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Nuclear binding energies from moment methods: Harmonic oscillator Hamiltonian
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Total binding energies for systems of X neutrons and Z protons near X=Z =8 are ob-

tained for the harmonic oscillator Hamiltonian via moment methods and are compared with

the exact results. %e examine the accuracy of employing only the few lowest moments of
the eigenvalue density to predict the ground state (g.s.) energy as a function of several in-

gredients in the method. %e find systematic errors are strongly dependent on the scheme

chosen for truncating the single particle space and rather weakly dependent on the size of
the model space in many cases of interest. Two functional forms approximating the exact

eigenvalue distribution, the Gram-Charlier series and the %eibull distribution, give results

of comparable accuracy in cases where three moments are employed. Best overall accuracy

is obtained using the traditional truncation scheme where all single particle states below a
fixed energy are retained. For this truncation scheme, the distribution of energy eigenvalues

is significantly skewed. However, the Gaussian approximation, which requires only the two

lowest moments, yields one of the better estimates of the g.s. energy. This is true for both

the total distribution of eigenvalues and for the distribution restricted to states of specific to-

tal angular momentum. The absolute error in the g.s. energy estimate is generally found to
grow with increasing model space size; however, most of the error is systematic, and the re-

lative binding energies of adjacent nuclei are found to be predicted with considerably greater

accuracy. Isolation of these systematic errors plus demonstration of small errors in relative

energies enhances the prospects for obtaining reliable total nuclear binding energies from

realistic (no-core) Hamiltonians using moment methods.

NUCLEAR STRUCTURE Binding energies from moment methods;

spectral properties of harmonic oscillator Hamiltonian; efficacy of mo-

ment methods versus truncation scheme and model space sizg.

I. INTRODUCTION

Spectral properties of nuclei have long been inves-
tigated in the shell model where an effective Hamil-
tonian is diagonalized in a finite model space. Ow-

ing to computer limitations, the dimensionality of
the many particle model space is limited to about
10 states. On the other hand, realistic Hamiltoni-
ans often display strong coupling to states outside
these limited model spaces. Furthermore, it is well

known that "intruder states, " i.e., states whose
parentage is primarily outside the model space, exist

already in the low-lying spectra of nuclei. These de-

ficiencies motivate the development and testing of
methods which can yield the spectral properties of
nuclei in much larger model spaces. One promising
approach is the moment method which begins with
the calculation of the moments of the eigenvalue
distribution function. ' Then, one generates a
smooth function with the same lowest moments as
the exact eigenvalue distribution and uses this func-
tion to study the spectral properties of nuclei. As an
example of the increase in model space size which

the moment method makes possible, we perform cal-
culations in this work for model spaces up to a
dimensionality of 10 many-body states.

Previous efforts5 7 have provided good evidence

that the methods work well in small model spaces
with realistic effective Hamiltonians where exact di-

agonalizations could be performed for comparison.
Our primary goal here is to test moment methods in

large model spaces. Such a test requires a soluble
Hamiltonian so that the exact energy spectrum may
be compared with the moment method estimate. In
addition the solution of the soluble problem should
mirror a large shell model diagonalization as closely
as is practical. In the present test we investigate the
accuracy of the moment method in predicting the

ground state (g.s.) energy of the harmonic oscillator
Hamiltonian. Although this soluble Hamiltonian
lacks the strong two-body interaction present in the
realistic case, the test problem is quite close in spirit
and detail to nuclear shell model calculations which
often employ harmonic oscillator eigenfunctions as
an expansion basis. Some of the model spaces and
other calculational ingredients studied here have
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been ' and will be employed in applications with
realistic Hamiltonians. With the present study we
identify some of the strengths and weaknesses of the
moment method which should characterize the ac-
curacy of large-basis realistic applications.

The organization of the paper is as follows. Sec-
tion II summarizes our notation and reviews the cal-
culational method. In Sec. III we describe the prop-
erties of the density of states (DOS} function for the
finite space treatment of the harmonic oscillator
Hamiltonian. Our main study of the error in the
Ratcliff estimate of the ground state energy is
presented in Sec. IV. There we examine the depen-
dence of absolute and relative errors on truncation
scheme, basis size, number of moments employed
(up to four}, and choice of the smooth approxima-
tion to the DOS function. Our principal investiga-
tions use moments of the tata/ DOS function to esti-
mate the g.s. energy. However, at the end of Sec.
IV we also apply the moment method to basis spaces
of fixed total angular momentum. We conclude in
Sec. V with a summary of our findings and their
.consequences for calculations with realistic nuclear
Hamiltonians.

