
PHYSICAL REVIEW C VOLUME 27, NUMBER 3 MARCH 1983

Test of three-body separable pole expansions at negative and positive energies
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We compare the performance of separable pole expansions for the three-body amplitude
in reproducing three-body data at both negative and positive energies. In addition to the
generalized unitary pole expansion and the energy dependent pole expansion, we present re-
sults for two new expansions. As benchmarks for our calculations, we use the three-boson

results of Aaron, Amado, and Yam. At negative energies, we give off-shell scattering am-

plitudes and investigate how well the expansions are capable of generating the second bound

state of the three-boson problem, if the first is put explicitly into the expansions. At positive
energies, we calculate phase shifts and inelasticities. We find that the convergence proper-
ties of the expansions investigated change rather markedly above the three-particle breakup
threshold and only one of the four expansions is capable of reproducing the data in this en-

ergy region. In general, the results get better the more energy dependence is explicitly con-
tained in the expansion functions. The relevance of these findings for four-body calcula-

tions, which employ separable three-body input, is discussed briefly.

NUCLEAR REACTIONS Calculations of three-boson bound state and

scattering data with separable expansions. Comparison of generalized

unitary pole expansion, energy dependent pole expansion, and two new

expansions.

I. INTRODUCTION

The usefulness of separable approximations of the
three-body amplitude is largely due to the fact that,
when used as input in four-body calculations, they
allow one to reduce the four-body problem to an ef-
fective two-body problem and thus render it
manageable numerically. ' The advantage of exact
expansion schemes over separable approximations
introduced by other, more phenom enologically
motivated means is evident: Exact expansion
schemes allow one to improve the approximations in
a systematic way, thereby making it possible to de-
fine criteria for the convergence of the numerical re-

sults.
Although it ought to be quite clear that the final

judgment on the applicability of a three-body separ-
able expansion in the four-body problem can only be
passed if one actually does a four-body calculation,
one can nevertheless gain some insight into the qual-
ity of such expansions by investigating their perfor-
mance in reproducing three-body data before one
undertakes costly and time-consuming four-body
calculations. This is the attitude adopted in the
present paper. The expansions to be investigated are

the energy dependent pole expansion (EDPE) of
Sofianos et al. and the generalized unitary pole ex-
pansion (GUPE) of Casel et a/. Furthermore, we
introduce in Sec. II two new expansions with certain
features which, in the course of the investigation, we
found desirable for fast convergence. The EDPE
and the GUPE have both already been used success-
fully in four-body binding energy calculations and
were found to produce reliable results. As stated
previously, here we want to find out how well they
do in reproducing three-body data at negative and
positive energies.

Both EDPE and GUPE expansions of the three-

body transition amplitude, as well as the two new

expansions derived in Sec. II, have the property that,
if one three-body bound state exists, they allow the
corresponding pole in the amplitude to be put into
the expansions explicitly. However, if more than
one bound state exist, still only one pole can be ex-
plicitly included. Hence, the first question to which
we address ourselves in the present paper is whether
the expansions are capable of generating the other
poles with a reasonable number of terms in the ex-
pansion series. This property is of particular
relevance for the four-body problem since it is often
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argued that it is the pale dominance of the three-
body subsystem amplitudes that governs the effect
of these amplitudes in four-body calculations.

Next, we investigate the performance of the ex-
pansions in reproducing three-body scattering data.
In particular, we are interested in the off-shell
scattering amplitudes, at various energies, and in
phase shifts and inelasticity parameters for s and p
waves. From the four-body point of view, these
findings become relevant if one thinks of extending
existing scattering calculations ' to the energy re-
gion abave the breakup threshold. Sa far, calcula-
tions in this energy region have only been done with
simple pole approximations ' ' but never with a full
expansion series. The existing calculations employ-
ing expansion methods are restricted to energies
below the breakup threshold. Our results for the
phase shifts and inelasticity parameters indicate
that, at positive energies, the performance of the
separable expansions on the three-body level is
drastically different from what one is used to at neg-
ative energies. However, whether this behavior leads
to corresponding effects on the four-body level re-

