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We investigate breakup effects in a three-body model of deuteron elastic scattering and

stripping reactions for a variety of potential parameters, bombarding energies, and momen-

turn matching conditions. The investigation is based on the adiabatic approximation with

relative angular momentum l =0. We test this approximation by comparisons with several

available coupled-channel calculations. The adiabatic wave function is divided into elastic

and breakup parts, whose contributions to stripping are discussed separately. Breakup is

seen to be primarily an effect of the nuclear interior. Elastic scattering is discussed by fit-

ting a local equivalent potential to the elastic part of the wave function. This potential

shows several characteristic features which are fairly stable with respect to the potential

parameters and bombarding energies. The validity and limitations of the adiabatic approxi-
mation are examined. The approximation is seen to be fairly good for elastic scattering, but

of only marginal value for stripping reactions. Possible improvements of the adiabatic ap-

proximation are discussed.

NUCLEAR REACTIONS Adiabatic approximation, coupled-channel

calculations, folding model, three-body wave function, local equivalent

potential, deuteron stripping reactions.

I. INTRODUCTION

The large, loose structure of the deuteron easily
leads to a three-body picture of deuteron-nucleus
collisions, in which the relative motion of the in-
cident proton and neutron is affected by their in-

teractions with the target nucleus. This contrasts
with the model wave function used in DWBA calcu-
lations, in which the proton-neutron relative motion
is taken to be that of an unmodified deuteron. Cer-
tainly the interactions cause some excitation or
"breakup" of the incident deuteron. It is of great in-

terest to assess the modifications of DWBA calcula-
tions that are caused by such excitation effects.

Several truncated coupled channel (CC) calcula-
tions have been constructed' which omit rear-
rangement from the three-body model and which in-

troduce discretized representations of the deuteron

breakup continuum. However, these calculations are
sufficiently lengthy so that it has not been possible
to obtain a general survey of breakup effects from
them, not even from the recent extensive work by
the Kyushu group.

The three-body model has also been evaluated by
adiabatic approximation, in which all the states of
the breakup continuum are taken to have the same
energy. This method allows fairly simple calcula-
tions from which useful results have already been
obtained. ' The present paper applies this simple

method to develop a brief survey of breakup effects.
Our calculation specializes to relative angular

momentum l =0 in the proton-neutron system, as in
some early CC work. ' Although at least l =2 is
also known to be important, ' ' we feel that a sur-
vey of breakup effects for the pure 1 =0 case is an
informative first step.

The CC and adiabatic methods are outlined in
Sec. II and numerical results from corresponding
calculations by these two methods are compared in
Sec. III. Some limitations of the adiabatic approxi-
mation are discussed there and again in later sec-
tions of the paper. The adiabatic method is rather
good for elastic scattering, which is discussed in Sec.
IV; useful generalities are found. The application to
stripping in Sec. V is less satisfactory because break-
up effects in stripping seem sensitive to the parame-
ters of particular reactions. Section VI is a sum-
mary and a brief report of possible improvements of
the adiabatic method.

II. THEORETICAL BACKGROUND

We consider the familiar three-body theoretical
model in which a proton and neutron move with
respect to a stationary target "nucleus, "according to
the Hamiltonian

H =T&+T„+U&(rz)+U„(r„)+ V(
~ r& —r„~ ) .

(2.1)
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Relative and center of mass coordinates are intro-
duced,

with

[T„+V(r)]P(k, r) =(A' k /M)P(k, r), (2.8)
r=rp r„p R= —,(rp+r„), (2.2)

and the model is truncated to relative angular
momentum l =0, as in previous work. Thus the re-
duced three-body model we study is

[E—T„—U(r, R) T„—V(r—)]g(r,R)=0, (2.3)

then it is plausible that the higher-energy terms of
the set (2.7) occur in f with low probability and
therefore the right hand side (RHS) of (2.5) tends to
be small.

In the adiabatic approximation we omit the RHS
of (2.5), to get

with [E—Tp —U(r, R} eq]P —(r, R)=0 . (2.9)

U(r, R)= f dnp[Up( ~R+ —,r
~

)

+U. ( IR——,r
I )] (24)

Solutions of Eq. (2.3}are obtained either in adiabatic
approximation or by an (essentially exact) coupled
channels method.

