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Elastic and rearrangement scattering between two interacting deuterons
as a four-body problem
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A four-body model is used in studying the four-nucleon system. This model is solvable
and can be applied to nuclear reactions involving four nucleons. Intermediate quasiparticle
states are used for the two- and three-body scattering leading to T matrices which are separ-
able. The model leads to four-body equations which, by using partial wave decomposition,
are reduced to single variable integral equations. Numerical calculations of the differential
cross sections of the nuclear reactions H(d, p)'H, H(d, n)'He, and H(d, d) H are carried out
for different deuteron laboratory energies between 6.1 and 51.5 MeV. Inclusion of the @-
wave three-body amplitudes is tested. Also, the simultaneous exchange of two nucleons be-
tween the incoming deuterons is investigated. The theoretically calculated angular distribu-
tions are in good agreement with the experimental measurements. The extracted values of
the spectroscopic and normalization factors are reasonable.

NUCLEAR REACTIQNS H(d, p) H, H(d, n) He, H(d, d) H;
Eq=6. 1—51.5 MeV; four-body model. Calculated o(0). Extracted spec-

troscopic factors.

I. INTRODUCTION

Nuclear reactions have been found to be one of
the most interesting tools for studying the static
properties of nuclei. The success of the three-body
formulations' in describing three-body systems, be-
ing exact solutions, led to the study of nuclear reac-
tions as a three-body problem. In parallel with the
development of considering the Faddeev formalism
for the three-body systems, many authors intro-
duced integral equations for the N-body problem.
Approximating the off-shell scattering amplitudes
by using separable expressions in the separable po-
tential model, the integral equations of the four-
nucleon system can be expressed by multichannel
two-particle Lippmann-Schwinger equations. For
the four-nucleon system, the bound state is
represented in a practical way available for compu-
tations. The elastic scattering, rearrangement, and
breakup processes between four nucleons had been
calculated numerically. With this formalism, the
bound state of four-bound alpha particles had been
calculated. The elastic and rearrangement scatter-
ing of four alpha particles had also been considered.
The binding energies of light nuclei had been calcu-
lated according to a cluster expansion of the nuclei
as an ¹luster problem. The separable approxima-
tion is used in the kernel of the four-body equations,

reducing them to single variable integral equations
by partial wave decomposition. A small number of
terms is sufficient to obtain good results for the
four-body bound states. In the case of four-body
scattering, rearrangement, and breakup processes,
increased separable terms for the subamplitude are
needed.

The off-shell one plus three and two plus two
subamplitudes are needed to be used as input in the
four-body equations. The spin and isospin effects
are to be included in the four-nucleon system. In
the two-nucleon sector of the model, we have two
quasiparticles to be introduced in the s-wave cou-
pling of the two nucleons. The two quasiparticle
states of two interacting nucleons are either the spin
triplet state, which is a physical particle (the deute-
ron), or the spin singlet state, which is an unphysical
particle. The two-nucleon physical state (the deute-
ron) is denoted by d, while the two-nucleon unphysi-
cal state is denoted by P. In the three-nucleon sec-
tor, both the total spin and the total isospin have

l 3
two possible values, —, and —,. Then, for zero total
orbital angular momentum for the three-nucleon
system, both the total angular momentum and the
total spin are conserved. Then, we have three in-
dependent amplitudes according to the doublet D
(for the value —,) state, and to the quartet Q (for the
value —,) state. These states are (D,D), (D, Q), and
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(Q,D) and are denoted by t, t', and t", respectively.
The t state is the physical state (the triton H or the
He), while the t' and t" are the unphysical states of

the coupled N +d and N +P, respectively. In the
four-nucleon sector, a partial wave decomposition is
introduced. Then, one-dimensional integral equa-
tions are obtained for all the elastic scattering and
rearrangement processes, especially the processes
dd~dd, dd~n He, and dd t H.

In the present work, we are interested in the four-
nucleon systems. We study the elastic and rear-
rangement scattering processes which initially are
between two interacting deuterons (a four-nucleon
system), leading to a final state of also a four-
nucleon system. The four-nucleon integral equa-
tions are approximated by using the separable ex-
pansion in the separable potential model approxima-
tion. Then, we are led to transition amplitudes
which are the off-shell scattering and rearrangement
amplitudes. Also, a partial wave decomposition is
used to reduce these equations to one-dimensional
equations. Then, only a few terms of the separable
approximations are needed. The nuclear reactions
considered in the present work are the elastic and
rearrangement scattering between two incoming in-
teracting deuterons. Thus, in the present work we
investigate the inclusion of the p-wave three-body
amplitudes. Also, the effect of simultaneous ex-
change of two nucleons between the two incoming
deuterons is taken into account. Numerical calcula-
tions are carried out for the differential cross sec-
tions of the nuclear reactions H(d, p) H,
H(d, n) He, and H(d, d) H at different deuteron

laboratory energies between 6.1 and 51.5 MeV. The
theoretically calculated angular distributions of
these nuclear reactions are compared with the exper-
imental measurements. From the fitting between
the calculated cross sections and the experimental
data, the spectroscopic and normalization factors
are extracted.

