
PHYSICAL REVIEW C VOLUME 28, NUMBER 3 SEPTEMBER 1983

Quantum tunneling in multidimensional systems

S. Y. Lee* and N. Takigawa
Institute of Physics, Academia Sinica, I15 Taipei, Taiwan, Republic of China

and Physik Department, Technische Uniuersitat Munchen, 8046 Garching, Federal Republic of Germany
(Received 16 May 1983)

The effects of coupling to a harmonic oscillator on the quantum tunneling of a macroscopic
motion are studied through the influence functional formalism of Feynman's path integral method
for the general coupling form factor. As an example, we consider the model in which the potential
barrier is parabolic and the coupling Hamiltonian is linear in both coordinates of the macroscopic
motion and of the intrinsic harmonic oscillator. The results are then compared with the exact solu-

tion obtained through the canonical transformation into normal coordinates in the limiting cases
when the normal coordinates reduce to the original coordinates. We found that: (1) In the adiabatic
case, i.e., when the recurrence time ~/co of the oscillator is much shorter than the transmission time
through the macroscopic potential barrier, the effect of oscillator coupling can be well represented by
an effective potential. The coupling enhances the tunneling probability on the whole. (2) There ex-
ists a critical energy, above which the tunneling probability is reduced because of the linear oscillator
coupling. In the weak coupling limit and when m~O, the critical energy becomes —oc, so that the
coupling to the oscillator always reduces the tunneling probability.

NUCLEAR REACTIONS Quantum tunneling, coupling of macroscopic motion
to intrinsic oscillators, semiclassical method, heavy ion fusion.

I. INTRODUCTION

The quantum tunneling process in multidimensional
systems has become an important and fundamental prob-
lem in many areas of physics. The tunneling of the vacu-
um state in field theories' and tunneling of the trapped
magnetic flux ' are a few examples. In nuclear physics, it
has been discussed in connection with the problem of
spontaneous fission. The sub-barrier fusion cross section
enhancement discovered recently in heavy ion collisions
also draws much attention of nuclear physicists in their
attempt to understand the quantum tunneling problem
better. The problem is that the observed sub-barrier
fusion cross section is greatly enhanced in comparison
with the theoretical predictions based on the one dimen-
sional potential model. Esbensen has tried to attribute
the enhancement to the zero point motion of the nuclear
surface. The success of this idea has, however, been ques-
tioned by Landowne and Nix in their dynamical calcula-
tion.

Quantum tunneling processes can be tackled by the time
dependent Feynman path integral method along the ima-
ginary time axis." This method has been applied by Cal-
deira and Leggett" to studying the effect of coupling to
harmonic oscillators on the quantum tunneling probability
through a potential barrier of a macroscopic motion.
They have, however, considered only the dissipation effect
on the macroscopic motion due to the coupled oscillators,
and left out other important effects such as the potential
barrier renormalization and the mass renormalization.

Alternately, Brink and co-workers' have used a
Wentzel-Kramers-Brillouin (WKB) type of approxima-

tion, and have shown that the change of the potential bar-
rier due to the coupling to harmonic oscillators indeed
plays a decisive role in determining the tunneling probabil-
ity. Their prescription to decouple the equation for the vi-
brators from that for the tunneling degree of freedom is,
however, nontrivial. Similarly, Widom and Clark' have
insisted on the importance of the renormalization of the
potential barrier by discussing the effective frequency for
the parabolic potential barrier. They have thus reached a
different conclusion from that of Ref. 11 concerning the
effect of the coupling to harmonic oscillators on the quan-
tum tunneling probability.

The aim of the present paper is to study the multidi-
mensional quantum tunneling process, i.e., the effects of
the coupling to a harmonic oscillator on the quantum tun-
neling process of the macroscopic motion. In Sec. II,
Feynman's path integral method with imaginary time
shall be reviewed and developed to deal with multidimen-
sional tunneling problems. The infiuence functional
method of Sec. II is then used in Sec. III to discuss the
problem that the harmonic oscillator linearly couples to
the macroscopic degree of freedom. In Sec. IV, we exam-
ine the physics of quantum tunneling in the model that
the coupling potential is a linear function of both the in-
trinsic coordinate and the macroscopic coordinate. Sec-
tion V discusses the result of the coordinate transforma-
tion into the normal modes. The conclusion of the present
study and the implication concerning the heavy ion fusion
reaction are given in Sec. VI. Appendix A is concerned
with the quantum tunneling in the case when the macro-
scopic motion couples to a harmonic oscillator through a
quadratic function of the coordinate of the harmonic oscil-
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II. PATH INTEGRAL METHOD
FOR THE CLASSICALLY FORBIDDEN PROCESS

A. Gne dimensional problem

Let us consider a particle of mass M moving in a poten-
tial U(q). The propagator X is then given by

—iH(.t
&

—to ) /ff
+(q&rl qorp)= &qi I

e ' '
I qo& (2.1)

lator. In Appendix 8 we discuss the conditions necessary
to justify the prescription of representing the effects of
coupling in terms of the renormalization of the effective
potential in the adiabatic case.

Equations (2.7) and (2.8) give the classical path in the in-
verted potential well.

Corresponding to Eq. (2.5), the transition probability is
given in terms of double path integrals

Z~o" (qiri;qoro) = f~q(r)~q(r)
X exp( —[Wo[q(r }]+~o[q(r) ] I /8) .

(2.9)

Similarly to the classically allowed processes, ' let us
change the integration paths into the average and the
difference of two paths by introducing Q(r) and rI(r) such
that

where
Q(r) = —,[q(r)+q(r)] (2.10)

+ U(q) .
2M

(2.2)
rI(r) =q(r) —q(r) . (2.11)

In Eqs. (2.1) and (2.2), and in what follows, quantum
operators are marked with a caret. The propagator K
gives the transition amplitude needed to find the particle
at position q& at a later time t] when it is at q0 at the ini-
tial time t0.