quires further investigations.
The exact three-body model, which we use as a

benchmark for our calculations, is the one of Aaron,
Amado, and Yarn. The treatment of the three-

boson case by these authors is based on the nonrela-
tivistic field-theoretical three-body model of Ama-
do. ' As is well known, this model is identical to
the exact three-body theory by Alt, Grassberger, and
Sandhas (AGS) (Ref. 11) for the special case of sep-
arable two-body interactions. Hence, the AGS
four-body theory' may be thought of as being the
one in which the three-body result of Aaron, Ama-
do, and Yam could be used as input (for a field-
theoretical four-body model, see Ref. 6, and for its
relation to the AGS theory, see Ref. 12).

This paper is organized as follows: In Sec. II, we
introduce the GUPE, the EDPE, and the two new
expansions. We assume that the reader is familiar
with the details of the three-body problem and give
all derivations only in a shorthand matrix notation.
The results of our calculations are presented in Sec.
III. Conclusions are given in Sec. IV. In order to
avoid the singularities on the positive real axis, we
used the method of contour rotation. Our choice for
the path of integratian, which is different from the
one usually employed, ' is explained in the Appen-
dix. There we also give the explicit expression for
the evaluation of the partial wave projected expan-
sion functions.

II. EXPANSIONS

of Ref. 4 and use a shorthand matrix notation. In
this matrix notation (its details can be found, e.g., in
Refs. 1 and 4; they will not be recapitulated here),
the three-body equation by Alt, Grassberger, and
Sandhas" (AGS) takes the form of a two-body
Lippmann-Schwinger (LS) equation:

a (z) =P (z)+ P (z)S,(z)~ (z) . (2.1)

—(I "(8)
l $0(8)

l
I "(8))=5„„, (2.3)

it may be shown that the following very convenient
unit operator expansions hold true,

(2.4)

yo(8) I
r "(8)&(I "(8)

l (2.5)

The generalized unitary pole expansion (GUPE)
of Ref. 4 is now immediately obtained upon multi-
plying Eq. (2.1) by (2.4) from the left and by (2.5)
from the right, viz. ,

For simplicity, we assume that the basic two-body
forces are separable and act in s waves only (cf. Sec.
III). It is well known that, for this special case, the
three-body AGS equation is identical to the equation
obtained by Amado' in a field-theoretical model.
Hence, we may use the results of the latter model
for comparison. [For the momentum space matrix
elements of the effective potential F'(z) and the ef-
fective free Green's function Ã0(z) for this special
case, see Eqs. (2.20) and (2.18), respectively. ]

All the expansions used here are based on Sturmi-
an functions (for other possibilities, see, e.g., Ref.
14). The Sturmian functions

l
I "(8)) are given as

solutions of the LS kernel eigenvalue equation

~(8)&0(8)
l
r"(8)& =g„(8)

l
r"(8)& . (2.2)

In principle, the fixed energy 8 may be any energy
below the two-body threshold. In practice, however,
if a bound state exists, 8 is usually chosen to be
equal to the corresponding binding energy, the
reason being that with this choice any of the follow-
ing separable expansions for the transition operator
W(z) will reproduce the pole of W(z) at this bound
state within only a single term. (For a detailed in-
vestigation of the pole behavior of transition opera-
tors, see Ref. 4.) An interesting question in this con-
text is which choice is to be favored if more than
one bound state exist. This will be one of the ques-
tions dealt with in this paper.

Normalizing the
l
I "(8)) of Eq. (2.2) according

to

For the derivation of the separable expansions em-

ployed in the present paper, we follow the approach
W(z)= g l

I "(8))r,„(B;z)(1"(8)l, (2.6)
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with the prepagator

((r '(B;z) j„„=[A '(B;z)j„„
—(I'(B)

~
&o(z)

~

I "(B)&, (2.7)

where

A„„(B; )=(I'"(B)
~
&o(B)~( )&o(B)

~

I "(B)& .
(2.g)

From the representation (2.6), we get the energy-
dependent pole expansion (EDPE) of Sofianos
et al. 3 by rewriting it with the help of Eqs. (2.4) and
(2.5) to yield

