltonian which couple the inside and outside sec-
tors,

(2.2) 4&P= g c„(E)@„(r~ . r6), (2.6)
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4&/=a (E) g e„P„(r, r6) (2.7)

with c„ independent of energy and g„ I
c„

I
=1. Thus,

the development we carry out is akin to that of treating
the internal region like a compound nucleus with many
degrees of freedom. The expansion (2.7) is particularly
sensible near an isolated resonance of the internal region.
Since resonances of six-quark systems are well separated
in energy from the low-energy N-N system, this energy
domain can be quite large. The assumption which under-
lies (2.7) can be relaxed and generalized, but only at the ex-

where the N„ is an orthonormal set of energy-inde-
pendent six-quark wave functions. A detailed microscopic
treatment would lead to an evaluation of the spectroscopic
amplitudes c„(E). In previous work on electron scatter-
ing and the lifetime of the A in nuclei attempts have
been made to extract some information about these quan-
tities by comparison with experiment. Note that in a corn-
plete microscopic description the wave functions and
derivatives of the wave functions would be continuous (or
have well-defined discontinuities) in each of the six quark
coordinates at the matching point ro. Here we do not at-
tempt such a complete description, but seek global infor-
mation about the inside six-quark wave function. This re-
quires continuity requirements for the baryon current,
rather than individual quark currents, which makes the
present theory less restrictive than the complete treat-
ments.

%'e make the assumption introduced by Wigner' in his
treatment of compound states in nuclear reactions that the
inner wave function can be written as

pense of including more parameters, as in Eq. (2.6). The
coefficient a(E) is proportional to the lifetime' of the
"compound" state described by Eq. (2.6). We shall see
that the restriction we make is not too limiting. If there is
an appreciable "mismatch" between the internal (r &ro)
region and the external one, then considerable reflection
occurs at r =ro and this may account for the (hard or
soft) repulsive core required in normal descriptions of N-
N scattering. Near an isolated resonance, this core should
then be absent since there is appreciable penetration into
the internal region in that instance. If a single quark con-
figuration dominates a resonance, then an R-matrix (or P
matrix" representation is particularly useful, and there is
a direct relationship between the quark configuration and
the isolated resonance (see the Appendix).

If phase shifts are known, then it is feasible to use stan-
dard NN potentials to obtain P(r) for all radii & ro, if ro
is sufficiently large then the external potential is dominat-
ed by one pion exchange. %'e now show that the
knowledge of P(r), the external wave function, at r =ro al-
lows us to determine a(E) or g„ I

c„(E)I, without
knowledge of the internal (quark) dynamics Th.e deriva-
tion makes use of an extension of the method introduced
by Wigner' based on continuity relations at the boundary.
We use two approaches, the first is based on current con-
servation and continuity of current, and the second makes
use of the Hamiltonian. These are discussed separately in
the next two subsections.

A. Current conservation and current continuity

We define a four current for the NN system by

6

j„(in)= g @P a"@P, @~ 4s, r &ro

J(out)= . (WE ~ 4E 4E'J4E) PE4E r&ro
(2.g)

jp, ~ jp ~

E —+E
(2.9)

with use of the notation of Eq. (2.1), and separation of the
space-time components of the four-vector current [i.e.,
j„=(j,jo)]. Note that j is a six-quark operator. Here we
assume that the quarks within r & ro satisfy a Dirac equa-
tion, while for the external region, r &ra, the quark
motion is given by the relative motion of the two nonrela-

tivistic nucleons, as discussed above. The current j& can
be obtained' as the time-dependent part of the probability
four-current by using a wave function

—iEl t —iE2t
P=CE, e +4m, e

Note that, in the limit E2~E»

(i) current conservation:
6

X X +iJp=0 ~ (2.10a)

and (ii) current continuity:

Jp I ro eJp I ro+e —' (2.10b)

Integrating Eq. (2.10a) over the volume Vs of a sphere
within ro, one finds

dVa 7' '-j in =i E& —E2 d~ajo in . 2.11
l

Use of the divergence theorem and assumption (ii), Eq.
(2.10b), leads to

the usual four-current for Dirac particles (r &ro) or for
the Schrodinger equation (r & ro).