We are now interested in a classically forbidden process,
i.e., quantum tunneling through a potential barrier.
Therefore, we consider the propagation along the ima-
ginary time axis" '", and set

t~ ———ir~, t0 ———i70 (2.3)

where both ~ and z0 are real. ~0 is the time when the tun-
neling process is initiated, so that we can choose 70=0.
The transition amplitude for a classically forbidden pro-
cess is then given by

—H (,~) —go) /A
&(qiri'qoro)=&qi le lqo& (2.4)

The path integral representation of the transition ampli-
tude then reads

—MOI'q(~) j/A
K(q, r„.qprp)= f&q(r)e

where the action integral Wp is defined by

T

Wp[q(r)]= f q +U(q) dr .

Equation (2.9) can then be rewritten as

Jp '(q)r„qprp) = fQ'Q(r)&q(r)expI —2&p[Q(r)]I%'I

X exp I
——,

' rI(r)2~o'[Q(r)]+ .

(2.12)

Here the leading term in J0 ' is zeroth order with respect
to g(r). This contrasts with the case for classically al-
lowed processes, where the leading term in the argument
of the exponent is a linear function of g. '

The dominant contribution to the transition probability
will be given by the classical path determined by

5&p =0. (2.13)
6Q g

Clearly, Q obeys the same equation of motion and the
boundary conditions as Eqs. (2.7) and (2.8). The tunneling
probability is then given by

—2&p[g( Tp))lfi
P0 -e(0) (2.14)

where T0 is the transmission time of the tunneling pro-
cess.

As a simple example, if the potential barrier is parabolic
and expressed as

Notice that the action Wp for the classically forbidden
tunneling process through a potential barrier corresponds
to the action for the classically allowed process in the in-
verted potential well. '

In Eq. (2.5) the integral should, in principle, be carried
over all paths which connect q(r&)=q, and q(rp)=qp.
The integral would, however, be dominated by the saddle
point path q(r), which satisfies the equation of motion

d q dU(q)

dq

U(q)= Vp ——,MQpq (2.15)

one easily gets

Wp ——( Vp E) = ( Vp —E—)Tp,
Qp

(2.16)

B. Open system problem

which is the well-known result of the WKB approxima-
tion.

and the boundary conditions

q(rp)=qo and q(r&)=q& .

(2.7)

(2.8)

We now consider a system whose macroscopic coordi-
nates are coupled to the microscopic degrees of freedom.
The Hilbert space is the product of the space spanned by
the macroscopic degrees of freedom and the space spanned
by the microscopic degrees of freedom. We call these
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space A and space B, respectively. For example, in heavy
ion collisions the A space corresponds to the relative
motion, and the B space to intrinsic excitations of the col-
liding nuclei, respectively. Our aim is to derive an equa-
tion of motion for the macroscopic degrees of freedom
alone which contains the influence of the microscopic
motions. In Feynman's path integral method, this goal
can be accomplished by studying the influence function-
al. '

A,2

H = + U(q)+H~+ V, (q, g),2M
(2.17)

where Hz is the unperturbed Hamiltonian of the space B,
and V, is the coupling Hamiltonian.

Let us introduce a propagator by

—H (,r l
—rO) /fi

~
aqp) . (2.18)

It represents the amplitude for the system to make a tran-
sition from a position qo to q] concerning the macroscopic
motion, and from a quantum state a to f3 concerning the
microscopic degrees of freedom as time elapses from —iso
to i r& Asi—mple .extension of the semiclassical theory of
Pechukas' to the case of time evolution along the ima-
ginary time axis leads to

—w, I q(~i] z~
Kit (q)r), qprp)= f&q(r)e

X(pl u[q(v') ~& ~o]
l
a) (219)

where the action is given by Eq. (2.6) and the Green's
function u is defined by

u [q(r), r, rp] = —2g(q(7))u [q(7 ) 1 7 p] (2.20)

with the boundary condition

u [q(r), 7 p 7 ]=p1 . (2.21)

The operator 2z in Eq. (2.20) is the effective Hamiltonian
for the space B, and is given by

1. Semiclassical approximation and the influence function

We consider only one degree of freedom for the macro-
scopic motion, and denote the coordinate, the conjugate
momentum, and the corresponding mass by q, p, and M,
respectively. The coordinates of the space B are denoted

by g. We then assume the following Hamiltonian for the
total system:

where the influence functional p is given by

p(r)—:p[q(r), q(r);r~]

= (a
~

u+[q(r), r&, rp]u [q(r), ~&,rp]
~
a) . (2.25)

Equation (2.24) is the generalization of Eq. (2.9) to the
open system problem. The tunneling probability can be
estimated by studying J at v.

&

——T, where T is the transmis-
sion time. Note that T becomes in general different from
the transmission time To of a one dimensional problem.

2. Standard form of the influence functional
and physical implications

Let us express the influence functional p as

p(r) ) =exp[/(r) ) jfi] . (2.26)

The argument P can be expressed in terms of Q(~) and
rl(r) introduced by Eqs. (2.10) and (2.11). We are interest-
ed in the part of P which is independent of ri. Denoting
this part by Pp, Eqs. (2.24), (2.12), and (2.6) suggest that Pp
has the following integral form:

Pp(r)) = 2f—W(r)dr . (2.27)

We call W(r) the influence potential As we w. ill see in the
examples in Sec. III and in Appendix A, W(r) depends on
r either explicitly or through the time dependence of the
macroscopic coordinate Q. An important aspect is the
memory effect involved in Pp as a general property of the
open system problem. Namely, W(r) depends not only on
Q(r), but also on the values of Q at previous times. Only
under certain circumstances can the memory effect be well
approximated by introducing velocity dependence and/or
an effective mass in W(r). The tunneling process then be-
comes a Markov process. We learn in Sec. IV that the
condition to justify the Markov approximation is
equivalent to the adiabaticity condition. In this sense, the
classically forbidden process differs from the classically
allowed process, for which the validity of the Markov ap-
proximation is related to the lifetime of the oscillator.