~ (z) = g ~

I "(B;z)&r,„(B;z)(l."(B;z)~,
V,P

(2.9)
with the EDPE propagator

({r '(B;z) j „„=A„„(B;z)
—(I "(B;z)

~

9' (z)
~

I ('(B;z)&,
(2.10)

where we have used the abbreviation

~

I (B;z)&=&(z)9' (B}
~

r"(B)& . (2.11)

Both of these expansions have already been used to
represent the three-body off-shell input in four-body
binding energy calculations with good to very good
results. As explained in the Introduction, here we
want to find out how good these expansions are in
reproducing certain three-body data at positive ener-
gies. From the results of Sec. III, it will become
clear that both expansions perform very poorly
above the three-body breakup threshold. We have
therefore investigated two more expansions.

The first (called SE1 in the following) of these
two new expansions is given by

~(z)= g ~

F"(B;z)&b,„„(B;z)(F"(B;z)~,
Vi JtC

(2.12)

with

j 5
—'(B;z)j,„=& I'(B)

~

9'(~)(z)1"(z)Ão(z)
(
I "(B)&

—&F"(B;z)
~
&o(z)

~

+"(B;z)&,

where

~

+"(B;z)&
= ~(z)&Q(z)

~

I'"(B)
& .

The second expansion (called SE2) reads

w (z) = g ~

F'(B;z)&b„„(B;z)(F"(B;z)~,

(2.13)

{2.14)

(2.15)

with

[~-'(B;.) j„„=«"(B;.)
~
;(. )~(.), '(.)

~

I "(B; )& —&~'(B; )
~

&o( ) ~~"(B; )& (2.16)

and the abbreviated notation

I
+"{B'z)& =~(z)&o(z)

~

I "(B'z)& (2 17)

Both of these new expansions can easily be verified

by repeated applications of the unit operator expan-
sions (2.4) and (2.5). As compared with the GUPE
(2.6), the expansion SE1 (2.12) is obtained by pulling

out factors of P"(z)3'0(z) and Ã0(z}F (z) explicitly
to the left and right, respectively. [By 9'0(z), we

denote the principle value part of 9'0(z); see the fol-
lowing. ] The same is true for the EDPE {2.9) and
SE2 (2.15).

In principle, we could have pulled out explicitly
the full LS kernel &(z)9'0(z) instead of just
P (z)9'0(z). Let us briefly explain why we have not

done so. To this end, we note (see also Ref. 4) that
the effective free Green's function $0(z) is essential-

ly given by the two-body propagator t(s}, i.e., in

momentum space we have

(q '
~
&0(z)

~ q & =&(q ' —q)t(z ——,q'), (2.18)

with

f i{s) g—i J dpp2Jg p
0 S —P

(2.19)

Taken together appropriately, both of these latter

where g (p) is the two-body form factor of the separ-
able two-body potential V=

~
g&A, (g ~. In the

three-body Hilbert space, t(s} gives rise to the two-

body cut starting at z =Ed (Eq is the deuteron bind-
ing en«gy). Furthermore, due to the integral in Eq.
(2.19), t(s) also contributes to the three-body break-

up cut starting at z =0. This, however, is not the
only contribution to this cut; there is also a contri-
bution from ]he effective potential

z —q —q' —q q'

(2.20)
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contributions are required to provide the correct uni-
tarity relation. However, any separable approxima-
tion of a(z) automatically implies via Eq. (2.1) a
corresponding approximation of P (z) also (and vice
versa). As a consequence, the contributions to the
free cut from (2.18) and from the separable approxi
mation of (2.20) will in general not add up appropri-
ately to yield the correct unitarity relation above the
breakup threshold. Elastic unitarity, on the other
hand, is already given correctly via one factor of
9'0(z) in all of the propagators above. Any other
factor of So(z) would lead to a violation of elastic
unitarity. We therefore have taken P (z)So(z) in-

stead of P (z)$0(z), because 9'0(z) is free of cuts,
and we have thus preserved the exact unitarity rela-
tion below the three-particle threshold not only for
the GUPE and the EDPE, but also for the new ex-
pansions (2.12) and (2.15).