In Sec. II, the four-nucleon amplitudes and in-
tegral equations are introduced. Numerical calcula-

tions and results are given in Sec. III. Section IV is
left for discussion and conclusions.

II. FOUR-NUCLEON AMPLITUDES
AND INTEGRAL EQUATIONS

In the present work, we are interested in the four-
nucleon system. To represent these systems, we in-
troduce for them the four-nucleon amplitudes and
their integral equations. As input for the four-
nucleon amplitudes, we need the two-nucleon and
three-nucleon amplitudes. The Aaron, Amado, and
Yam' approach is used in defining the two- and
three-nucleon amplitudes.

The two-nucleon scattering amplitudes which
have a separable forirk in momentum space can be
given by two independent s-wave amplitudes, one
for the spin triplet pair

&k ls "(E)
I

k'& =rafa(k)ta(E+~a)fa(k ) (1)

and the other for the spin singlet pair

(k
l
S '(E)

l

k') =Agp(k)tp(E)fp(k'),

where ta and t~ are the sums of self-energy bubbles.
A, is the coupling constant for each interaction and
f(k) is the vertex function. In the Aaron, Ama-
do' '" approach, the renormalization constant of
the wave function for the case of the triplet interac-
tion takes on the range of values between zero and
one. The values of the parameters of the interaction
are chosen in such a way so as to fit the low-energy
triplet and singlet nucleon-nucleon data.

For the three-nucleon sector, a set of equations
describing the particle quasiparticle scattering is
given by Aaron, Amado, and Yam. ' If the nucleon
is denoted by N, then we are dealing with the
scattering process Nx~Nx', where x and x' are ei-
ther d or P. The scattering amplitudes are given by
integral equations which after partial wave decom-
position have a form for each partial wave given as

II2
7'&, (k k' b)=k ".b . (k k', E)~ g f dk A"b(k, k ";E)((b+E„.—"—,»k )»T„(k",k';E) .

x"=d,g

(3)

In Eq. (3), A ~ are the three-body spin-isospin
recoupling coefficients introduced in Ref. 10 with
their values. b ~ is the single nucleon exchange
Born term. There are three independent amplitudes
for each value of 1 according to the values of spin X
and isospin Y. This combination of values is ( —,—),

3 1 3
( —,, —,), and ( —,, —,). For the first values, X=Y= —,,

I

both the Nd and NP channels are included. For the
3 1second values, X= —, and Y= —,, the contribution

comes only from the Nd channel, while for the third
1 3

values, X= —, and Y= —,, and NP channel gives the
amplitude.

To avoid the numerical difficulties of the four-
body problem, Fonseca and Shanley inserts some
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&&A,„yg„y(k') . (4)

y is t, t', or t", according to the total spin and tot»
isospin of the channel interaction. A, is the coupling
constant of each interaction and g(k) is the vertex
function, taken to be energy independent. e, is the
triton binding energy observable as 8.48 MeV. With
these approximations, the three-body amplitude is
represented by a one term representation which in-
cludes the feature of the exact problem and with
parameters which could be adjusted to the on-shell

approximations into the three-body amplitudes. As-
suming that the three-body problem is characterized
by the three l =Q three-body amplitudes (D,D),
(Q,D), and (D, Q), they then approximated the
three-body amplitudes to have a separable form in
momentum space by specifying the total spin and
the total isospin as

(k
i
T ~ (E)

~

k') =A,„yg„y(k)ty(E+ey)

three-body data.
For the four-body sector, the total spin is S and

the total isospin is I. We are studying the nuclear
reactions which in the initial channel are initiated by
two incoming interacting deuterons. For these reac-
tions the total isospin I is purely specified. The
four-body equations have to be expressed in such a
way so that no quasiparticle-quasiparticle state ap-
pears as an off-shell external line. Thus, the four-
body equations for the elastic and rearrangement
scattering processes of two incoming deuterons
could be written in the I.ippmann-Schwinger form,
identifying the Born terms and the intermediate
propagators.