Let us now assume that the influence potential W(r) is
given by

Equation (2.19) then leads to

J(qtrt qo&o)= f f~q(r)~q(r)p(r)

Xexp( —
I Wo[q(r)]+ Wp[q(r)] j /R),

(2.24)

Mt'(q(r)) =H, + V, (q(r), g) . (2.22)
W(r) =B(r,Q(r))+C(r, Q(r))Q(r) . (2.28)

Note that the macroscopic coordinate appears in 2z as a
time-dependent c number.

In the open system problem, we are not interested in the
details of the transition concerning the microscopic de-
grees of freedom. Accordingly, we define the transition
probability concerning the macroscopic motion alone by

J(qiri'qoro) =g
l Kt3 (q&~&'qo~o)

I

P

The physical meaning of the first term is clear, i.e., the po-
tential barrier is renormalized by the amount of B(r,Q(r))
due to the coupling of the macroscopic motion to micro-
scopic degrees of freedom. In order to understand the
physical meaning of the second term, we derive the equa-
tion of motion to determine the classical path, which dom-
inates the tunneling probability. It reads
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MQ= [U(Q)+8(r, Q(r))]-a — — ac
a a~

' (2.29) lead to the following expression for the influence potential
W(r):

This means that the second term in Eq. (2.28) does not
change the equation of motion to determine the tunneling
path, but only affects the tunneling probability if C does
not explicity depend on z.

III. LINEAR COUPLING TO A
HARMONIC OSCILLATOR

A. The influence potential

In the present section, we consider the case when the
tunneling degree of freedom couples to a harmonic oscilla-
tor. The unperturbed Hamiltonian of the space B is then
given by

HIi fico(a a——+ —,
'

) . (3.1)

where

=gfp(q)(a +a), (3.2)

g =C&8/2m co . (3.3)

In Eqs. (3.2) and (3.3), C, fp(q), and m are the coupling
strength, the coupling form factor, and the mass parame-
ter of the harmonic oscillator, respectively.

The corresponding Green's function u for the oscillator
can be easily obtained by making use of Glauber's
coherent state representation for quantum operators. '

The result reads

%'e further assume a coupling Hami1tonian which 1inearly
depends on the coordinate of the oscillator, i.e.,

I'. =Cfp(q)E

W(r) = ,
'

fi—co+W'p(r), (3.7)

Mg(r) = +F(r),dU

dQ

where

(3.9a)

F(r)= —A' e "'J dr f(Q(r, ))e
dQ To

T+e"'I dr,f(g(r, ) )e

+e +"'f drif(g (r&))e

with

Wp(r) = —fi[1+e "' ']f(Q(r))e

d7] 7( e (3.8)

where T is the transmission time of the tunneling process.
The first term of Eq. (3.7) is nothing but the zero point en-

ergy of the harmonic oscillator. The second term Wp(r)
represents the physical effect of the coupling to a harmon-
ic oscillator on the quantum tunneling process. It van-
ishes as the frequency of the harmonic oscillator ap-
proaches infinity. This is physically sensible, because the
harmonic oscillator should not be excited at all, and hence
should cause no effect on the tunneling process if the ener-
gy quanta of the oscillator becomes too 1arge.

Equations (2.24) and (3.8) now lead to the following
equation of motion for the dominant tunneling path:

u[q(r), r, rp]= I 'e'+~+"*+a *
~, &&, ~,

(3.4)

where
~
z) is the coherent state and the coefficients 2

through D are given by

1
7

CON
)A = —,co(r —rp) — drif(q(ri))e

70
7

x J draff(q(r$))e

8= e"'I —dr, f(q(r, ))e

C= —e ' drif(q(r, ))e
70

(3.5a)

(3.5b)

(3.5c)

and

u(w —r0)D=l —e (3.5d)

The form factor f in these equations is related to the form
factor fp(q) in Eq. (3.2) as

f(q) =gfp(q) I& . (3.6)

We now assume that the harmonic osciBator is in the
ground state when the tunneling process is initiated at one
end of the potential barrier. Equations (3.4) and (3.5) then

(3.9b)

Equation (3.9) has been derived by assuming
transmission time and the terminal positions of the tunnel-
ing process are given. These quantities should, however,
be determined self-consistently by solving Eq. (3.9).

We remark that Eqs. (3.8) and (3.9) have been obtained
without making any assumption concerning the strength
of the coupling Hamiltonian. They are exact in the sense
of perturbation expansion with respect to the powers of f.
This is a special property of the linear coupling. In fact, if
the coupling Hamiltonian is a quadratic function of g,
then the third or higher order powers of f appear in Wp,
as well as in the equation of motion to determine the dom-
inant tunnehng path (see Appendix A).

B. Effective potential and the effective mass
in the adiabatic case

Equation (3.9) is in general a non-Markovian equation
of motion. In the adiabatic case, however, it can be well
approximated by a Markovian equation of motion, in
which the main effect to the macroscopic equation of
motion is the renormalization of the potential and of the
mass. This is because the response time of the oscillator
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m/co is much shorter than the transmission time in the
adiabatic case.