A. Adiabatic approximation

The model Schrodinger equation (2.3}is rewritten

[E Tz —U(r—,R) eq]g(r, R—)

=[T„+V(r) e~]g(r, R—), (2.5}

where

This is now an elastic scattering problem for the
coordinate R, in which r appears only as a parame-
ter. We solve this problem separately for each value
of r, using partial waves in the vector R and outgo-
ing wave boundary conditions. Evidently the r
dependence of g defines a rather complicated
wave packet composed of the states (2.7}. The r
dependence of the asymptotic wave function implies
a mixture of these states, having an unphysical mix-
ture of energies. Such a wave function cannot be
used at asymptotically large values of r.

In applications the incident wave part of P
contains a single relative state, say P~, which we em-
phasize by introducing a partially factored form

(r, R)=gg(r)X (r, R) . (2.10)

[T + V(r) N'd(") ~d'4(") (2.6) In this form it is understood that the incident wave
part of X is a normalized plane wave.

and P~(r) is the deuteron wave function. If we im-

agine f(r, R) to be expanded in the set of eigenstates

(2.7)
I

B. Coupled channels

In the CC method P is expanded immediately in
the set of eigenstates (2.7), to give

f(r, R)= g aLM [YLM (R)/rR]lpga(r)fL(R)+ f dkp(k, r)gL(k, R)I,
LML

(2.11)

in which ar,M are coefficients determined by the in-
L

cident plane wave part of P. The continuum in-

tegral is replaced by a finite sum over bins. Substi-
tution in the model Schrodinger equation (2.3) then
gives coupled equations for the undetermined func-
tions fL, (R), gL (k,R); these equations are solved by
straightforward numerical means. Use of outgoing
boundary conditions for fL, (R), gL(k, R) produces
appropriate asymptotic behavior for g(r, R), with
both the proton and neutron outgoing. Each term
of P(r, R} reduces asymptotically to the correct total
energy, independent of the value of k.

Solutions of the coupled equations are obtained in
Refs. 2 and 3 for the case E =22.9 MeV, with

I

and a=0.25 fm '. The Coulomb potential is not
included. Solutions are obtained a'gain in Ref. 10
with the imaginary part of (2.12) omitted. These
two sets of solutions are available for comparison
with corresponding adiabatic calculations.

C. Wave function at coincidence

It is of particular interest to examine f(r, R) at
the coordinate value r =0, both because the theoreti-
cal expressions simplify at r =0 and because r=0
tends to dominate stripping calculations. At r =0
the radial part of Eq. (2.11) takes the form

fr (R)+hL (R)=F1.(R), (2.13)

with

Up (rp ) = U„(rp )

= —(50 MeV)(1+O. li)e (2.12)

hl (R):—lim f dk [P(k,r)/P~(r)]gL (k,R) .
(2.14)
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in excellent agreement, and that hL and hL have
very similar behavior in the nuclear interior. Cer-
tainly hL and hL have approximately the same
magnitudes at small R.

%e conclude that the adiabatic method gives a
useful approximation to the more accurate CC re-
sults, except for the summed breakup function
hL(R) at large R, where relative phases matter.
Therefore it seems appropriate to apply the adiabat-
ic method under a variety of conditions, to assess
the importance of three-body effects in deuteron re-
actions. Of course, as we note again in Sec. V,
hL(R) in the nuclear exterior region is needed for
stripping.
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IV. ELASTIC SCATTERING R (fm)

Since the adiabatic and CC calculations of the
elastic wave function are in good agreement, we can
apply the adiabatic method with confidence to sur-
vey the infiuence of breakup on elastic scattering.
We discuss the elastic radial wave functions fL (R}
in terms of tri uially equiualent local optical potentials
that exactly fit these wave functions:

FIG. 2. Trivially equivalent local optical potential UL

(solid lines) and folding potential U "" (dotted lines) for
L =0 at E =22.9 MeV. FVA Gaussian potential {Ref.2)
with Vo ——50 MeV and 8'0 ——5 MeV are used for V~ and

~n

potential

UL (R)=[E ed ~L(R)lfP. ~fL

in which

(4.1)

U (R)—:U(O, R)=Up(R)+U„(R), (4.4)

fi d L(L+1)
4~ dR' R' (4.2)

Although such trivially equivalent potentials have a
pole at every zero of the wave function, in a calcula-
tion with complex potentials or with multichannel
coupling these poles are displaced into the complex
R plane and are not disturbing. [Even so, whenever
there is nonlocality in the derivation of a wave func-
tion, the associated UL tends to have some oscilla-
tions. These oscillations arise because nonlocality
displaces the zeros of the numerator in Eq. (4.1)
from those of the denominator; they provide an in-
dication of the range of nonlocality. ]