III. RESULTS

As described in the Introduction, the aim of this
paper is to study how the EDPE and the GUPE, as
well as the two new expansions SE1 and SE2
developed in Sec. II, reproduce three-body data at
both positive and negative energies. For this pur-
pose, we choose a system of three identical spinless
bosons interacting via s-wave separable potentials
with Yamaguchi form factors g(p)=(p +P )

with a range parameter P=1.408 fm '. The cou-
pling strength of the potential is taken such that the
two-body binding energy is equal to the deuteron
binding energy Ed ———2.226 MeV. This model
three-body problem was first studied by Aaron,
Amado, and Yam; it was chosen here because it is
both simple to solve numerically and sufficiently
rich to provide a good test for the separable expan-
sions introduced in Sec. II.

The exact results for the model three-body prob-
lem are obtained by solving the integral equation
(2.1) in each partial wave l. by inversion. These are
then compared with the corresponding results calcu-
lated from finite rank versions of the four expan-
sions derived in the preceding section. [In the fol-
lowing, we mean by an ¹erm expansion that all
eigenfunctions of Eq. (2.2) (for its explicit, partial
wave decomposed form, see the Appendix), corre-
sponding to the first E eigenvalues in decreasing or-
der of magnitude, are taken into account in the dou-
ble sums of Eqs. (2.6), (2.9), (2.12), and (2.15).] The
presentation of this comparison is given separately
for three-body energies E below and above the two-
body threshold at E =Ed.

A. E &Ed

In the s wave the model problem has two three-
body bound states, at Ei ———24.84 MeV and at

E2 ———2.373 MeV, and, correspondingly, the exact t
matrix acquires two poles at E=E~ and E=E2.
An interesting and important question is now how
the separable approximations investigated here are
able to reproduce both poles.

Clearly, in those three-body problems where only
one bound state exists, choosing the energy parame-
ter B in Eq. (2.2) equal to the binding energy, au-
tomatically guarantees, by construction, that the
corresponding pole of the t matrix is already repro-
duced exactly in the X=1 approximation. In the
model three-boson case considered here, the same is
true for the pole at the ground state energy E~, if we
choose B =E]. In this latter case, the largest eigen-
value in Eq. (2.2) is just the one pertaining to this
ground state E& and hence the respective first separ-
able term in all four expansions contains the ground
state pole explicitly. In the first two columns of
Table I, we have listed the values E2 at which, if at
all, the EDPE and the GUPE exhibit a second pole.
[It should be noted that this second pole will not be
contained explicitly in any of the separable terms of
the expansions, but must be generated by all eigen-
functions via the inversion of the propagator ma-
trices (2.7) and (2.10).] For a maximum number of
six terms, we have found no second pole in the
GUPE. The situation is better for the EDPE, where
a pole is generated with four terms. However, one
needs six terms to come close to the true excited
state at E2.

For the other possibility B =E2, the last two
columns of Table I give the values F.

&
at which the

ground state pole is found. Again, similar to the
previous choice, the pole of the excited state E2 is
contained explicitly in the expansions due to the fact
that B =E2. Now, however, this pole appears only
for N =2 because the N =1 terms of the separable
expansions are based on the eigenfunction of the
ground state E], but evaluated at B =E2, where its

B =Ei = —24. 84
E2 E2

(EDPE) (GUPE)

B =E,= —2.373
Ei E)

(EDPE) (GUPE)

—2.228
—2.314

—18.23*
—24.75
—24.84
—24.84

—9.68*
—23.31
—24.83
—24.84

TABLE I. Position of the second bound state pole,
generated by the EDPE and the GUPE, as a function of
the number of terms N in the expansions. The first bound
state pole is built in explicitly at E=B. For N =1 and
B = —2.373 MeV, the values with an asterisk give the po-
sition of the only pole in this case (cf. Sec. III). All values
are in MeV.
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eigenvalue is larger than the one belonging to the ex-
cited state E2 (which is unity at 8 =E2, of course).
This latter fact, namely that the eigenfunction of the
ground state has an eigenvalue larger than unity at
B =E2, implies that the one-term approximations
must already have a pole at an energy E& (B=E2
(see the respective first value of the last two columns
of Table I). The next term to be added is based on
the eigenfunction of the excited state at its binding
energy E2 and hence, as stated previously, contains
the corresponding pole by construction. Its effect
on the other pole at E'& is only to shift it closer to
the true value E&. Additional expansion terms fur-
ther improve the values of EI, but we see from
Table I that the two-term approximations already
yield reasonable results; this is particularly true for
the EDPE.