In this case, the third term on the rhs of Eq. (3.9b) can
be ignored except at times ~=0 and ~=T. On the other

I

e ~f dr, f(Q(r, ))e "

hand, the dominant contribution to the integral in the first
and second terms comes from the vicinity of r~ ~. We
thus expand f(Q(r&)) in these terms around Q(r). This
prescription leads, for example for the first term, to

1 —~(~—~0) —' df=f(Q(r))—(1—e ' }—Q(r)
co dQ

. 2 2

dQ

2
o) —~(&—&o) (r ro) —co(7 —ro) 2 ro(—r—~o)e '+ (1—e ')

C0
(3.10)

This is the moment expansion in terms of the moments defined by

(3.11)

When co(r —ro) »0, Eq. (3.10) becomes

e 'f dr f(Q(g, ))e '-—f(Q(g))—
0 67

1 df — 1 -" df -2 d fg(r)+, g(r) +g, +
co dQ co dQ dQ

(3.12)

Similarly, if co( T—r) »0, then the second term on the rhs of Eq. (3.9b) can be approximated as

e"'f dr f(g(r, ))e '=—f(Q(i))+, g(r) +, Q +Q, +
CO co dQ co dQ dQ

(3.13)

Note that Eqs. (3.12) and (3.13) are the expansions in powers of f)oleo (see Appendix 8 for more details). We thus obtain
the following equation of motion for the dominant tunneling path if Qo/co is sufficiently small and if
io'(T —r)(r —ro)»0:

MQ(r) = —2A' f(g (r)}+—, g(r) +Q
dU df 1 — 1 —" df —'2d f
dg dQ co dQ dQ

(3.14)

5U(Q) = ——tf(Q) l'

C2
, ufo(Q) j'

(3.15a)

(3.15b)

Equation (3.14) leads to the following expression for the
additional effective potential 5U(Q) and the additional ef-
fective mass 5M due to the linear coupling to a harmonic
oscillator:

C. Simple interpretation of the results
in the adiabatic limit

The result given in Eq. (3.15) can be simply understood
in the following way. The total Hamiltonian of the
present problem reads

H = + U(Q)+ + —,
' mco'g'+Clo(Q)g' . (3.l'7a)

This can be rewritten as

co dQ

C de
f77 co dQ

(3.16a)

(3.16b)

+U(Q) ——, , (fo(Q)) +2M Pl CO 2'
Cfo(Q)+ 2 PPTCij g+ (3.17b)

These formulae recover the result in Ref. 12 when the
form factor fo(Q) equals Q. Note also here that the re-
normalization of mass is of higher order than that of the
effective potential.

Therefore, if one can treat Q as a c number during the
period when the microscopic system evolves with time,
then the effective potential for the macroscopic degree of
freedom can be considered to be given by
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C2
U,tt= U(Q) ——,

2 (fp(Q))
me@

(3.18)
IV. PARABOLIC POTENTIAL BARRIER

WITH A LINEAR COUPLINV FORM FACTOR

This is nothing but the result given in Eq. (3.15).
An alternative interpretation of Eq. (3.15) can be ob-

tained as follows. In the adiabatic case, the intrinsic
motion will make a zero point oscillation around the
minimum value gp(Q) determined by

BH

I=g,~gi
(3.19)

for each given value of Q. Equations (3.17) and (3.19) lead
to

ko(Q)= —,fo(Q) .C
P1 CO

(3.20)

The classical motion of the oscillator is then expected to
be given by

gci(t) =go(Q)+Aocostpt, (3.21)

Treating the oscillator motion classically, we then obtain
the following effective Hamiltonian for the macroscopic
motion:

where Ao is the amplitude of the zero point motion of the
oscillator, and is given by

' 1/2

(3.22)

Let us consider a simple solvable model that the 3 space
potential is parabolic [see Eq. (2.15)] and the coupling
form factor is linear, i.e.,

fo(q) =q . (4.1)

A. Influence potential 8 (v. ) and a characteristic equation
for the eigenfrequencies of the normal modes

Equation (3.8) gives the influence potential 8'(r) as

In this simple model, we shall encounter the difficulty of
defining a physical state in the tunneling problem. That
is, the initial state cannot in general be easily prepared
such that the intrinsic harmonic oscillator is in its ground
state, because the coupling form factor is of infinite range.
Here the physical tunneling probability shall correspond to
the penetrability of the normal mode. Although the tun-
neling process of the original macroscopic coordinate is an
interesting problem in its own right, it does not corre-
spond to a realistic physical process except in the weak
coupling limit or in the adiabatic limit, when the normal
coordinates reduce to the original coordinates. Still this
model provides us with some concrete conclusion concern-
ing the oscillator coupling to the macroscopic coordinate.

1 Q2H= + U(Q)+ ,' fun — (f—p(Q—))
2M Ice

(3.23)

II'o(r) = —g'(1+e '"' ')q(r)e
T CtJX)

X dr, q(r, )e
70

(4.2)

The last term on the rhs of Eq. (3.23) is again nothing but
the effective potential obtained in Eq. (3.15).

The equation of motion for the dominant tunneling path
Eq. (3.9) in the macroscopic coordinate becomes

2 1-
C07 —Q)T

q+Qoq= — e "'f driq(ri)e '+e"'f driq(ri)e '+e + 'f driq(r, )e

2
. —2 d, r(qr, )si nacho(

—r r, )+e"'-"[q'+'+q' —'] . ,
M ~0

(4.3)

T—=f driq(ri )e (4.4)

Here we use q(r) to denote the dominant tunneling path
Q(r) of Sec. III. The integrodifferential equation (4.3) can
now be cast into the fourth order differential equation as

q" +(no' —~')q —~'no'+2 g
q =0 .

M
(4.5)

Equation (4.5) is the natural result of two linearly coupled
oscillators.

Setting q ~ e' ', we observe that the frequency 0, obeys
the dispersionlike characteristic equation which has been
obtained by Widom and Clark, ' i.e.,

(4.6)

Denoting the real and imaginary solutions of Eq. (4.6) by
+A and +ice, respectively, we get

O'=Qo'+ —,
' (IIp'+co')[(1+x)'~' —1],

cp =pi2+ —,
'

(Op+co )[(1+x)'~ —1],
where

(4.7a)

(4.7b)

8g u
M(co +Qo)

(4.7c)

is a dimensionless constant, which plays the role of the ef
fectiue coupling strength. One notes that x is small in the
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weak coupling limit (g~O) or in the adiabatic limit
(rp~ao) (see Sec. V for precise conditions). In these two
cases, Q and Fo become 2.0

5(&)
g Q)

Q=QO+
MQp(Qp+ra )

2

67~CO+
M(Q()+co )

(4.8a)

(4.8b) 1.5-

P =
I 1+exp[2m(E —Vp)/Q) (4.9)

This is not correct, because the effective potential for the
original coordinate is not necessarily parabolic (see Sec.
IV C) and also because the renormalization of the frequen-
cy of the intrinsic harmonic oscillator has to be considered
if one wants to discuss the tunneling process in the normal
coordinate (see Sec. V).