For these kind of processes we have d +d ~N +y
and d+d~d+d. The elastic amplitude of
d +d ~d +d is the half-on-shell amplitude of the
rearrangemnt amplitude of d+d +N+y—. The in-
tegral equation of the rearrangement processes is
given by

& k
l

&ddr(&&
l

k'& &&
l

&year(E=&
l

k'&+y fd'k , &k"(dr'r' (E&
l

k"
&

II (2~r )

&&ty-(E+ey ——,k )(k"
~ ryder (E)

~

k') .

B~z(E) refer to the single-particle exchange Born terms. The summation over y" is taken t, t', and t" A»-(E).
is the driving teria given by

A»-(E) B»-(E)+-C—»-(E)+F»-(E) .

In Eq. (6), the B»-(E) term is the two-nucleon, deuteron or/and P particle exchange Born teriri. C» (E) and
F»-(E) corresponds to the sum over some amplitudes and to the sum over some two amplitudes which may
have as inteiinediate states the two plus two channels of dd, dP, Pd, and PP. The exchange of two correlated
and fully interacting particles is described by the Born terna B»-(E), while C» (E) and F»-(E) describe the ex-
change of two uncorrelated particles in a two-step process. The amplitudes of the elastic scattering of two in-
coming deuterons are given by integral equations related to the rearrangement process amplitudes as

& k
l

r'ide(K

l

k'& =g fd k
~ & k

l &Par(&&
l

k" &rr(& +rr ——', k"
& &

k"
l

Paar(&&
l

k'& .
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Equations (5) and (7) are represented graphically in
Figs. 1(a) and (b), respectively. In Fig. 2(a), the
graphical representation of the amplitude of the pro-
cess Nx +Nx' is given, —with y t, t', or t" In Fig. .
2(a) a graphical representation for the integral equa-
tion of the amplitudes is given by Eq. (6). In Fig.
2(b), the first term on the right-hand side is the
two-particle exchange Born term B& (E). The
second term on the right-hand side of Fig. 2(b)
stands for the box amplitude C& (E). The sum of
the two box amplitudes F& (E) is illustrated graphi-
cally by the third and fourth sums on the right-hand
side of Fig. 2(b). In Fig. 2(b), we consider the ap-

I

proximation that y is the particle t.
With these equations, the three-body vertex func-

tions and propagators have been well defined for the
one plus three and two plus two subamplitudes. As
long as the two-body and three-body inputs are well
defined, then, the four-body amplitudes are given by
four-body equations which are reduced to one vari-
able integral equations.

The p-wave three-body amplitudes can be con-
sidered in the same way. It is easy and straightfor-
ward to include these p waves in the three-body am-
plitudes. The result gives many teriiis, which also
can be managed on the computer for numerical cal-
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(b)

FIG. l. (a) Graphical representation of the integral equation for the d +d ~y +X amplitude. (b) Graphical representa-
tion of the integral equation relating the d +d ~d +d amplitude and the half-on-shell d +d ~y +N amplitude.

culations. Also, the simultaneous exchange of two
nucleons between the two incoming deuterons is
treated. This is easily seen in Figs. l and 2.

The transition amplitudes of the four-nucleon
elastic and rearrangement scattering have been given
by these equations. Then, the nuclear reactions ini-
tiated with two incoming interacting deuterons have
been studied. If i denotes the initial channel, while f
stands for the final channel, then T; y denotes the
transition amplitudes for such reactions. Thus, the
differential cross sections for the scattering and for
the rearrangement nuclear reactions are given as

+)
X,X

I
X

J

~XXX/X)

—
/
TJ(k, k')

/

III. NUMERICAL CALCULATIONS
AND RESULTS

X

muumuu(

X,X )XDYD/lD

+)
X, X

t X

(b)

I
x ~ Y

owen

2. (a) Graphical representation of the
&+X~x'+N amplitude. (b) Graphical representation
of the driving term in the integral equation for the
X + t ~y'+X amplitude.

In the present work, the four-nucleon problem is
considered. In Sec. II, the four-nucleon amplitudes
and integral equations were given for the case of
elastic and rearrangement scattering between (in-
coming) two interacting deuterons. The four-
nucleon amplitudes are given with inputs of the two-
and three-body amplitudes. To calculate the four-
body amplitudes, the coupling constants and vertex
functions of the two- and three-body amplitudes
have to be defined. These have been given by Eqs.
(l), (2), and (4). These renorrrLalized parameters of
the interactions are calculated and deterinined in
such a way so as to fit the most important observ-
ables of the two- and three-nucleon systems. Dif-
ferent observables are considered, especially the
binding energies of these systems. The binding ener-
gy of the deuteron e~ is taken as 2.225 MeV, while
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TABLE I. The three-body T matrix parameters.

