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Recently it has been shown that the use of a relativistic impulse approximation allows one to cal-
culate a nucleon optical potential for use in the Dirac equation. Excellent fits have been obtained for
differential cross sections and spin-dependent observables for energies greater than 400 MeV. In this
work we provide a general description of the form of the momentum-space optical potential for use
in the Dirac equation. It is shown that there are eight invariant functions that determine the poten-
tial. Procedures for calculating these functions are given. (In the case of nuclear matter only three
of these functions are required to specify the nucleon self-energy. )

NUCLEAR REACTIONS Nucleon optical potentials for the Dirac equation;
general analysis of scattering of relativistic nucleons from nuclei.

I. INTRODUCTION

By now there have been a large number of publications
dealing with relativistic models of nuclear structure.
These works may be grouped into two categories. The
first may be termed Dirac phenomenology. Here a num-
ber of free parameters are introduced in order to construct
relativistic models either of nuclear bound states' or of the
nuclear optical potential. ' The second category is
represented by a body of work which does not require the
introduction of free parameters. " In the latter case one
uses interactions derived from the study of free-space
nucleon-nucleon scattering to study nuclear saturation, the
effective interactions of nucleons in nuclei and the nucleon
self-energy for bound and continuum nucleons.

Recently, there have been several calculations of the re-
lativistic nucleon optical potential which are also parame-
ter free. These calculations are based on the relativistic
impulse approximation and form a natural extension of
methods which have been used extensively to study the op-
tical potential appropriate to the Schrodinger equation.
The improvement in the fit to the data for spin dependent-
observables is quite remarkable when one passes from the
Schrodinger to the Dirac formalism. ' These recent results
provide strong support for relativistic models of nuclear
structure under investigation at this time.

It is our purpose in this work to provide a theoretical
foundation for calculations of the relativistic optical
model. In particular, we wish to formulate a general
theory since the phenomenological analysis' and the
analysis based upon the relativistic impulse approxima-
tion use optical potentials which have only (Lorentz)
scalar and vector terms. The fits to the data achieved
with these forms is very good. However, as we will see,
the general form of the potential is more complex. We be-
lieve it will be of interest to calculate the amplitudes
which specify the general form and attempt to determine
why the simplified form mentioned above does as well as
it does in fitting the data.

The plan of our work is as follows. In Sec. II we write
the general form of the relativistic optical potential for the
case of an off-mass-shell nucleon. (The massive nucleus is
placed on mass shell throughout our analysis. ) We present
the form the potential takes in the center of mass of the
nucleon-nucleus system. In Sec. III we introduce a specif-
ic scheme for analyzing the Dirac equation. The matrix
elements of the nucleon self-energy taken between
positive- and negative-energy spinor solutions of the free
Dirac equation are presented. Knowledge of these matrix
elements allows one to compare formalisms which either
do or do not allow the nucleon to propagate in negative-
energy states. In this section we also discuss procedures
for numerical calculations of the self-energy or optical po-
tential. In Sec. IV we discuss the reduction of the formal-
ism to describe propagation in nuclear matter. At this
point we make contact with previous calculations of the
self-energy of continuum nucleons in nuclear matter. Fi-
nally, Sec. V contains a short summary of our results.

II. THE RELATIVISTIC OPTICAL MODEL, .

The construction of a covariant optical potential has
been discussed in great detail in the study of pion-nucleus
scattering. ' That problem is particularly simple since the
pion has zero intrinsic angular momentum. We follow a
similar path in discussing nucleon-nucleus scattering, tak-
ing into account the complications due to the spin of the
nucleon. Part of this development has already been
presented in Ref. 11.

We can summarize the more formal aspects of the
analysis as follows. One considers a Bethe-Salpeter equa-
tion for the scattering of a nucleon from a nucleus. The
nucleus is restricted to its ground state configuration and
therefore the "potential term" of the Bethe-Salpeter equa-
tion plays the role of an optical potential. All reference to
excited states of the target resides in this optical potential.
%'e may write
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(2.1)

where K is the generalized optical potential and M is a re-
lativistic scattering amplitude. There GF is the product of
Feynman propagator for the nucleon and the nucleus
which is in its ground state.