Equation (4.6) is indeed the equation to determine the nor-
mal mode frequencies of the present model (see Sec. V for
details).

Because of the difficulty of preparing the initial physi-
cal state in the present model, the tunneling probability
obtained from the Feynman path integral method, which
prepares the initial intrinsic harmonic oscillator in the
ground state, may not be the same as that of the normal
coordinate, which prepares the initial state of the normal
mode intrinsic harmonic oscillator in its ground state.
This point has been overlooked in Ref. 13. Accordingly,
in Ref. 13 the tunneling probability of the original macro-
scopic motion has been assigned to be

1.0
v/T 1.0

0.5

FIG. 1. g(r) in Eq. (4.16) is shown for a number of AT pa-
rameters; when g(r) equals 1, the extra force exerted on the tun-

neling degree of freedom is also linear [see Eq. (4.15)].

B(r,q(r))=—,, Cp(r)[q(r)]',
co +Q~

(4.14a)

Equation (4.13) is exactly the form of Eq. (2.28), where the
quantities 8 and C are given by

B. Adiabatic limit

In the adiabatic limit, Eq. (3.14) becomes

Meq =MQeq

with

(4.10)

C(r, q(r)) =
2 Cp(r)q(r),

g2

Q7 +Be

(r) ( 1 e
—coT)( 1 +e —2'(T r))—

(4.14b)

(4.14c)
2

0, =00+2 =Q,d,
Mco

M, =M+2

(4.11a)

(4.11b)

Accordingly, the extra force exerted on the tunneling de-
gree of freedom due to the linear coupling to a harmonic
oscillator is given by

q(r) =Q, cos(Q, r),
with

(4.12a)

Equation (4.10) is manifestly parabolic; this is also clear
from Eq. (3.18). One can let rp=O and write F(r)= —2 2 g(r)q(r),

co +Q~

where

(4.15)

Q, = —[2( V() E)/(MQ, )]'~— (4.12b) g(r) =1——,e +2e ' ——,e
GP(1 1 p) 2~( g ~) 3 —co( 2 T—T' 'Tp)

(4.16)Here we have ignored the mass renormalization, because it
is of higher order compared with the frequency renormali-
zation in the adiabatic limit [cf. Eq. (4.1la) with Eq.
(4.11b)]. Combining Eqs. (3.8) and (4.12), one obtains

Figure 1 shows g(r) as a function of r/T for a few typical
values of the adiabaticity parameter coT. It is nearly equal
to unity except for the vicinity of r/T =0 and r/T = 1 for
large values of coT.

The tunneling probability is now given as a product of
three factors,Xq(r), , q(r)— q(r)

M +Qz CO +Q~
(4.13)

(4.17a)P POPg PD,

2
PT (r) g [( 1 e

—c01)( 1+ —2co(T 7))]—
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where

T ~ 2Po ——exp & —2f q + U(q) dr/l . ,
Q 2
T

PE =exp —2 B(r,q(r))drlfi
'TQ

(4.17b)

(4.17c)

and
T

P~ ——exp —2 C(r, q(r) )q drIA'
Po

(4.17d)

The integral in each factor can be easily evaluated by us-
ing Eqs. (4.12) and (4.14) as

r

M . 2 T Mf q + U(q) dr=(Vp E) —.2—+ 1—
0 2 M,

2
00

(4.18a)

T 2

m +Q, ~ co +40, ~ +Q,
(4.18b)

Q,f C(r, q(r))qdr= '
2 Q, (l —e )

'
2 (1—e )+ z

'
z (1+e "

)
0

(4.18c)

Caldeira and Leggett" have paid attention only to the
dissipation factor I'D. Since I'D &1, in Ref. 11 it is con-
cluded that the coupling to a harmonic oscillator reduces
the tunneling probability. Comparison of Eq. (4.18c) with
Eq. (4.18b), however, clearly shows that the enhancement
effect of the potential renormalization factor PE is more
than to cancel the reduction effect of the factor PD in the
adiabatic case. Moreover, it is also expected that the fac-
tor Pp becomes larger than the tunneling probability for a
one-dimensional problem I'0 '.

In fact, Eqs. (4.17) and (4.18) lead to

q(r) =a cos(Qpr)+Psin(Qpr)+yr sinQor

+6e '+re ',
where

a=A+ —Qo(1+e '),
8

P= — Qo( —1+e )
8 QO

(4.21)

(4.22a)

(4.22b)

2% Vo E)/AO d)— (4.19)

in the adiabatic limit. This is actually what is expected
from the effective equation of motion Eq. (4.10) if one ig-
nores the mass renormalization. Since Q,d ~ Ao, one
reaches the same conclusion as that of Ref. 13 in the adia-
batic limit. Namely, the linear coupling to the intrinsic
oscillator enhances the quantum tunneling probability of a
macroscopic motion at sub-barrier energy.

and

M +GO2 2

Qo
0

2~Toe= — Qpe
8

(4.22c)

(4.22d)

(4.22e)

q"'= g, cosno—r (4.20)

with

TO
Qp

The first order solution of Eq. (4.3) becomes

C. Weak coupling limit (g ~0)
In the weak coupling limit, we shall use a perturbation

method to solve Eq. (4.3). The zeroth order solution of
Eq. (4.3) is clearly

The parameter A in Eq. (4.22a) is —Qp in the standard
perturbation treatment. One would, however, be allowed
to assume other values for A. For example, in the adiabat-
ic case, another reasonable choice is A = —Q, . Equation
(4.21) then provides us with a refined formula of the dom-
inant tunneling path for the problem considered in the
preceding subsection.