II. BINDING ENERGIES FROM MOMENTS

We employ the soluble one-body harmonic oscilla-
tor Hamiltonian to describe states of A nucleons

with X neutrons and Z protons:

A =N+Z pk2
Hp= g ' +&mco ixki2'

=g(N + 2
}irupa a

a

where a~ and a~ represent the fermion creation and

destruction operators, respectively. Here a
1

represents a list of quantum numbers (n, l, s= —,,

j, mj, t= —,, t, ) specifying the number of radial

nodes, the orbital, spin and total angular momenta,
the angular momentum projection, the isospin, and

the isospin projection, respectively. The energy label

NN occurring in Eq. (1) is given by N~=2n+l. A
normalized, totally antisymmetric eigenstate of Hp
is written

where
i
0) is the vacuum, and where the ak and the

ak refer to neutron (t, = ——,} and proton (t, = —,}
states, respectively. In practice one requires that the
set of

i P; ) employed as an expansion basis be made
finite. Traditionally, this is accomplished by desig-

nating a finite number of the single-particle (sp)

states as "active,"and then restricting the ak and ak

in Eq. (2) to the active group. If there are d active
1

single-nucleon states for each of t, =+—,, then the

number of distinct
i P; ) in the truncated basis is

D=

D
P-=X i~;&&~;i (4)

i=1
projects onto the many-nucleon subspace spanned by
this basis. Two truncation schemes are used in the
present work. In the energy truncation scheme

(ETS), the active single-nucleon states are defined as
those having energy label N =(2n +l) &Nz, where

the cutoff value may range over 1&NE&9. The
symmetric truncation scheme (STS) uses a triangular

grouping of active orbits centered about N =Ns,
where 1&Ns&7 for the calculations described in

Secs. III and IV. Far the STS, every sp state with

S~ &Sz is active, and, in addition, each state with

X &N~ has an active companion state with the
same (l, s, j, mj, t, t, ) quantum numbers but with

N~ =2N~ —S . For example, when S~——2, the ac-
tive orbits of the ST S basis include

nlj = 1Pi~2, 1P3/2 and 2Si&z in addition to all sp or-
bits having N~ &2. We refer to a truncated expan-
sion basis

flA& i=1»" »1
by its type (S for STS, E for ETS) and by the integer

d. For example, E112 denotes an energy truncated
basis employing 112 single-neutron and 112 single-

proton states. Note that a closed core is not as-

sumed when constructing the truncated basis. This
"no-core" basis is motivated by the desire to obtain
total binding energies of nuclei in future applica-
tions with realistic Hamiltonians.

Approximate eigenstates and eigenvalues of a nu-

clear Hamiltonian, H, may be obtained by diagonal-

izing the matrix

whose eigenvectors correspond to exact eigenstates
of PHP. We use

i P ) to denote an energy-ordered
eigenstate of PHP:

PHPif )=E if ), m=1, 2, . . .,D,
E, =E1 &E2 « ED .

E is a rigorous upper bound to the mth energy-

ordered eigenvalue of H, and approaches the latter
monotonically as the expansion basis is enlarged. '

We use

p(E)= g 5(E E)—
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to denote the density-of-states (DOS) distribution
which would result from the diagonalization of PHP
in the finite basis.

In cases where D & 10 and the partial or complete
diagonalization of the PHP matrix is impractical,
one may obtain characteristics of the PHP spectrum
by using moment methods. One first approximates

I

p(E) by a continuous function p, (E) having the
same total integral and first few moments as p(E).
Estimates of specific PHP spectral properties, such
as the g.s. energy, are then obtained from p, . This
program requires exact moments of p(E), which can
be found from

ao D
&E'& = ——J p(E)E'dE =—g «}'=

D g &0 I
(PHP~

I 0 &
= ~ X &4 I

(PHP~
I 0 & .

m=1 m=1 i=1
(7)