The next step involves the reduction of Eq. (2.1) to a
(covariant) three-dimensional equation. One may write

M=X+Xgo+ M, (2.2)

X=K+K(Gp —go+')X . (2.3)

In these two equations go+' is a member of an infinite
class of propagators which have the same right-hand cut
as GF. {This feature preserves the unitarity relations satis-
fied by M. ) In a previous work we chose a form for go+'
that led to a (covariant) Lippmann-Schwinger equation for
M. ' Clearly, for the considerations of this work a natural
choice for go+' is one in which the massive nucleus is kept
on mass shell and the nucleon is allowed to propagate in
both negative- and positive-energy states. This choice is
analogous to that made by Gross in his studies of
nucleon-nucleon scattering where one of the nucleons was
kept on mass shell. '

In Eq. (2.2) we introduced a nucleon self-energy X. The
(covariant) optical potential V is related to the self-energy
operator by the Dirac matrix y, V=y X. The relativistic
wave equation corresponding to Eq. (2.2) has been given
previously. ' In the nucleon-nucleus center-of-mass sys-
tem, we have (see Appendix A)

Here W denotes the total energy in the center-of-mass
frame. The corresponding equation involving V may be
obtained by multiplying Eq. (2.4) by y . Thus,

[W Eg—(k) —a.k —y mN]$'+'(k)

=f««IVIk &y'+'(k )
l

(2.5)

W~ ——(p +P)„=(p'+ P')„,

s=(p+P) =(p'+P') =WpWp,

Wq ——Wq/Ms,

(2.6)

(2.7)

(2.8)

[These equations have been given previously in Ref. 11.
There a further decomposition of Eq. (2.4) was presented
which made use of off-shell spinors for the nucleon. ]

Although we will perform our calculations in the
center-of-mass frame, it is useful to consider the form of
X in a general frame. In such a frame the nucleon will
have four momentum p or p', while the (on-mass-shell) nu-
cleus will have the four-momenta P and P'. [In the
center-of-mass frame we will put p= Ip, kI and
P= I E~(k), —kI, etc. Here p = W —E~(k).] We are

here interested in specifying the self-energy operator
(p', P'

I

X
I p,P &. To this end it is useful to introduce a

series of four-vectors:

[y ( W Eg(k)) —y—k —mN]t/i'+'(k) &„=(P'+ P)q. /(2M' ), (2.9)

(+) k
(2m ) k;

The quantity X is defined in Appendix A and is simply

related to X. In Eq. (2.4), k; denotes the momentum of
the incident nucleon and

q„=(p p')„=(P' P)„—, —

q~ =q~/mN

(2.10)

(2.1 1)

EN(k;)=(k;+mN)'~
Here mN is the nucleon mass and Mz is the mass of the

target. In terms of these four-vectors, we may write

&p', P'
I

X Ip, P&=a+b(y W)+c(y & )+d(iy q)+e( cr„~„f„)+f'( o„~„W,)
A A+g(cr„,&„W„)+h(iy,W„y~ vr e„, ), (2.12)

where we have introduced eight scalar functions a, b, c, d, e, f, g, and h. (We recall that if the nucleon were on mass
shell, this problem would be analogous to the study of pion-nucleon scattering and only two scalar functions would be re-
quired to specify the relativistic scattering amplitude. ) Some relations satisfied by the a, b, . . . , etc. , which follow
from symmetry considerations are given in Appendix B.

The functions a, b, . . . , may each be taken to be functions of the Lorentz scalars s, t=q, $Y.m and 8'q. %'e now
specialize to the center-of-mass frame; using the relations given in Appendix C, we have

(p,P'I X Ip, P&~(k'I X
I

k&

with

t

(k'I X(W)
I

k&=A+y'8+y C+ y (k' —k) —— y'y (k' —k)
2P1 N fPl N 2' N

[y'y (k'+k)]+, X.(k'Xk) —,-)'X (k'xk) .
2mw fPZ N

(2.13)
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The functions 3, B, . . . , etc. , are linear functions of a,
b, . . . , etc. The specific form of these relations need not
concern us here. However, for completeness these rela-
tions are noted in Appendix D. (We remark that V=y X
is Hermitian if', B, C, D, E, F, G, and Hare real ).

We can consider Eq. (2.13) in the limit appropriate to
the study of nuclear matter. There k = k '. We should, in
general, write X(k, k). However, we will write X(k) in
order to keep the notation simple. (More precisely, we can
put

X(k)=X(k (k), k),

u (p,s) =
i /2

EN(p)+mN
2mN x,

EN(p)+mN

(3.1)

w(p, s)=y5y u(p, s) .