In Fig. 2 we show q(r) (the thick solid line), as well as
each term on the rhs of Eq. (4.21) (the thin solid lines).
The numbers attached to the thin solid lines correspond to
the order of each term on the rhs of Eq. (4.21). Figure 2
and Eq. (4.21) clearly show that in general the macroscop-
ic motion in the open system problem need not be a simple
harmonic motion. We remark that the fourth and the
fifth terms on the rhs of Eq. (4.21) can be ignored in com-
parison with the first three terms in the adiabatic case, i.e.,
if Qo/co &&1. Equation (4.21) is then identical to a reso-
nance phenomenon in the problem of forced oscillations. '
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1.0- q(&)/

Q5

-0.5

coupling to a harmonic oscillator. This can be clearly seen
in Fig. 2.

V. QUANTUM TUNNELING OF A NORMAL MODE

We consider the linear coupling model of Sec. IV. For
this simple model, there exists a canonical coordinate
transformation which decouples the total Hamiltonian
into a sum of Hamiltonians for the normal modes. In this
section, we thus study the exact solution of the quantum
tunneling process in normal mode. We shall compare the
quantum tunneling probability of the coupled system with
that of an uncoupled system. We shall discuss also the re-
lation between the quantum tunneling of the normal mode
with that of the original macroscopic motion viewed as an
open system problem.

Let us make a canonical coordinate transformation by

-1.0

q =a(q+bg),
g=d(cq+g),

with

(5.1a)

(5.1b)

FIG. 2. The thick solid line shows q(r)/Qo of Eq. (4.21) for
x =0.5 and co/Qp ——1. The thin lines marked 1, 2, 3, and 4 cor-
respond to the first, second, third, and fourth terms, respective-

ly, on the rhs of Eq. (4.21). The fifth term of Eq. (4.21) is too
small to be shown on the figure.

a =d =(1+Z )

b = —V'mlMZ,

C=V'Mlm Z,

(5.2a)

(5.2b)

(5.2c)

It also corresponds to the first order perturbation expan-
sion of the adiabatic limit with respect to the strength of
the coupling Hamiltonian.

The transmission time T will correspond to the time
when Q(r) is bounced back. On the other hand, if we
denote the value of Q(r) at that time as Qz, then
(—A+Qz ) will give the transmission distance of the tun-
neling process. If we write

T=Tp+5T (4.23a)

and

Qr =A+5Qo, (4.23b)

then 5T and 5Qo are given as follows up to the first order
with respect to g:

2

M& (ro'+Qo»o Qo ~o'+Qo

(5.2d)

where x is the dimensionless effective coupling strength
defined by Eq. (4.7c). The total Hamiltonian becomes

p ——,MQ q + pg+ —,mrs g + Vo .1 2 2 l 2 1

2M 2P7l
(5.3)

The eigenfrequencies corresponding to these normal
modes, 0 and co, are identical to those introduced by Eq.
(4.7).

Equation (5.3) shows that the normal mode q is
governed by a simple parabolic potential barrier. This
contrasts with the motion concerning the original macro-
scopic coordinate q, which may not necessarily be
described in terms of an effective parabolic potential bar-
rier. Therefore, if we set the physical question as the
quantum tunneling of the normal coordinate q, then the
tunneling probability is exactly given by

thus
(4.24) P(E, ) =

1+e2&I &p —[E —( & /2)Aco] I /AQ
(5.4)

1f co+)+0g 7T

MA ~Qp

if co &&Qo,g &67

MA' @05

(4.25)

(4.26)
2

MA (r02+Qo)2

These equations imply that both the transmission time and
the transmission distance are reduced due to the linear P(E, ))Po(E, ) if E, (E, (s.sa)

where E, is the energy of the total system. In Eq. (5.4) the
notation P, instead of P, has been used in order to distin-
guish the tunneling probability of the normal mode q from
that concerning the original macroscopic coordinate q.

The effect of the coupling on the quantum tunneling
could be discussed by comparing P(E, ) with the tunneling
probability of the macroscopic motion q in the case when
it is not coupled with g. We denote this tunneling proba-
bility by Po(E, ). Obviously, it is given by Eq. (5.4) with co

and Q replaced by the bare co and Qp. One easily observes
that
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A. The adiabatic limit

In the adiabatic limit, Q and co approach Q,d and m,
respectively, up to the first order of Qo/co. We then ob-
tain

P(E, )=I/( I+e xpI 2 ir[ Vo —(E,—, R—co)]/RQ,d } ) .

(5.10)

The result agrees with that in Sec. IV B. Note that
E, —,' fico in—Eq.(5.10) corresponds to E in Eq (4..19).

B. Weak coupling limit

I

-3
I

I

I
l
I

I

I

P(E() (Po(E, ) if E, )E, ,

where the critical energy E, is given by

E, ——,Ace —V

(5.5b)

FIG. 3. The critical energy parameter e, of Eq. (5.6) as a
function of 5=co/Ao is shown for several coupling strengths v
[Eq. (5.8)].

In this case, the critical parameter e, defined by Eq.
(5.6) is approximately given by

1
C (5.1 1)

VI. SUMMARY AND SOME COMMENTS
ON THE SUB-BARRIER FUSION CROSS SECTION

Therefore one expects that there exists a sub-barrier ener-

gy range where the coupling to the harmonic oscillator
reduces the quantum tunneling probability of the open
system problem in comparison with that of an uncoupled
system. Equation (5.11) indicates that such an energy
range increases as 6 becomes smaller. This is natural, be-
cause the energy of the macroscopic motion would be easi-
ly transferred to the coupled oscillator if the energy quan-
ta of the oscillator are small, so that the dissipation effect
would dominate.

with

1

2

1/2

1~ (1+5 )vxZ
22

[1+—,(1+5 )VxZ]' —1
(5.6)

5=co/Qo . (5.7)

Figure 3 shows e, as a function of the adiabaticity param-
eter 5 for several different values of the coupling strength
v defined by

(5.8)

The normal coordinates reduce to the original coordi-
nates if Z of Eq. (5.2) approaches zero. This can be
reached with a small dimensionless effective coupling
strength x, i.e., in the limit of x ~0; we note that

8v5
(1+&')' (5.9)

The condition of small effective coupling strength can
therefore be realized by two situations, i.e., the adiabatic
limit (5~ ~) and the weak coupling limit (v~0).