The last equality untilizes the invariance of a matrix trace under a unitary transformation. The term on the far
right-hand side (rhs} of Eq. (7) can be rewritten in terms of the elementary matrix elements of H by using the
trace reduction techniques of Ginocchio and Ayik. " For our present effort we need consider only the situa-
tion where H is diagonal in the expansion basis:

(OIaNHa& IO&=e 5~~,

e independent of t, .
/

For this case we find the lowest four "central" moments are given by

«&=(N+Z)&. &,

(8)

(9a)

((E—(E& ) & = I N(d N)+Z(d ——Z) ISz,
(d -1) (9b)

((E—(E&) &
= (N(d N)(d —2N)+Z(d——Z)(d —2Z)ISi,

(d —1)(d —2)

((E—(E&) &=
, 4, N(d N)(6N +d —6Nd+d)+Z—(d —Z)(6Z +d —6Zd+d)

(d —1)(d —2)(d —3)
S4

3d
N (N —1)(d N)(d N ——1)+ Z(Z ——1)(d —Z)(d —Z —1)

(d —1)(d —2)(d —3)

(9c)

6
N (d N)Z (1—Z)—

(d —1)(d —1) (9d)

where (e & is the average of the e~ over the active single-neutron or single-proton states

1

d.
and similarly

S =—g(e (e&)'. —1

d

Furthermore, we use o, y, and rl to denote the width, skewness, and excess of p(E), respectively:

~=I:((E-(E& }'&]'".

&(E-&E&)'& .y= 3

&(E —«&)'&
g 4

(10a)

(10b)

Here p(E) for the (N, Z) problem is a convolution of the p(E} functions for the (N 0) and (0 Z) problems.
&s a consequence the pth central moment of p(E) for (N, Z) can be assembled from the pth and lower central
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moments of the neutrons-only and protons-only distributions. This structure is evident in Eq. (9). In addition,
p(E) and its moments are unaltered by an interchange of the values of N and Z.

We have investigated a variety of forms for the approximate DOS function, p, (E). We present results for
four choices: the truncated Gram-Charlier series using two, three, and four moments; and an inverted
Weibull' distribution:

exp( ——,x }
1

pG (E)=D
2% 0'

m y1+g "Heq(x)
pl

(12a)

Pa:' x=; m=234; y~=o,
E (E}

CT

c —i C

Dc (E —e) (E —e)
p~(E) = exp

b — b
; E(e, b&o. (12b}

Here, the He„(x) denote the Hermite polynomials. 's

The constants Iy&I in Eq. {12a}are chosen such
that p(E) and pG~(E) have the first m moments in
common. Similarly, tb, c,eI of Eq. (12b) are chosen
such that the first three moments of pir equal those
of p. The general Gram-Charlier series can be used
to construct a function having an arbitrary number
of moments in common with p. This useful feature
is balanced by the fact that unphysical regions of
negative density can occur in pG [m & 3], usually in
the tails of the distribution. This motivates the use
of alternative p, forms which are guaranteed to be
non-negative everywhere. For this reason we in-

clude the Weibull distribution which is completely
determined by three moments and by the total
dimensionality.

For a given choice of p„an estimate E, of the
PHP g.s. energy for the (N, Z) system is determined

by the Ratcliff condition

Ds, ,if knownf p, (E)dE=+; q = " '
(13}

1, otherwise .

Here Ds, denotes the degeneracy of the PHP
ground state. When Ds, is unknown, as is the usual

case when moment methods are used, q=1 is
chosen. Note that if p, in Eq. (13) is replaced by the
exact {discrete) p, E, is found to equal Es, for any
choice of q on the interval 0&q &2Ds, . In prac-
tice, E, is determined to the desired precision by nu-

merical integration of p, . When p, has negative re-

gions at small E, we integrate through these regions
and beyond until + —,q is accumulated for the first
time.

III. CHARACTERISTICS OF p{E)
FOR THE MODEL PROBLEM

cated basis of its own eigenfunctions. That is, we
choose H in Eq. (5) to be Ho itself, and we use

e =(N + , )fico—
in Eq. (10}. On one hand we deduce the exact p(E)
function by enumerating the energies of the D basis
states. The calculation of the exact PHOP ground
state energy and its degeneracy is particularly sim-
ple. On the other hand, we employ moment
methods to generate in turn the Sz averages, the cen-
tral moments of p, the approximate p, functions,
and the E, values. We then investigate the error in
the moment-method estimate of the g.s. energy,
E,—Es, , as a function of (N, Z), truncation
scheme, basis size, and p, form. We confine our nu-
merical calculations to systems near (N,Z}=(8,8) to
facilitate a later comparison9 with results for a real-
istic nuclear Hamiltonian.