Our basic assumptions are the following:
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f d" (&2~. 41 01~02) (E2 +1)a (E2)~(E1)2'
(2.13)

Qur central result, Eq. (2.13), is that knowledge of the
wave function for infinite separation of the two nucleons
and of the external NN potential is sufficient to determine
a (E2) at an energy E2 if it is known at an energy E&. The
magnitude of a (E) can be determined at any and all ener-
gies from Eq. (2.13) by considering E2 E&+dE——. For this
situation Eq. (2.13) reduces to

~t(s-f ~~ ~WF. PF. ~E
~—NF.

(2.14)

Note that if (2.6) were used instead of (2.7) the left-hand
side of (2.14) would simply be g„~c„(E)

~

. The com-

bination of (2.13) and (2.14) determines a(E) up to a
phase. However, this phase is determined by the continui-

ty of the wave function P. As rico, the phase of each
partial wave is given by the appropriate phase shift. As
long as the potential for r ~ ro is purely real, this phase is
unaltered and determines the phase of a (E). See Sec. II C
for further discussion.

Our result is a relativsitic generalization of VA'gner s

nonrelativistic derivation, obtained using Schrodinger
currents. In fact, Eq. (2.13), our basic equation, is to be
found in Ref. 10. However, our result is more than a rela-
tivistic extension, for it involves a particular interpretation
of bag models. This will be brought out in Sec. II 8 where
we rederive Eq. (2.13) using the Hamiltonian.

B. Haxniltonian formulation

Consider the internal wave function at two different en-

ergies E& and E2. These wave functions are assumed to be
solutions of the stationary Hamilton (2.3b),

2VN) ——EI[4 ),

H+2 ——E2+2,

(2.15a)

(2.15b)

where @;=N(E;). Multiply (2.15a) by +z and the com-
plex conjugate equation to (2.15b) by @;. Integrate the
difference between the resulting equations over the volume
inside the sphere of radius ro. We obtain

f d B @(2 H@1 @1H@2) (+1 +2)+ (+2)+(El )

dSg =dgrodr,

with dg the volume element for the four internal coordi-
nates orthogonal to r. The form of the right-hand side of
Eq. (2.12) follows from the assumption that the baryon
current for r &ro arises from interbaryon motion [Eq.
(2.8)j.

From Eqs. (2.12), (2.11), and (2.8), and using the ansatz
(2.7), it follows that

I.et us consider the nonrelativistic and relativistic versions
for the internal wave functions.

(i) ¹nrelativistic cluster mode/ .In this model the
quarks in the interior region are treated as color zero clus-
ters, with a Schrodinger wave function prescribing the rel-
ative motion of the clusters. This model is implied by the
nonrelativistic quark bag treatments of the NN interac-
tion. The interior wave function of Eq. (2.2) becomes
(with c; and d; indicating three-quark clusters)

i i (') (2.17)
l

which satisfies the Schrodinger equation in the relative
coordinate. Equation (2.16) immediately leads to the
Wigner result (2.13), for this is nothing but the problem
considered by Wigner. Strictly speaking, the ansatz (2.2)
is not suitable for this model, and the inner quark wave
function would vanish. This was discussed in Ref. 10, and
is treated in the Appendix, where some limitations of the
allowed forms of (2.17) are discussed. The R-matrix
theory" was developed for this model of nuclear physics.

(ii) Relativistic cluster model. In relativistic models the
inner Hamiltonian is of the form

H= gtrg'p;+ g vga

l l (J
One can define a momentum operator p conjugate to r,
the relative separation of two three-quark clusters, and a
relativistic kinetic energy operator 2 p with 6 a linear
combination of single-particle Dirac spinors. ' lf the in-
teraction terms are momentum independent, then integra-
tion over all variables in the left-hand side of (2.16), except
r, with the divergence theorem gives

eprxe/+e]rz 2 ds= Ei —E2 a* E2 a E]
l

(2.18)
Recognizing that the left-hand side of (2.18) is the relative
current, and using the continuity of current, one once
again obtains Eq. (2.13).