We have studied the effects of the coupling to a har-
monic oscillator on the quantum tunneling of a macro-
scopic motion. To this end, we have used the infIuence
functional formalism of the Feynman path integral
method of quantum mechanics along the imaginary time
axis.

Our result shows that the coupling to other degrees of
freedom introduces the influence potential into the effec-
tive Lagrangian for the macroscopic tunneling degree of
freedom. We have derived the expression of the influence
potential as a functional of the coupling form factor for
the case of coupling to a harmonic oscillator by assuming
that the coupling Hamiltonian is a linear function of the
coordinate of the harmonic oscillator. The influence po-
tential [Eq. (3.8)] involves memory effects. In the adiabat-
ic case, in other words, if the recurrence time a/co of the
harmonic oscillator is much shorter than the transmission
time, the influence potential can be well approximated by
renormalizing the potential barrier and the mass and by
introducing a linearly velocity dependent term in the La-
grangian. The explicit forms of the effective potential and
the effective mass are given in Eqs. (3.15) and (3.16).
They are the generalizations of the corresponding formu-
lae given in Ref. 12 to the case of the general coupling
form factor concerning the macroscopic tunneling coordi-
nate.

We have studied in detail the model that the potential
barrier is parabolic and the coupling Hamiltonian is linear
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with respect to both the macroscopic coordinate and the
intrinsic coordinate. Our result shows that the coupling to
the harmonic oscillator enhances the tunneling probability
as a net effect if the adiabatic condition is satisfied [Eq.
(4.19)]. On the other hand, in the weak coupling limit, we
have used a perturbation treatment to write the behavior
of the donunant tunneling path as a function of time [Eq.
(4.21)]. It indicates that the quantum tunneling of the
macroscopic coordinate is not a simple harmonic motion.
In this linear coupling model, the equation of motion for
the dominant tunneling path leads to the dispersionlike
equation to determine the eigenfrequencies of the normal
modes.

In this simple model, a canonical coordinate transfor-
mation decouples the original Hamiltonian into the sum of
Hamiltonians for the normal harmonic modes. The nor-
mal coordinates reduce to the original coordinates of the
macroscopic motion and of the intrinsic harmonic oscilla-
tor if the dimensionless effective coupling strength x de-
fined by Eq. (4.7) is small. In this case, the exact solution
of the quantum tunneling probability through the canoni-
cal transformation confirms and/or supplements the re-
sults of the influence functional method. That is to say:
(1) The linear coupling to a harmonic oscillator enhances
the sub-barrier fusion cross section in the adiabatic case.
(2) There exists a critical energy E„above which the tun-
neling probability is reduced due to the coupling to a har-
monic oscillator. In the weak coupling limit defined as
v~0, and if cu is small, the critical energy becomes —ao,
so that the linear coupling to a harmonic oscillator always
reduces the tunneling probability.

Finally, we wish to use the results of the present study
to draw some comments concerning the enhancement of
the sub-barrier fusion cross section in heavy ion collisions.
The external potential barrier of the heavy ion fusion reac-
tion is of the order of iiiQ0=4 MeV. Let us then consider
the effects of intrinsic degrees of freedom on the macro-
scopic motion. There are two types of collective vibra-
tional excitations in nuclei. These are the low frequency
collective vibrational states and the high lying giant reso-
nances.

The intrinsic motion regarding the giant resonances
with Ace=10—20 MeV may be considered to be in the adi-
abatic limit. Their contribution to the macroscopic
motion is then to renormalize the effective potential.
Since the deformation parameters for the giant resonances
are about equal to those of low lying collective states' and
the coupling strength between the macroscopic coordinate
and the intrinsic motion is proportional to the deforma-
tion parameter, the effective renormalization potential due
to these high lying giant resonances may not be so impor-
tant, because the effective renormalization potential is pro-
portional to 1/co . On the other hand, our result indicates
that the coupling to the intrinsic degree of freedom con-
cerning the low-lying collective vibrational states with
Ace=1 —2 MeV does not necessarily enhance the tunneling
probability, even at the sub-barrier energy. One therefore
doubts the validity of the zero point motion prescription
in explaining the enhancement of the sub-barrier fusion
cross section.

In the present work, we have not treated (1) the reorien-

tation of deformed nuclei and (2) the induced static polari-
zation of nuclear density. Recent phenomenological study
indicates that the polarization degree of freedom may be
the origin of the enhancement of the sub-barrier fusion
cross section. ' More work is needed in understanding the
role of the deformation degree of freedom during the tun-
neling process.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Council, Republic of China, and by the Deutsche
Forschungs Gemeinschaft, Federal Republic of Germany.
The authors acknowledge the warm hospitality extended
to them at the Academia Sinica, Taipei. One of the au-
thors (N.T.) also acknowledges the hospitality extended to
him during his stay at Technische Universitat, Munchen.
The authors are grateful for useful discussions with Prof.
H. Morinaga, Prof. E. K. Lin, Prof. J. A. Alexander, Dr.
S. I andowne, and Dr. M. C. Nemes.