1X=— Y=—
2 2

Nd

t'
3 1X=— Y=—
2 2

Xd

gll

1 3X=— Y=—
72 2

P) (fm ')

p2 (fm ')

p3 (fm ')
A, (A, =fm ")

e, (MeV)

1.953
1.891
3.612

1156.478

0.795
2.219
2.643

—228.657
8.48
0.0

0.269
1.837
2.716

49.164

0.448
2.318
2.384

18.26

we consider for the triton binding energy e, a value
of 8.48 MeV. In Eq. (4), the vertex functions g&y(k)
are chosen by Alt, Grassberger, and Sandhas to
have the same momentum dependence as the exact
three-body functions. In their work, Alt et al. in-
troduced, with reasonable accuracy, a representation
for these vertex functions in the case of E & —e~ as

g (k;E)= j [k'+P, '(E)][k'+P,'(E)]

x [k'+ p3'(E)] j

where the parameters P~, P2, and P3 depend upon the
three-body center-of-mass energy E. Fonseca used
an expression similar to Eq. (9) but with P&, Pz, and
P3 being energy independent. For simplicity we also
use in the present calculations an expression similar
to Eq. (9) for the vertex functions g (k;E ), with the
parameters P&, P2, and P3 being energy independent.
Also, the coupling constants of the three-body sys-
tems are determined and calculated in such a way
that the N+d and N+P states contribute with
equal mixtures to the three-nucleon wave function.
This means that the approximations of the triplet
and singlet nucleon-nucleon interactions are con-
sidered' identical. Also, the rescattering continuum
of the triplet nucleon-nucleon interactions is con-
tained as well as the nucleon plus deuteron contribu-
tions. For the (D,D) case, the parameters are deter-
mined to fit the three-body bound-state energy. '

For cases (Q,D) and (D,Q), where there are no
three-body bound states, the parameters are deter-
mined to fit the vertex function at the two-body
scattering threshold E = —e~.

Numerical calculations have been carried out for
Eqs. (1), (2), and (4) to obtain the values of the cou-
pling constants A, and the vertex functions g(k).
The phase shifts are also numerically calculated.
From the comparison of the calculated phase shifts,
with recent phase shift analyses, the values of the
different parameters of the two-nucleon and three-
nucleon interactions are obtained. The different
values obtained for the different parameters are
given in Table I. These values are different from

but near the values obtained previously. The differ-
ences exist because we include in the present calcula-
tions the p-wave amplitudes as well as the simul-
taneous exchange of two nucleons between the two
incoming interacting deuterons.

The differential cross sections of the rearrange-
ment scattering between two incoming deuterons are
calculated. Numerical calculations of the cross sec-
tions of the rearrangement processes d +d~ H+p
and d+d~ He+n are carried out using the two-
and three-body interaction parameters in Table I, for
different deuteron laboratory energies between 6.1

and 51.5 MeV. The present theoretically calculated
values of the angular distributions are shown in
Figs. 3—5. In the same figures the experimental
measurements' ' are introduced. Also, the dif-
ferential cross sections of the elastic scattering be-
tween two incoming deuterons have been calculated
theoretically using the equations given in Sec. II.
The calculated angular distributions as well as the
experimental measurements' are given in Fig. 6.
For the purpose of comparison with other previous
calculations, we introduced in Figs. 3—6 the dif-
ferential cross sections without the p-wave three-
body amplitudes. Neglect of the p-wave three-body
amplitudes and the simultaneous exchange of two
nucleons between the two incoming interacting
deuterons had been suggested previously by Fonse-
ca. Theoretical calculations not including these two
effects are performed for the present reactions and
are shown by the dashed curves in Figs. 3—6. The
present theoretical calculations of the angular distri-
butions for the present reactions, including both of
the p-wave three-body amplitudes as well as the
simultaneous exchange of two nucleons between the
two incoming interacting deuterons, are shown in
Figs. 3—6 by the solid curves. Theoretical calcula-
tions of the differential cross sections including
these two effects (solid curves), are closer to the ex-
perimental data than that calculation neglecting
these two effects (dashed curves). Thus from Figs.
3—6, we see that the present theoretically calculated
differential cross sections including the p-wave
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FIG. 3. The angular distributions of the d +d ~ H+p
reactions at different deuteron laboratory energies. The
solid curves are our present calculations including the p-
wave three-body amplitudes and the simultaneous two nu-
cleon exchange between the two deuterons. The dashed
curves are the calculations without these effects. The
three-body T matrix parameters are given in Table I. The
points are the experimental data and are taken from Ref.
14.