Note that this derivation implicitly implies that
H =H~ ~ =0 [Eq. (2.4)]. Thus there are no surface
terms in the Hamiltonian.

C. Six-quark amplitudes and probabilities

The determination of the six-quark amplitudes a(.E)
clearly does not completely specify the six-quark wave
function in the inner region. Indeed, any complete set of
P„which satisfies appropriate boundary conditions can be
used in Eq. (2.7). For instance, one could use shell model
states as in the MIT bag, but it is then necessary to resolve
the center-of-mass problem. To complete the model one
either attempts to compare the theory to experiment, as in
Refs. 4 and 5, or introdoces the H~ and possibly the
H Hamiltonians. However, since the quark excitation
energies are large, it is expected that in a sUitable represen-
tation only a few P„will be important for each channel,
and that the ansatz (2.7) is applicable. Therefore, the a (E)
are important quantities. We devote the remainder of the
paper to their study.

In actual calculations, the wave functions g(r) (and P„)
aI e decomposed into partial waves,
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477l ~LSJ(kr)
Q(r)= g 3J O'LSJM(r)(LMLSMS

~

JM)Y'
(2~) kr I.MI {k)

ML M~

(2.19)

Here L„ML, S, M~, J, and M are orbital, spin and total angular momentum quantum numbers and magnetic quantum
numbers, and u is a radial wave function, which is a spherical Bessel function in the absence of interactions. As usual,
we can write

&LsJM(&) = g YLM (r )XsM ( o')(LMI SMs JM ) (2.19a)

where X is a spin wave function.
Asymptotically, we have, for uLsJ,

lim uLsJ(kr) =sin(kp —'L~+—5 )e' L»
r~ 00

(2.20)

if outgoing boundary conditions are used. Thus the phase of uLsJ and of each partial wave of g(r) is fixed for infinite
separation of the two nucleons. This phase remains unchanged for all radii r ) ro as long as the potential interaction be-
tween the nucleons is real. A similar decomposition of the internal wave functions 4 into the complete set

aLsJ(E)c„RLSJl 9 L~SJ(r)(LMLSMS
~
JM)YLM (k),

L,SJ,n

where R is a radial function, leads to

1 4m 1 1
+LSJ(k2r)

B
~LSJ(r) +LSJ(klan)

B
llLSJ( ) (E1 2) LSJ(E2)+LSJ(E1)

2P (2~) k, k2 yo Br 9r
(2.22)

a a'
3 2 2 ~LSJ ~LSJ uLSJ ~LSJ

I
+LSJ(E)

2'. (2') k ro BE Br BE Br
(2.23)

r0

I
«E) I'= f, I @a I'd'r (2.24)

where g(E) is the wave function of the two nucleons in the
external potential, treated as though the potential V(r)
held everywhere in space. Thus,

~

a (E)
~

is the missing
probability or that probability excluded from the normal
(external or potential) description by the presence of the
inner baglike region. In using (2.14) or (2.23) one is there-
by replacing a nucleon-nucleon probability, defined by the
potential V(r) used to fit the phase shifts, by a six quark
probability. For bound states the asymptotic normaliza-
tion is not determined, and probability can be shifted from
the inside to the outside region with different choices of
V(r) inside ro, with the same binding energy. However,
Eq. (2.24) can still be used.

This result also demonstrates the incompleteness of our
model and the essential phenomenological aspects at the

These are our final equations. The phase of aLsJ(E) is
determined and given by exp(i5LsJ) as long as the internu-
cleon potential is real. It is straightforward to show, by
use of the continuity equation or by means of the
Schrodinger equation, that, for scattering states,

present stage. Since there are potentials which are phase
shift equivalent within errors in the data, and which

0
predict quite different values for

~ g ~

d r, one must
now rely on a systematic comparison between theory and
experiment, with guidance from our present knowledge of
NN potentials. It is our expectation that this program
will be completed with an effective quark Hamiltonian for
the inner region, obtained in part by these studies.