The rnornent method proved much more success-
ful in predicting the Ho g.s. energy when ETS bases
were used, and consequently the bulk of the results
displayed herein are for such bases. The interested
reader inay consult Ref. 14 for a more thorough dis-
cussion of STS and ETS results.

Let r denote the largest value of the energy label
N which occurs for the active single-nucleon states
of a given ETS or STS basis. d, (e },and the S; are
found to be' simple polynomials in r. The mean,
width, skewness, and excess of p(E) are then easily
calculated from Eq. (9) and (11). o, y, and il, re-
garded as functions of {N,Z) for fixed basis type and
size (d »N, Z), are strongly dependent on
A =N +Z. For fixed A, each has only a small resi-
dual dependence on X—Z, and this dependence
vanishes as d becomes infinite. For example, under
the ETS we find

We now consider the specific problem of treating
the harmonic oscillator Hamiltonian using a trun-

(E} ~ —,(3d)' A = 1.082d'~ A,
cf~ co

(14a)



F. J. MARGETAN, A. KLAR, AND J. P. VARY 27

0 ~ ( —)'~ (3d)'~ A '~ =0.2793d'~ A '~
d~ oo

y —+ —( 3 ),~ A ' = —0.8607A
d-+ CO

0.095243+

(14b)

(14c)

(14d)

In the dilute system limit (d,A ~ oo,A/2 ~0) y and

g approach the Gaussian values of 0 and 3, respec-
tively, for either truncation scheme, in agreement
with the work of Ginocchio.

For the N =Z =8 system, Fig. 1 displays a histo-
gram constructed from p(E) for an ETS basis of
moderate dimensionality. Three of the continuous
approximations of Eqs. (12) are also shown for com-
parison. For E112 the left-hand tail of p(E) on
36fico &E&40fuo can be considered "physical" in
the sense that the eigenstates of Ho and PHOP are
identical and in one-to-one correspondence there.
Thus enlargement of the basis would not affect p(E)
on this interval. The low-moment constraints force
the p(E) histogram and its continuous approxima-
tions to agree closely in the high density region, but
significant differences are often evident elsewhere.

The exact histogram in Fig. 1 has a noticeable
negative skewness due to the preponderance of high
energy orbitals in the active single-nucleon space.
The Gaussian approximation p~2, which ignores this
skewness, departs significantly from p at high ener-

gies but is surprisingly near to p in the physical re-
gion. Using pg3 improves the agreement substan-
tially for higher energies but does not improve
agreement in the physical region.

IV. ERROR IN THE MOMENT-METHOD
ESTIMATE OF THE g.s. ENERGY

The problem of accurately estimating the g.s. en-

ergy of PHOP from the low moments of p(E) is a
formidable one. The physical tail of p(E) is only a
small contributor to the lower moments, and, for the
largest basis (E440), lies eleven standard deviations
to the left of the mean. Pade approximants can be
used to deduce rigorous upper and lower bounds to
Es, from the moments of p(E), but for large D and
few moments these bounds are too wide to be of
practical use. For example, rigorous bounds de-
duced from the first four moments confine the
Ho(N, Z) =(8,8) ground state to

—4. 1&&10 &Es, /fuo &78

for the E112 basis of Fig. 1. The width of these
bounds reflects the fact that there exists a wide
variety of non-negative discrete distributions having
the same first four moments as p(E).

Equation (13) provides an alternative to the,
rigorous bounding procedures. Its effectiveness is
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FIG. 1. Comparison of exact and approximate
density-of-states functions for the E112 harmonic oscilla-
tor basis (N =Z =8). The histogram representing the ex-
act function p(E) has been constructed by partitioning all
eigenvalues of PHOP into bins of width 3 %co centered on
E/fun =37,40,43, . . .. The Gram-Charlier approximation

p& (E) is obtained from the first m moments of p(E),
while the Weibull distribution p~(E) requires three mo-
ments of p(E).
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dependent on how clearly p mirrors p in the physi-
cal region. The choice of the p, function, the basis
size and truncation scheme, and the particle num-
bers (N, Z) all influence the error E, —Es, . In this
section we examine E, —Es, as a function of these
controllable variables for (N, Z) =(8,8) and neighbor-
ing systems.