Our adiabatic calculations were performed at
three energies, E =10, 22.9, 80 MeV, using the FVA
Gaussian potential of Eq. (2.12), with three values of
the imaginary well depth, 8'0 ——0, 5, 10 MeV at each

energy. A typical Ul graph is shown in Fig. 2.
It is instructive to compare UL, with the

Watanabe folded potential

U ' (R)= f d rPd (r)U(r, R), (4.3)

as in Fig. 2, and with the elementary Johnson-Soper

that generates the entire adiabatic wave function
(r,R) at r =0. In our numerical calculations

the relations among these potentials are found to be
extremeley stable with respect to variations of E and
Wo. In summary, the comparisons show that: (1)

Ul and U " are essentially equal at large R, where
they decrease a little more slowly than U; (2} in the
nuclear interior the real part of UL for low partial
waves is approximately 5 MeV stronger than that of
U ",but it is about 10 MeV weaker than the real
part of U; (3) the imaginary part of UL for low
partial waves is about 10 MeV stronger than in the
other potentials; (4) for high partial waves, which do
not penetrate to the nuclear interior, we obtain
Ul —U . Thus the elastjc adiabatic calculation
provides several significant corrections to the simple
folding model of elastic scattering. Calculations
with Woods-Saxon potentials give similar results.

It is noteworthy that modifications due to break-
up seem to be localized in the nuclear interior, where
they cause increased attraction and increased ab-
sorption. The absorption is easy to understand. The
presence of breakup in the nuclear interior (indepen-
dent motion of the proton and neutron) implies loss
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of flux from the elastic projected part of g . As
to the real potential, retention of the nonelastic part
of g seems to avoid the averaging effect of Eq.
(4.3), which causes the Watanabe potential to be
weaker than the sum of short range potentials
Uz(R)+ U„(R). Subsequent projection on the elastic
channel gives a real potential that more nearly
resembles that of Eq. (4.4).' Another indication
that breakup tends to emphasize the nuclear interior
was seen in the previous CC work, ' where the total
CC radial wave function FL (R) at low L is a little
larger in the interior than the wave function from
the corresponding folded potential calculation. An
interesting speculation about these effects is that
breakup may tend to trap the separated particles in
the nuclear interior, as if a mini compound nucleus
were being formed.

20—

(0

—- —Folding

FAD

V. COINCIDENCE WAVE FUNCTIONS:
STRIPPING

Figure 1 shows a typical set of radial wave func-
tions fL(R), hL, (R), Fr, (R), which describe the
makeup of g(r, R) at r =0. It has already been
remarked that hq is misleading at large E., where
the absence of phase averaging prevents it from de-
creasing appropriately. It is now of interest to ex-
amine the radial wave functions in greater detail.
We recall that zero-range reaction calculations, as
for stripping, tend to be determined by Fl. (R), the
radial part of the total coincidence wave function
f(O, R). Since FI (R) contains hL(R), this breakup
function affects the stripping.

The properties of hL, (R) and hL, (R) can be clas-
sified both by radius —in which we distinguish re-
gions of R that are inside or outside the nucleus-
and by angular momentum L. Partial waves of low
L penetrate to the inside and are affected by all
parts of the interaction U(r, R). Partial waves of
high L do not penetrate and are only affected by the
long range tails of U(r, R).

We find that at low L the wave functions hl (R)
always have an abrupt change of shape at the nu-
clear surface, as if there were independent breakup
processes in the inside and outside regions which
meet and interfere at the surface. ' This effect is
also visible to some extent in the gI (k,R) channel
functions of the CC calculation; it is obscured by
phase averaging when hl. (R) is constructed. Both in
the adiabatic and CC calculations, in the inside re-
gion hL and hL oscillate in phase with the elastic
function fL, (R), however, in the outside region the
breakup functions have maxima where fL, (R) has
minima. The existence of distinct inside and outside

00 I

IO
I

l5
L

FIG. 3. Stripping amplitudes for Ca(d, p) 'Ca(d3/f)
at E =22.9 MeV as a function of deuteron center-of-mass
angular momentum L. The form factor of Ref. 2 is used,
with Q =4.4 MeV.

breakup processes is certainly related to the interfer-
ence minimum at the L =9 grazing angular momen-
tum, found in the FVA calculation.