III. A SIMPLE EXAMPLE

In this section the quantities aLsJ(E) are computed for a
simple model problem. Assume that ro is sufficiently
large that the NN interaction is approximately zero for
r & ro. Further assume that 5(E)=0 at all energies. This
example is used for two reasons: (1) to gain experience in
determining aLsJ(E); and (2) to better understand a calcu-
lation (Sec. IV) which employs the Reid soft-core potential
for r & ro. In the absence of the external NN interaction
and with 5(E)=0 one has

uLSJ(kr) =krj L (kr),

so that (2.23) leads to

[krjL(kr)] kryo
—(kr) krgL(kr) krj L—(kr) =

~

a-Ls, (E)
~4~ k ro Br Bk Br

(3.2)
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V. EXTENSIONS OF FORMALISM

0.OI

0.005

0
0 200 400

E& (Mev I

600 800

FIG. 3. Same as Fig. 1, with rp=0. 9.

For the Reid soft-core potential, we obtain P,~ =0.029
1

for r p ——0.9 fm and 0.016 for rp =0.8 fm. Equation (4.2) is
the bound state version of (2.24).

very small, e.g., much smaller than the volume of a nu-
cleon. This is because of the strongly repulsive nature of
the Reid soft core potential. At low energies the Paris po-
tential gives approximately the same

~

a~
0

The discussion of the N-N bound state is straightfor-
ward in our formulation. For a bound state ( S&+ D~ )—
the deuteron —the wave function is normalized to unity in
the standard treatment,

f [u (r)+w (r)]dr =1 . (4.1)

In Eq. (4.1) u is the S~ and w the D~ wave function of
the deuteron. The coefficient a p& ~ (E) is dimensionless in
this (bound state) case and the probability

iapii(E) i
=P3 ——1 —f (u +w )dr . (4.2)

H=
Hd, N —+NN

r)ro .
~EN (5.1)

It is easy to see that the derivation of (5.1) and (5.2) is
valid for this coupled channel problem, but the replace-
ment of C by C,a where a tells whether the channel is an
NN or b,N, and C specifies the angular momentum quan-
tum numbers, is necessary. Thus uLs (kr) could be NN,
or a hN relative wave function. Then one has

It is possible to generalize Eqs. (2.22) and (2.23) for a
number of situations. The general formalism for an 1V-

channel compound nucleus and for overlapping resonances
and continuum cases are all described in a number of
texts. S~m, e.g., Blatt and Weisskopf. '

The case of coupled channels such as, for instance, that
due to tensor forces, is also readily carried out. The stan-
dard manner of generalizing the case of spin-orbit forces
which we have included is also described in a number of
texts. '

Perhaps the most interesting generalization is that
which includes external non overlapping baryon reso-
nances. If the b, (1232) is considered as a pure pion-
nucleon scattering resonance, it is a resonance which
occurs purely in the external region and does not affect the
three-quark wave functions inside the nucleon. We can
then have AN and hh channels coupled to the NN chan-
nel in the external region. If we assume this to be the case
and further assume that the internal wave function is not
affected by the external resonances, we can generalize our
formalism also. Our results are obtained with the assump-
tion that the external interactions which couple the vari-
ous channels and with each channel are Hermitian and in-
dependent of energy (momentum). In order to be specific,
we write the Hamiltonian in the external (r ) rp) region as

HNN HNN

fi

~~ I k 1k2 a, L =allowed value

ul ~(k2r) ul sJ(k ~ r) ups(k—&
r)

Br ups (kr)=(E~ E2)a (E2)a—(E~ )r
(5.2)

We note Eqs. (5.1) and (5.2) can be used to provide a
somewhat more fundamental treatment of the nuclear
force than is usually considered. For r &rp one has one-
boson and two-pion exchanges (included via coupling to
baryon resonances). For r (rp, (5.2) can be used to deter-
rnine the six-quark amplitudes.