A. The Ho problem near N =Z =8

The ground state for the (N, Z)=(8,8) system of
Ho is nondegenerate and has energy Eg 36fK0.
The g.s. eigenstate

~ pi )=
~ Pi ) is includei in every

expansion basis we consider, and the exact g.s. ener-

gy consequently appears among the list of PHOP
eigenvalues which determine p(E). The error
E, Es, for (N, Z) =—(8,8) is displayed in Fig. 2 as a
function of basis dimensionality for both truncation
scheines and several choices of p, . pG4 is negative in
the left-hand tail for STS bases, and this fact contri-
butes to the rapid divergence of the corresponding
E, from Es, . For ETS bases, the left tail of pG4 is
positive and leads to E, values intermediate to those
shown for pG2 and pG3. It is remarkable that one of
the simplest calculations, the two-moment Gaussian
approximation to p(E), leads to one of the least
divergent and most accurate estimates of Es, .
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I2

MOMENT METHOD
E I12

q=l

EXACT MOMENT METHOD
E I12
Pw
q*Des

cations of the g.s. energy pattern occur for the other

p, and bases studied when q=I is replaced by
q =Ds, in Eq. (13). In each case E, (N, Z) is shifted
upward relative to E,(8,8) by an amount which in-
creases with increasing Ds, (N, Z).

The pattern of exact Ho energies near A =16
possesses several features which are strongly depen-
dent on shell effects. The behavior of Es, within an
A chain is particularly sensitive to the closed-shell
structure of the N =Z =8 ground state. A
knowledge of the g.s. degeneracy as a function of
(N, Z) enables one to reconstruct the shell structure
of the Ho single-nucleon energies. Thus it is not
surprising that using q =Ds, in place of q =1 in
Ecl. (13) leads to a more faithful reproduction of the
g.s. energy pattern. In practical applications of mo-
rnent methods, such detailed knowledge of g.s.
properties of H will probably not be available, and
hence q =1 (or perhaps q =2 for odd-A systems)
must be used in Eq. (13). However, g.s. degeneracies
will be much smaller for realistic nuclear Hamiltoni-
ans than for Ho, the difference between the q =1
and q =,Ds, estimates of the g.s. energy will gen-
erally be a fraction of %co in realistic cases.

If Fig. 2 were redrawn for a neighboring (N, Z)
system, the result would be very similar to the
E=Z =8 case shown. Consequently, relative g.s.
energies predicted by the MM are much more stable
to changes in basis dimensionality than are the abso-
lute energies. This point; is illustrated more fully in
Ref. 14. As one example consider the STS pG2 cal-

g IO J*0
8 IO I2 I4 I6 IB
I ~ I '

/
' I ' I W' I

STS, Pcs

0

I2-

IO N=Z=8
J=0

20

STS, Pw

ETS& Pw-

culation, which is one of the more divergent cases in
Fig. 2. As we proceed from S28 to S408, the
predicted g.s. energy of ' 0 falls by more than
2(Hico. However, the corresponding predicted ' 0-
' 0 energy difference only changes from 7.5%co to
6.6%co for q =Ds, calculations, and from 5.5fau to
2 Stick. for q=1. (The exact ' 0-' 0 g.s. energy
difference is 7%co for Ho. )

Predicted relative energies are generally found to
be more accurate and less sensitive to basis size
when the ETS is used. Overall, as judged on com-
bined accuracy and stability under basis enlarge-
ment, pG2 and ETS yield the best relative binding
energies. However, the three-moment Weibull (P&)
results are more accurate for small bases (d & 150).

When p~ is used, ETS and STS bases give similar
results at comparable values of d. This is true both
for E,(8,8) and for the pattern of relative g.s. ener-
gies. The g.s. energy pattern obtained from pll
slowly expands as d increases. For example, the
predicted ' 0-' 0 energy difference which is 6 8fico.
in Fig. 3 (q = 1) becomes 8.5lmc0 for an E440 basis.