We find that at low L the hL (R) are very sensitive
to the imaginary well depth 8'0. With an average
dimensionless elastic magnitude fL(R) at the nu-
clear surface of about 0.5, and with 8"p ——0, 5, 10
MeV, respectively, the corresponding breakup mag-
nitudes at the nuclear surface are found to be about
0.3, 0.1, 0.03. This sensitivity to Wp affects the in-
side and outside regions to about the same extent.
Of course absorption also affects the elastic wave
function. It is remarkable that for all values of Wp
and E, and also with Woods-Saxon single-particle
potentials, the magnitude of hL in the deep interior
remains approximately half that of fL

A possible explanation for the uniform influence
of 8'o throughout the inner and outer regions, and
for the constant ratio of hL to fL, is that breakup is
dominated by the interior. Therefore the entire
function br is generated from fL in the interior, and
the absorption that reduces fL in the interior affects
hL, to the same extent.

Breakup at high L is nearly independent of the
absorption. Moreover, although the large statistical
weights of high partial waves produce substantial
contributions to the breakup cross section, the asso-
ciated wave functions hI (R) are never large.

In applications to zero-range calculations of strip-
ping, we distinguish contributions from the elastic
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FIG. 4. Stripping cross sections for
Ca(d, p) 'Ca(d3/2) at E =22.9 MeV for various match-

ing conditions; case (a) Q =14.4 MeV, kd=1.49 fm
and k~=1.33 fm ', case (b) Q=4.4 MeV, kg=1.49
fm ', and kz ——l. 13 fm '; case (c) Q = —5.6 Me V,
k~ ——1.49 fm ', and kz ——0.90 fm

wave functions fr (R) and from the breakup wave
functions Itr, (R). The elastic contributions can be
understood in terms of the discussion of the fz" (R)
functions by means of equivalent potentials Ur in
Sec. IV, where it was found that breakup causes sig-
nificant changes from folding model calculations.
Figure 3 shows the resulting modifications of a typi-
cal stripping amplitude, obtained from the fr (R),
and Fig. 4(b) shows the associated modification of
the cross section. Evidently the modifications of the
elastic radial wave functions only affect the (d,p)
amplitude in low partial waves, and therefore they

do not change the cross section very much.
The specific contributions to the (d,p) amplitudes

from the breakup functions hr (R) are sensitive to
the matching between entrance channel and exit
channel momenta. We recall that in the accurate
CC calculation the hr (R) are small outside the nu-
cleus and they are expected to become especially
small if physically-plausible absorption strengths are
used. Since good momentum matching emphasizes
the exterior region, it ought to minimize effects
from the hr(R). Figure 3 shows an example in
which the hr (R) cause small but interesting modifi-
cations of the stripping amplitude at low L, which
help to enhance L localization of the (d,p) reaction.
Unfortunately the modifications due to hr, (R) do
not seem very systematic. In calculations with poor
momentum matching or with form factors that em-
phasize the interior, a considerable variety of effects
can be obtained. This effect of momentum match-
ing is illustrated in Fig. 4 by stripping calculations
with three different values of the exit channel ener-

gy.

VI. SUMMARY AND IMPROVEMENTS

Because our adiabatic calculations are limited to
relative I =0, the numerical results in this paper are
essentially qualitative. Other work' ' has already
shown the importance of l&0 states and especially
of states with I =2. Antisymmetrization is also sig-
nificant. On the other hand, the present work
should at least indicate what kind of results are
available from an adiabatic survey of three-body ef-
fects.

Comparison with CC calculations indicates that
the elastic projection of the adiabatic wave function,
onto an unmodified deuteron internal wave function,
is rather accurate. We studied the elastic adiabatic
radial wave functions fr (R) for individual partial
waves, in terms of the trivially-equivalent local po-
tentials Ur (R) that fit the fl. (R) exactly. Com-
parison with the corresponding folded potential for
elastic scattering indicates that for partial waves
that penetrate to the nuclear interior the Ur, differ
consistently from the folded potential in two
respects: (a) the imaginary part of Ur shows a sub-
stantial short range enhancement, because of flux
loss to breakup in the interior; and (b) the real part
of UL also has some short range enhancement, be-TE

cause breakup enables the particles to overlap better
with the individiual nuclear potentials U& and U„.
These enhancements seem independent of bombard-
ing energy and of the detailed properties of Uz and
U„. Long range three-body modifications of deute-
ron scattering'" are much weaker than the effects
just discussed, and they are not seen very distinctly
in U
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We also examined three-body effects in a zero-
range calculation of deuteron stripping. Such a cal-
culation depends on the summed radial wave func-
tions

FL (R)=f1.(R)+hL (R)

introduced in Sec. II C in which hL (R) are the none-
lastic parts of the three-body wave functions,
evaluated at r =0. In first approximation fr &phL,
therefore three-body effects in stripping are deter-
mined by properties of fL(R), already discussed in
the preceding paragraph. The breakup functions
hL(R) are only appreciable for low partial waves in
the deep nuclear interior, where their magnitudes are
about half those of the fL (R), whether the latter are
strongly or weakly absorbed. On the other hand, in
the nuclear surface region and the exterior the hL (R)
are weakened by absorption and phase averaging.
The adiabatic calculation gives a clear indication of
the absorptive weakening of the hr (R), but it loses
the phase averaging effect. We can conclude that
stripping reactions that have good matching of en-
trance and exit channel momenta, so that they are
dominated by large R, must be dominated by the
well-understood fI (R ) functions.