VI. CONCLUSION

A hybrid description of a two-baryon system in terms
of an inner six-quark region and an external region with a
Schrodinger description of the relative motion of the two
baryons is a natural consequence of quark models of had-
rons. In the hybrid model introduced in this paper the in-
terior region is modeled by an energy-dependent quark
description of each channel, with an energy-dependent
probability amplitude detai1ing the presence of that chan-
nel in the system at each energy. These probability ampli-

tudes have been determined in this paper using very gen-
eral considerations of continuity and conservation of prob-
ability. This theory turns an earlier purely phenomenolog-
ical description into a model with considerable predictive
power.

However, the model is still under development. The un-
certainty in the short-distance potential —the effective
quark Hamiltonian —leads to limits on the accuracy of the
theoretical quark probabilities which we derive. In this
developmental stage, the parameters of the model are be-
ing determined both from the theoretical methods
described in this paper and from comparison with experi-
ment. It is our expectation that an effective quark Hamil-
tonian will be obtained, which will produce a quantitative
description of short-range nuclear structure and processes.

The model, although incomplete, can now be applied to
a variety of processes. Particularly for weak or elec-
trornagnetic interactions, where the quark interactions are
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well known, it is possible to explore directly the difference
between a quark description and a hadron description of
short-range nuclear processes. This can enable us to ex-
amine the quark structure of nuclear systems and its ex-
perimental consequences.
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(A 1)

with

p2
H„( ———,+ V(r),

2p
(A2)

where Vt(r)=V(r) Equa. tions (Al) and (A2) apply for
both the interior and external regions. The relative coordi-
nate r is the usual internucleon coordinate in the external
region r & ro, and the relative coordinate between the mass
centers of two color-singlet three-quark clusters in the in-
terior region r ~ ro. In both regions one can write

4 =%c %c %c c (r), (A3)

where C&, C2 represents two nucleons (two clusters) in the
exterior (interior) region. As described in Sec. IIB, one
obtains the Wigner equation (2.13). With the ansatz (2.2),

+E @ (E)+c +c +c,c,(r) «ro

AI PENDIX: NONRELATIVISTIC
QUARK CLUSTER MODEL

In this appendix the model of Sec. IIB, in which the
relative wave function for the three-quark clusters in both
the internal and external regions, is explored. This is
equivalent to the original model of Wigner' for nuclear
collisions, and is obtained in either a nonrelativistic quark
model of baryon-baryon interactions or in a relativistic
quark modd of baryon-baryon interactions if one assumes

From (A4) one observes that

ln%'E ——A, =const .
dr

(A6)

If one assumes that ordinary nonrelativistic quantum
mechanics pertains, the wave function and its derivative
must match at the boundary ro Fr.om Eq. (2.5) it then
follows that

~

a (E)
~

vanishes. From this we conclude
the following: (i) the ansatz (A4) is not possible, and/or (ii)
there are surface terms in the Lagrangian, or (iii) no go;
there is no six-quark interior.

This situation was addressed by Wigner, ' who was con-
sidering a standard nonrelativistic quantum mechanical
system. He concluded that (2.7) and (2.14) were consistent
in the sense that (2.7) is used on the left-hand side, while
the right-hand side is a first order correction. This diffi-
culty does not arise in our. formulation.

However, this theorem must be considered by those for-
mulating quark models of nuclei. It is also interesting to
note that it would be natural to treat the exterior region
with a version of the Feshbach-Lomon boundary condi-
tion model, ' for as seen in (2.17) and (A5), the boundary
parameters A, can determine the overall quark probabili-
ties in each channel. However, the version used in the de-
tailed fits to the NN phase shifts, in which the A, are con-
stants, is not acceptable without the assumption of (ii) of
(A6). Alternatively, a detailed microscopic model for the
interior would provide the A, for a boundary condition
treatment. This is the circumstance in which R-matrix
theory is most useful. If a single multiquark configura-
tion dominates at some energy, the P matrix' or R matrix
is a most useful representation.

It should be noted, however, that we feel that quark
model physics for the multibaryon systems is in a some-
what earlier stage. For this reason we have proceeded to
introduce only external dynamics, and what we feel is a
reasonable framework for the internal quark wave func-
tions, and we use external information to (incompletely)
determine these internal wave functions.
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