In Table II, we show the corresponding results ob-
tained with the new expansions SE1 and SE2. Com-
paring with the findings listed in Table I, we observe
that, in general, fewer terms are needed in order to
reproduce the positions of all bound state poles.
Note, in particular, the great accuracy with which
one is able to generate the ground state pole for the
choice B =E2 and N =2.

Next, in Figs. 1 and 2, we show the off-shell s-
wave scattering amplitude fo(E;q, Q) as a function
of momentum q for different parametric values of
energy E and off-shell momentum Q. In general, we
find that the choice 8 =E2 provides better results
over a wider energy range than the choice B=Ei.
Furthermore, the EDPE, for N =2, is a better ap-
proximation than the GUPE for the same N. With
increasing N (and 8 =E2), the difference between
EDPE and GUPE decreases, and for N =6 both ex-
pansions practically coincide with the exact result.
For the choice B =E&, both EDPE and GUPE are
similar in quality as long as E (E&, but differ sub-
stantially as E approaches E2, where the EDPE con-
verges faster. Since four-boson bound states occur
at energies below the three-boson bound state Ei,
these results seem to indicate that both EDPE and
GUPE are good representations of the three-body
input for four-body calculations and that in this case
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B=-2.373 MeV

C9z
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cn 80

40
V)

I

o
C)

n

Exact

-12

the choice B =Ei should be used for better conver-
gence.

Similar calculations performed with SE1 and SE2
have not been shown; they coincide with the exact
results already for N =2; with 8 =E2 being the
better choice.

FIG. 1. 5-wave off-shell scattering amplitude

fo(E;q, Q), for Q =0 fm ', and various negative energies

E, versus off-shell momentum q. The solid lines represent
the exact results of Ref. 9. For two different expansion
energies B and various numbers of terms in the separable
approximations as indicated, the long-dashed and the
dashed-dotted lines are EDPE results while the short-
dashed and dashed-double-dotted lines are GUPE results.

B =Ei ———24. 84
E2

(SE2) (SE1)

B =E2 ———2.373
E,

(SE2) (SE1)

—2.290
—2.370 —2.350

—24.43*
—24.84
—24.84

—22.83*
—24.82
—24.84

TABLE II. Same as Table I but for the new expansions
SE1 and SE2.

B. E &Eg

In the scattering region, we make use of the con-
tour rotation method to evaluate the on-shell t ma-
trix for elastic scattering. The path of integration in
the momentum variables used in the calculation of
the propagator matrix elements (2.7), (2.10), (2.13),
and (2.16) is explained in the Appendix; it is dif-
ferent from the one which is usually employed. '

In Fig. 3, we show the real part of the I, =0 elas-
tic phase shifts 50 and the inelasticity parameter
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FIG. 2. Same as Fig. 1 with Q =2 fm

gp ——exp[ —2 Im(5p) ]

for both the EDPE and the GUPE for different N,
and B=Ez, as a function of the laboratory energy.
The exact result of Ref. 9 is also given for compar-
ison. We find that both expansions converge to the
exact result below the three-body breakup threshold
but behave poorly above, where the inelasticity
parameter g0 takes on values even greater than uni-

ty. This latter fact indicates that, even with as
many as six terms, three-particle unitarity is satis-
fied neither by the EDPE nor the GUPE. In view
of these findings, we have looked for more powerful
expansion methods and come up with the expan-
sions denoted SE1 and SE2 in Sec. II. In Fig. 4, we
have plotted the real part of 5p and rip for these new

expansions. We find that, while both give better re-
sults than GUPE or EDPE, only the expansion SE2
is able to reproduce the exact results with great ac-
curacy: Although go may be greater than unity for
small N, one recovers the exact three-body result
when six terms are included in SE2.