Specifically,

the positive- and negative-energy solutions of the Dirac
equation without interaction. An appropriate basis is pro-
vided by the spinors

X(k)=A(k)+y B(k)+ C(k)+ y y. k,
mN mN

where k ( k ) is the solution of the dispersion relation relat-
ing the energy variable to the three-momentum —see Ref.
5). We now write

w(p, s)= EN(P)+mN
2PPl N

1/2

0'p
EN(P)+mN

(3.2)

and correspondingly,

(2.14) which is equal to U( —p, —s) of Bjorken and Drell. ' The
definition

V(k)= yA(k) +B(k) +y C(k)+ y k .
~N PlN

(2.15)

This form is Hermitian if A, B, C, and I' are real. Howev-
er, time reversal invariance, as expressed by Eq. (B10),
combined with Eq. (D5), requires that we put F=0 in the
case of nuclear matter. Thus we have

e(p) =EN(p)+mN

will be useful in the following.
We now define

(k', s'
i

X++( W)
i
k,s }

=u(k ',s')(k'
i
X(W)

~

k }u(k,s), (3.3)

(k', s'i X+ (W)
i
k,s}

X(k) =A(k)+y'B(k)+ C(k),
mN

(2.16)
=u(k ',s')(k '

i
X(W)

i
k }w(k,s), (3A)

(k', s'~X +(W)
~

k,s}

which is the form that has been considered in our earlier
work which dealt with nuclear matter.

III. CALCULATION
QF THE SELF-ENERGY OPERATOR

The solution of the Dirac equation in momentum space
is facilitated by expanding the wave function in terms of

=w(k', s')(k'i X(W)
i
k}u(k,s), (3.5)

=w(k ',s')(k '
i
X( W)

i
k }w(k,s) . (3.6)

These are the natural extensions of the matrix elements
defined in the study of nuclear matter.

We may also write, with @=@(k) and e'=e(k '),

(k ',s') Xrr(II')
)
k, s) =(s' S~rr+ -, Ss++ s),

r

(k', s') X+ (II')
) k,s) = s' sr —+, Sir=+sr, ——Ss+ s),k k' + k' k

E E
r r

k' k'(k', s') X +(II')
)
k,s) =(s' S —+, Sj++a"

(3.7)

(3.8)

(3.9)

(k', s') X (I(r)) k s)=(s' S, +, Ss s) .
6E

Using the definitions given in Eqs. (3.3)—(3.6) and Eq. (2.13) we have, with

(3.10)
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N'=
2mN

1/2
EN=

2mN

1/2

(3.11)

k'S++ (k ', k ) =NN' ~ A 1— k k'
+B 1+ C k' k k k'(e+e')+ + +

2mN 6 E' EE'

k. k '
+iD 1+ E~(k ') E~(—k)

2mN

E k' k'
+ +

2mN, E E

k k '(e+e') iF+
EE 2mN

k k'
1—,[E~(k)—E~(k ')]

EE

2
(k ~ k ')~

EE

k' k —(k k')
EE

(3.12)

I

Sp+ (k ', k)=NN' —A+B+ C+ [E~(k ') —E~(k)]— (&+e')
2mN 2mN 2mN

E~(k ') —E~(k) G+ z
(ee'+k k') —

z
(eE' k'. k)—

2mN mN mN
(3.13)

In order to obtain Si from Si++ one should change the sign of A, C, D, and G. In order to obtain Sz from Sz +

one should again change the sign of A, C, D, and G.
%'e also have

S)+ (k', k)=NN'. —A+C — [E~(k') —Epq(k)]
2mN

[E~(k ')+E~(k)]-
2mN

6 EE' k '

mN

H (e' —e) .
mN

(3.14)

Si+ (k', k)=NN' ~ B+ [E~(k') —Ex(k)]
2mN

I

[E~(k ')+Eg(k)] —E+
2mN mN

k' 2 '2

~ [E~(k')E~(k) —m/+k''k]
mN

(3.15)

In order to obtain S& + from S&+ one should change
the signs of E, F, and H. In order to obtain S2 + from
S2+ one should change the signs of B, E, and H.

We suggest the following procedure for the calculation
of the functions A, B, . . . , etc. One may obtain the ma-
trix elements of the self-energy defined in Eqs. (3.3) and
(3.6). From these one may obtain the eight functions,
Si++, Sz++, . . . , etc. , defined in Eqs. (3.9) and (3.10). In
turn, the knowledge of these eight functions allow us to

construct the eight functions, A, B, . . . , etc., Uia linear re-
lations such as those given in Eqs. (3.12)—(3.15). Once we
have obtained the latter set of functions we can study the
role of functions other than A and B in the analysis of
nucleon-nucleus scattering. [Thus far all fits to the data
have been made with potentials of the form