APPENDIX A: QUADRATIC COUPLING
TO A HARMONIC OSCILLATOR

In this appendix we consider the quantum tunneling
problem, where the macroscopic motion couples to a har-
monic oscillator through a quadratic function of the coor-
dinate of the harmonic oscillator as

H = + U(q)+ + —,k I+A exp
2M 2m

w2

(Al)

This is equivalent to assuming that the coupling Hamil-
tonian is given by

V, = —,kA, exp q ~2

b2

=qfa(q)(a a +aa+2a a+1), (A2)

g =A'kl, /(4mco),

co =v'k /rn

fa(q)=exp( q /b ) . —

(A3a)

(A3b)

(A3c)

The quantum tunneling problem for the Hamiltonian in
Eq. (Al) has been previously discussed for the problem of
nuclear fission.

For each value of q, let us define the q-dependent oscil-
lator frequency as

fico, (q ) =fuu+1+ A,fa(q) . (A4)

This implies that the tunneling process given by Eq. (Al)
can be well described as a one dimensional tunneling pro-
cess through an effective potential barrier given by

The sum of the third and fourth terms on the rhs of Eq.
(Al) is then

fico, (q)(a a+ —,
'

) .
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O,rr(q) = U(q)+ —,
'

%[co,(q) —~], (A6) order with respect to the coupling constant g. After some-
what lengthy but standard calculations we obtain

if the adiabatic condition is satisfied, i.e., if co is much
larger than the inverse of the transmission time. This is
actually the prescription suggested in Ref. 4.

Glauber's coherent state representation for quantum
operators, which was powerful to determine the Green's
function u in the case of linear coupling, can be used for
the present problem as well. It becomes, however, rather
complicated to solve the equations for 3, B, etc., which
enter the coherent state representation of the Green's func-
tion [see Eq. (3.4)]. We, therefore, use the perturbation
theory to determine the inAuence potential up to the third

where

IV'"(r)= —2f(q(r)) f «if(q(r&))e

= ——,
' e f(q(r))e 'f dpi f(q(ri))e

(A7)

(Aga)

(A8b)

W'3'(r) =8f(q(r)) f dr& f dr2f(q(r&))f(q(r2))[e +e (e +2e ' ' )] (A8c)

with

f(q) =gfp(q)/& . (A9)

In Eq. (A7), we have written only those important terms which are not related to g(r). The constant zero point energy of
the harmonic oscillator is also left out.

In contrast to the exact result of Eq. (3.8) for the linearly coupled oscillator, Eq. (A7) is correct only up to the third or-
der with respect to f. Note also that the influence potential for the case of quadratic coupling has a linear term with
respect to f. This term orignates from the c-number term on the rhs of Eq. (A2), and dominates the effect of coupling to
harmonic oscillators on a quantum tunneling problem in the weak coupling limit. Expanding the influence potential
8'(r) in the power series of 1/co, we obtain

'2
1 . d 1 .. d .2d

q + q +q +. . . +Af(q) 2 — + + .
2' dq 4' dq dq co

(A 10)

IV(r) =If(q) 1 ——+2
Q7 CO

(A 1 1)

This is nothing but the first three terms in the expansion
of the adiabatic potential

if co (T r)(r rp) »—0 (see—Sec III B)..
There are two parameters related to the expansion given

by Eq. (A10). They are Qp/co, Qp being the inverse of the
transmission time, and f/cu. The former and the latter
are the measures of the adiabaticity and of the strength of
the coupling Hamiltonian, respectively. As the parameter
Qp/co becomes small, W(r) approaches the limiting value
given by

APPENDIX 8: CONDITION TO JUSTIFY
THE PRESCRIPTION IN TERMS
OF AN EFFECTIVE POTENTIAL

'r QO

e "'f dr&f(Q(rl))e '= g V„(r),
70 n=0

(B1)

Equation (3.10) suggests that whether the effect of the
coupling to harmonic oscillators on the tunneling proba-
bility can be well prescribed in terms of an effective poten-
tial or not depends not only on the adiabaticity parameter,
but also on the property of the coupling Hamiltonian.
The aim of the present appendix is to clarify this point.

We first recall that the integral part in the influence po-
tential W'(r) can be expressed as

in powers of f(q)/co.
Note that the quadratic coupling to a harmonic oscilla-

tor either enhances or reduces the sub-barrier tunneling
probability, depending on the sign of the coupling Hamil-
tonian even in the adiabatic case. This can be easily seen
in Eq. (A6) together with Eq. (A4). In this respect, the
quadratic coupling essentially differs from the linear cou-
pling, by which the sub-barrier tunneling probability is al-
ways enhanced irrespective of the sign of the coupling
Hamiltonian, at least in the adiabatic case [see Eq. (3.15)].

with

Vp(r) =Xpf (Q(r) ),

Vi (r) = —X)Q(r)
6

(B2a)

(B2b)

(B2c)
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12
V3(r) = —X3 —Q(r) +—Q(r)Q(r)

3) dQ dg2

dn(o) 2( I )n+1 Q g( )
6 M d7

(85)

——lg(r))—3 d'f
dg' (82d)

Q(r) =Qocos(Qr) (86)

If we further approximate Q(r) by a single harmonic
motion as

where P„are defined by Eq. (3.11). As can be seen in Eq.
(3.10), X„(n ) 1) consists of a constant term and the terms—a)(~—~0)
which are proportional to e '. Let us consider only
the constant term among them, and furthermore, only the
first term on the rhs of each of Eq. (82). We denote the
resultant part of each V„(r) as V„' '(r). For n & 1, they are
given by

then
7l

Qo i fI
K~

where

a„=(—1) +'2cos (Qr) if n =2m, m an integer

V„' '(r) =(—1)" — Q(r)n+1 d~ ~ dg
(83) =( —1) +'sin(2Qr) if n =2m +1 . (87)

Let us now assume a Gaussian function for the coupling
form factor,

f=ae px( Q Ib—) . (84)

This enables us to express each Vn '(r) as a product of
Vo(r) and a multiplication factor e'„', which is given by

(88)

where k =1,2,3, . . . .

The condition to justify the prescription to calculate the
tunneling probability as a one dimensional process
through an effective potential barrier is then given by

k
Qo g (( 1
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