In Fig. 5, we show the results of a similar calcula-
tion for I.= l. (Since there is no bound state in this
partial wave, we have chosen B =Ed. } Again, the
SE2 t matrix with N =6 is a good approximation,

5.0—
4.0—
3.0

2.0—
"0 10

.8—

.6—
4

.2
~/

p i & il i I

0 5 10 15
E, b(MeV)

FIG. 3. Real part of the L =0 elastic phase shift 5p
and inelasticity parameter gp versus laboratory energy,
for the EDPE and the GUPE. The number on each curve
gives the number of terms N used in the expansions.

while the EDPE (and also the GUPE, which is not
shown) behaves poorly above the breakup threshold.

We have not plotted any results for the other pos-
sible choice of B in the s wave, namely B =E&. We
only note that, in general, the convergence is worse
than with the choice B =E2.

IV. CONCLUSION

Comparing the GUPE form factors
~

I "(B)) with
the form factors

~

I "(B;z}) of the EDPE [Eq,
(2.11)], ~Ii "(B;z)) of the SE1 [Eq. (2.14}], and

~

F"(B;z)) of the SE2 [Eq. (2.17)], we see that, in a
systematic way, the latter have more energy depen-
dence than the former. The calculations presented
here indicate that, in general, the results become in-
creasingly better the more explicit energy depen-
dence is contained in the form factors of the expan-
sions. Hence, for the purpose investigated here,
namely to reproduce three-body data at positive and
negative energies, expansion SE2 is the best of all
four expansions. It is the only one that does not fail
above the threshold for three-body breakup. Below
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(although, of course, this requires numerical tests).
However, since the environment in which the three-
body amplitude appears in four-body calculations is
different (i.e., the three-body amplitude never occurs
alone but is always being integrated over within the

I

kernel of the four-body equations), it may be that
the expansion SE2 actually is too complicated and
that one of the less complicated expansions will do
equally well with less numerical effort.

APPENDIX

Equation (2.2) takes in each partial wave L the form (in units of 8=m = 1)

f dk'k' P (8;k,k')t(B ——,k' )I "(8;k')=ri "(B}I'"(8;k),
where the partial wave projection of the effective potential (2.20) is given by

P L(B;k,k')= —, f Pt(x) dx,
+1 g(q)g(q')

a —k' —k' —kk'&

(A 1)

(A2)

with

q =( —,k +k' +kk'x)'

q'=( —,k' +k +kk'x)'~;
(A3)

In order to evaluate the matrix elements in Eqs.
(2.7), (2.10), (2.13}, and (2.16) above threshold, one
needs to perform momentum variable integrations
over the singularities of So and F . This is easily
done if one deforms the path of integration away
from the singularities into the fourth quadrant of
the complex momentum plane. To this end, one has
to know the form factors I I (8;k) for complex k.
This analytic continuation is achieved numerically

the Pt (x) is the Legendre polynomial of order L.
With the explicit expression for the coupling
strength A, , the two-body propagator (2.19) may be
rewritten as

t (s) =(s Ed ) dP—P
—1 2 lgV» I

'
(Ed —p')(s —p')

(A4)

I

by employing Eq (A.l) as a defining equation for
comp/ex k with k' being real. The necessary input,
namely I t (8;k') with real k', is obtained by first
solving Eq. (Al) as an integral equation for real k'
and k. In this procedure, the only limitations on the
allowed complex values of k stem from the singular-
ities of P L (8;k,k') which depend on 8, k', and the
range p of the two-body Yamaguchi form factors
g(p)=(p +p ) '. In the fourth quadrant of the
complex k plane, the branch points of &L move
with k' according to

z((k') =2k' —i 2P,
z2(k') = , k' ip, —— (AS)

z3(8 'k'}=
z

k' —t —,& 148 —3k'
I

Since k' runs from zero to infinity in Eq. (Al), the
complex momentum k can only take on values in
the hatched region shown in Fig. 6. Our final
choice of path of integration for the evaluation of
the propagator matrix elements is given by the
dashed line [k&&

——[—,(E Ed}]' is the—elastic on-
shell momentum].
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