FIG. 4. The angular distributions of the
d+d~'He+n reactions at deuteron laboratory energy
23.0 MeV. The solid curve is our present calculations in-
cluding the p-wave three-body amphtudes and the simul-
taneous two nucleon exchange between the two deuterons.
The dashed curves are the calculations without these ef-
fects. The three-body T matrix parameters are given in
Table I. The points are the experimental data and are
taken from Ref. 15.

three-body amplitudes and also the simultaneous ex-
change of two nucleons between the two incoming
interacting deuterons reasonably reproduce the
shape and the magnitude of the experimentally mea-
sured values. Fitting the calculated angular distri-
butions to the experimental data, the extracted
values of the spectroscopic and normalization fac-
tors of these reactions are obtained. The extracted
values of the spectroscopic and normalization fac-
tors for all the considered reactions are given in
Table II.

IV. DISCUSSION AND CONCLUSIGNS

In the present work, the four-body matrix ele-
ments and integral equations are introduced. These
equations are particularly useful in studying the
four-nucleon system of elastic and rearrangement
scattering for two incoming interacting deuterons.
We are interested here in such reactions. The
present integral equations have been applied and nu-

merical calculations of the differential cross sections
have been computed. The four-body matrix ele-
ments are given in such a way so as to include the
two- and three-body scattering processes. The two-
and three-body scattering go through intermediate
quasiparticles. The parameters of such two- and
three-body interactions are obtained by fitting the
two-and three-nucleon experimentally observed
properties such as the binding energies and phase
shifts. In the present calculations, the one plus three
and two plus two subamplitudes are treated and tak-
en into account. These subamplitudes are treated
here and represented by a one separable terin, which
differs from previous considerations' ' of the
subamplitudes which introduced a complete separ-
able expansion of these subamplitudes. The p-wave
three-body amplitudes are included in the present
calculations. Moreover, the simultaneous exchange
of two nucleons between the two incoming interact-
ing deuterons has been taken into account. Calcula-
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3d+ d ~ He+0

E = 51.5 MeV
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d+d ~ d+d
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FIG. 5. The angular distributions of the
d+d~ He+n reactions at deuteron laboratory energy
51.5 MeV. The solid curve is our present calculations in-
cluding the p-wave three-body amplitudes and the simul-
taneous two nucleon exchange between the two deuterons.
The dashed curves are the calculations without these ef-
fects. The three-body T matrix parameters are given in
Table I. The points are the experimental data and are
taken from Ref. 16.

8, (d.g)

FIG. 6. The differential cross sections of the
d +d ~d +d elastic scattering reactions at different
deuteron laboratory energies. The solid curves are our
present calculations including the p-wave three-body am-
plitudes and the simultaneous two nucleon exchange be-
tween the two deuterons. The dashed curves are the cal-
culations without these effects. The three-body T matrix
parameters are given in Table I. The points are the exper-
imental data and are taken from Ref. 17.

tions without these effects are shown by the solid
curve. Thus, we see that by including the p-wave
three-body amplitudes and taking into account the
simultaneous exchange of two nucleons between the
two incoming interacting deuterons have two clear
features. These features in the differential cross sec-
tions are seen by comparing the solid and dashed
curves with the experimental measurements. From
Figs. 3—5, it is seen that including these effects
(solid curves) produces the peaks, the minima, and
the maxima of the experimental angular distribu-
tions which had not appeared in other theoretical
calculations which neglected these effects (dashed
curves). Also, and as another feature, the magni-
tudes of the differential cross sections calculated by
including these effects (solid curves) are raised and
are closer to that of the experimental data than
those obtained for calculations done without these
effects (dashed curves).

From Figs. 3—6, we see that the present calcula-

TABLE II. Extracted spectroscopic and normalization
factors.

Nuclear
reaction

H(d, p)'H

H(d, n)'He

~H(d, d) H

Incident
energy
(MeV)

6.1

8.1

23.0
51.5
6.1

8.1

Spectroscopic and
normalization factors

1.0128
1.2694
1.1246
1.0839
1.2165
1.2843

tions including the p-wave three-body amplitudes
and also the simultaneous exchange of two nucleons
between the two incoming interacting deuterons
display the main features of the experimental angu-
lar distributions. Our present calculations also
reproduce the values of the measured cross sections.
Also, a glance at Table II shows that the extracted
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spectroscopic and normalization factors have
reasonable values. Thus, we can conclude that the
present calculations reproduce the experimental dif-
ferential cross sections in both shape and magnitude.
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