X(r)=A(r)+y B(r),
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where A (r) and B(r) are both complex and energy depen-
dent. ] ReB(p)

IV. THE NUCLEON SELF-ENERGY
IN NUCLEAR MATTER AND FINITE NUCLEI:

SOME NUMERICAL RESULTS

200—

In nuclear matter, we need only retain the terms involv-
ing A, B, and C. In this case we have'

(s'
i

&++(p)
i
s)

IOO—
ReC(p) ImC (p)

A(p)

A(p)+ B(p)+ C(p), (4.1)
&N(p) p'

mN 2mN

(s'i 2+ (p) is) =(s'i o"@is) [C(p)—A(p)],
mN

(4.2)

-100—

I

p((m ')

1mB (p)

(s'
i
X +(p) is) =(s'

i
o"p

i
s) [C(p)—A(p)],

~N

-500

(s'i% (p) is)

=5„—A(p)+ B(p)—,C(p) . (4.4)
N(p p'
Plw Pl N

Relativistic models of nuclear structure are character-
ized by having large negative values of 2 and large posi-
tive values for B. The quantities tend to cancel when con-
structing the potential energy of a nucleon and therefore
this potential is rather small (-50 MeV) for a low-energy
nucleon. On the other hand, the leading contribution to
the spin-orbit splitting in finite nuclei is determined by
S2++. From Eq. (3 13) we see that 52++ involves
( —A +B), which is a large number (-700 MeV).

Values for 3, B, and C have been calculated for nuclear
matter for nucleons of kinetic energy of 0 to 200 MeV.
(Some of the details of these calculations may be found in
Refs. 4 and 5.) In Fig. 1 we present the values calculated
using a relativistic Brueckner-Hartree-Fock approach. '

Values for 2 and B in the energy region of 200 MeV to 1

GeV may be found in Ref. 7. These latter values were cal-
culated using a relativistic impulse approximation. Good
agreement is obtained between the theoretical potential
and the parameters obtained in phenomenological stud-
ies. ' Below 300 MeV, medium corrections to the
nucleon-nucleon T matrix become important and the irn-
pulse approximation is inadequate.

As may be seen from Fig. 1 or from Ref. 7, the ima-
ginary part of 2 is greater than zero, while the imaginary
part of 8 is less than zero. This feature is found in
phenomenological studies and is well reproduced in
theoretical models. * Analytic studies of the I orentz
character of the imaginary part of the optical potential for
nuclear matter have been performed by Horowitz. ' He
shows that the observed features may be obtained using

FIG. 1. Values of the real and imaginary parts of A(p},
8(p), and C(p ) as a function of the quasiparticle momentum.
The nucleon-nucleon interaction is that of Holinde, Erkelenz,
and Alzetta (HEA) (Ref. 21). (See Ref. 5 for further details con-
cerning these results. )

sigma and omega exchange in a second-order perturbation
analysis. (Inclusion of pion exchange yields relatively
small corrections if pseudovector coupling is used for the
mNN vertex. '

)

V. SUMMARY

We have presented a general formalism for the study of
the scattering of a relativistic nucleon from a spin-zero
target. We find that there are eight scalar invariants that
should be determined. In the case of nuclear matter the
number of functions required to specify the self-energy is
three if the Hamiltonian is invariant under the time rever-
sal operation.

As we have remarked previously, excellent fits to the
data have been obtained using only two terms in the self-
energy, X=A+y B. In addition, the self-energy has been
taken to be a local operator, X(r) =A(r)+y B(r). As our
nuclear matter calculations have shown, the quantity C is
nonzero. (See Fig. 1.)

It is of interest to calculate the self-energy in its most
general form and determine A, B, C, . . . , etc. , for finite
nuclei. Such calculations will aid in the understanding of
the success of the current phenom enological models.
These calculations may be performed for projectile ener-
gies less than about 300 MeV. Above this energy one re-
quires a model of the nucleon-nucleon interaction, based
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upon field theory, that incorporates a description of the
inelastic channels —that is, meson production processes. +k', k

APPENDIX A

In this appendix we discuss the reduction of the Bethe-
Salpeter equation for the case of nucleon-nucleus scatter-
ing. (The reduction appropriate to the study of nucleon-
nucleon scattering is reviewed in Refs. 19 and 20.) One
may write the nucleon momentum as

and the momentum of the nucleus as

2
k0

in the center-of-mass frame. We consider the covariant
equation

&k'IM(w) Ik&=&k'I«w) Ik&+ fd'k"«'I«w) Ik" &6 (k"
I
w)&k" IM(w) lk&

with

(A 1)