If momentum matching is not as good, or if the
stripping form factor forces large contributions
from the interior region, the hL, (R) can substantially
change the results for low partial waves. Unfor-
tunately, there does not appear to be a consistent
pattern in the changes that occur. It is also unfor-

I

tunate that the adiabatic approximation does not
seem adequate for an actual calculation of these ef-
fects of the hl. (R), because although it gives a
reasonable description of hL, (R } in the deep interior,
the lack of phase averaging confuses the competing
contributions from large R. The adiabatic calcula-
tion of the wave functions does tend to become more
accurate at higher bombarding energies, however,
this is not likely to improve the accuracy of adiabat-
ic (d,p) calculations, because as the bombarding en-

ergy increases the momentum transfer also in-
creases.

Another effect that has been discussed in adiabat-
ic approximation is the cross section for deuteron
breakup. The energy-integrated breakup cross sec-
tion is given accurately. " This is possible despite
the problems with the hL (R), because the phase er-
rors that affect the hL, (R) are not relevant to the in-
tegrated cross sections.

Finally, it is interesting to ask whether the simple
adiabatic approximation can be used as a starting
point for more accurate three-body calculations. A
principal failing of the adiabatic wave function

(r, R) is that it misrepresents the phase relations
among the different breakup components P(k, r} of
Eq. (2.11}. It is straightforward to remedy this de-
fect by resolving f (r, R) into components and
then giving each component a propagator with the
correct energy. The improved solution obtained by
this procedure is

(6.2)

(r, R) =Pd(r)(Pd(r'), f )+ f dk P(k, r)(E+ ek Tg ) —'(E—Eg T—~ )(P—( kr'), f ), (6.1)

in which the component (P(k, r'), g" ) is multiplied first by the inverse of the free propagator for the adiabatic
choice of relative energy eq, and then by the free propagator for the energy ek. Since these propagators com-
mute with P(k, r'), we can use Eq. (2.9) to get

f'~"(r,R)=P~(r)(gd(r'), tb )+ I dk P(k, r)(E+ —ek —Tx) (P(k, r'), U(r', R')f (r', R')) .

The elastic component of Eq. (6.2) is the same as
that of f, already known to be rather accurate.
Modifications develop gradually as ek increases, un-
til for ek ~E we obtain bound admixtures in P™,
where g has spurious outgoing waves. Thus the
properties of P' ~ seem very reasonable. Unfor-
tunately, Eq. (6.2) is not an easy expression to apply.
It requires three numerical integrations: over r',
over R' in the Green's function, and finally over k.
This is comparable in difficulty to a calculation by
the exact CC method in the first place.

The good physical properties of Eq. (6.2) are
understandable. Performing the k integration first
would produce the free three-body configuration
space Green's function. Thus Eq. (6.2) is a one-step

y(r, R) =yd(r)X(r, R) (6.3)

on the LHS. The differential equation for X(r,R)
then is

[E—e~ —Tg —U(r, R)]X=ST

with

(6.4)

I

iteration of Eq. (2.3), based on the zero-order solu-
tion 1( . The new properties of Eq. (6.2) are prop-
erties of the three-body Green's function. The corn. -
plication of Eq. (6.2) is also a property of the
Green's function.

In an attempt to find a simpler iterative approach,
we insert g on the RHS of Eq. (2.5) and use
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SX" —= — V 'X" — (r.V )I
M " M

in which

(6.5)

(6.6)

It would be convenient if Sg were a short-ranged
function of R, because Eq. (6.4) would then resemble
the original adiabatic equation (2.9), and it could be
solved in the same fashion. However, X remains
a function of r even for asymptotically large values
of R, therefore the RHS of Eq. (6.4) has infinite
range. As before, this long range correction term

expresses the incorrect asymptotic distribution of
energies in g" .

%e conclude that the adiabatic approximation is
not a helpful starting point for more accurate calcu-
lations. However, it is a simple source of useful in-
formation, as discussed in the remainder of this pa-
per.
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