GF(k"
I
w) =G~(p, P) = i 1 1

(2m) y.p —mN+ie p'
We now wish to obtain equations of the form of Eqs. (2.2) and (2.3). We choose to keep the massive nucleus on its

mass shell. Therefore, to obtain go+' we effectively replace (P Mq +—i@) '
by 2vri 5—(P Mz ) —and put

go =— . 5(P E~(P))—.(+) ~ ~ p

y P ~N+ie 2E~(P)

We specialize to the center-of-mass frame so that Eq. (2.2) becomes

(k'IM(w)
I
k)=(k'lx(w)

I
k)+ fdk "(k'lx(w)

I
k") „. (k" IM(w)

I
k) .

y k —mN+Ee 2E (k ")

(A3)

(A4)

aIld

(k'Izvs(w) lk)=
2E„(k ')

Here k"=[W Eq(k "),k—"].
It is then useful to define

1/2

(k IM(w)lk)
2E~(k)

1/2

(A5)

(k Ir(w)lk)=

to obtain

1/2 1/2

&k Iz(w)
I

k&
2E~(k ') 2E~ (k)

(A6)

&k'IM(w)
I
k&=&k'l&(w)

I
k&+ fdk "&k'l&(w) I k

"&
g k —Pl~+l6'

If we put

(A7)

M( w)
I

k )u(k, s ) =X( w)
I

1('-„+' ),
we see that

(A8)

(k'I g'-„')=5(k' —k)u(k, s)+ fdk" (k'I y(w)
I

k")(k-I @~+i)
7 y.k' —mN+ ie k, s (A9)

where u (k,s) is a positive-energy spinor solution of the Dirac equation. Equation (A9) may also be written as

[y'(w —E&(k')) —y. k ' —~N](k'I y'-„+') =fdk "(k'I r(w)
I

k")(k"
I
@'„+') . (A10)
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APPENDIX B

For bound-state problems and elastic scattering at very
low energies one would find that V=y X is Hermitian.
Under transposition of the initial and final momenta the
various bracketed quantities in Eq. (2.12) satisfy

) y =(

icr„~„W„—+ —(y k 'y +y y k)/mN,

o„„~„W„~i( y k 'y —y y k ) /(2M' ),
iy5W&y~z& e„,z ~—iy [X (k'Xk)]/(mNM&) . (C7)

These relations may be written somewhat differently if
we note the identity

so that Hermitian character of V would imply, with
v=—8'q,

k k'+(y k)(y k')= —iX (k'Xk) . (C8)

a*(s,q, W' &,v) =a(s,q, W.&, —v),
We are here using the notation of Bjorken and Drell so

that

b'(s, q, W &,v) .=b(s,q, W.&, —v), (83)

etc.
A requirement of time reversal invariance of the quanti-

ty (p;P'
~

X
~
p, P ) yields the following relations:

o. 0
0 o.

APPENDIX D

(C9)

a(s, q, & W, v)=a(s, q, & W, —v),
b(v) =&( —v),
c(v) =c( —v),
d(v) = —d( —v),
e(v)=e( —v),

f(v)=f( —v),
g(v) = —g( —v),
h(v)=h( —v) .

(84)

(85)

(87)
A=a, (Dl)

(Bg) E~ ( k ) +Eq ( k ')
B=b+c

2M'
(89)

(810)

Eg ( k ') Eg ( k)—
+ld

mN

(811) mNcC=
Mg

(D3)

The passage from Eq. (2.12) to Eq. (2.13) using the re-
sults presented in Appendix C yields the following linear
relations:

In Eqs. (85)—(811) we have suppressed the variables
which do not change sign under time reversal. [See Eq.
(84).]

APPENDIX C

D=d,

E= —2f —e
Eg(k ')+Eg(k)

Mg

(D4)

(D5)

~N
g —Ie

M~(Cl)y. 8'—+y

y &~Iyo[E~(k ')+Eq(k)]+ y (k+ k 'I/(2M' ), (C2)
mN

(C3) M~
6= e,

iy q~i ty [E~.(k ') E~(k)]—y. (k——k ')I/mN,
1 [y'y kE„(k )+y.k y'E„(k)&~@AD,~v~

MgmN

The values of various Dirac matrix forms of Eq. (2.12)
are given in the nucleon-nucleus center-of-mass as follows: E„(k ') E„(k)—

Mg
(D6)

(D7)

(D&)

+(k k')+(y k')(y. k)], (C4) Here Ez ( k ) = ( k +M& )
'~ .
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