For a given truncation scheme and choice of P„
the average energy separation between A chains is
more accurately predicted than is the range of g.s.
energy variations within a given A chain. This is
clearly the case when q =1 is used in the Ratcliff
procedure, as evidenced by Fig. 3. Since q =1 will
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FIG. 3. Patterns of estimated and exact g.s. energies of
Ho for nuclei near N =Z =8. The moment-method esti-
mates employ the Weibu11 distribution and the E112
basis. The left and right patterns result from using q =1
and q =D~, (N, Z), respectively, in Eq. (13) where Dz, is
the exact ground state degeneracy. The exact pattern
displays E~, (N, Z) —EI, (8,8) for the harmonic oscillator
problem. The absolute energies of E,(8,8) and E~, (8,8)
are 37.6fico and 36fico, respectively. Each fixed-A curve
has reflection symmetry about Z =A /2.
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FIG. 4. Error in the moment method estimate of the
lowest J=0 energy for the Ho N =Z =8 system. Results
are shown as a function of basis- dimensionality for each
of several choices of truncation scheme and p, form. In-
puts into the moment method calculations are the lower
moments of the exact density of J=0 levels, p(J =O,E).
For each basis, the centroid, width, and skewness of
p(O, E) is displayed.



NUCLEAR BINDING ENERGIES PROM MOMENT. . .

be appropriate in moment-method treatments of
realistic nuclear Hamiltonians, we anticipate that
A-chain separations will again be more accurately
predicted in such calculations.

B. Bases of fixed J
Thus far we have used moments of the entire den-

sity of states function when estimating the g.s. ener-

gy of a Hamiltonian H. As expected, the error in
the estimate tends to grow with increasing basis
dimensionality D. One way of effectively reducing
D is to use a common symmetry of H and the basis
Hamiltonian, Ho, to partition the basis states into
sets which are not mixed by H. For example, if H
commutes with the square (J ) and z component
(J, ) of the total angular momentum operator, we
can choose basis functions

I ~ y,Mg )'c =1 2 ~ ~ ~

which are simultaneous eigenstates of J, J„and
Ho. The diagonalization of the matrix

I (ctiJMi I
H

I NJMi'~ c i 12 —DJ j

then determines all simultaneous eigenstates of PHP,
J, and J,. The resulting density of states function
p(J,M,E) is independent of M, and we use

p(J E)=p(J M =JE)
to denote the density of levels of spin J. Thus

p(E) = g (2J+1)p(JE}; D = g (2J+1)DJ
J J

connect the total density of states and total dimen-
sionality with those of fixed J. The program out-
lined in Sec. II can be applied to p(J,E) to estimate
the energy of the lowest level of spin J in the PHP
spectrum. This requires the moments of p(J,E}. In
practice these moments can be calculated exactly us-
ing the recursive technique of Jacquemin, ' or ap-
proximately using a truncated expansion of
S(J,—M).'"

For the H =Ho problem, p{J,E) can be straight-
forwardly calculated by first enumerating the ener-
gies of all fixed-M states in the truncated basis.
From p(J,E}we then obtain the exact moments as a
function of J. We have done this for the
(N, Z) =(8,8) system using the ETS and STS bases
having d (112. For a given ETS or STS basis, the
mean, width, skewness, and excess of the total p(E)
were found to be very similar to those of p(J,E) for
small J. As an exainple, ((E)Itic', olfico, y, rl) is
(84.0, 5.03, —0.202, 2.98) for total p(E) in the E 112
basis, and (83.2, 5.15, —0.196, 2.97) for p(O, E) in
the same basis.

The principal difference between p, (E) and

p, (O,E) lies in the dimensionality, which is consider-
ably smaller for the latter function, e.g., D =10zi'is
and Do 10——' for E112. Ignoring other differ-
ences we observe that when integrating p, (E) and

p, (O,E) in Eq. (13), an accumulated area of —, would

be achieved earlier for p, (E). Consequently, p, (E)
tends to produce an estimate E, that is lower than
the E,(0) obtained from p, (O,E). In addition, there
are sinall differences between the moments of p, (E)
and p, (O,E) which also contribute to the difference
between E, and E,(0). When the p, function is
non-negative at low energies, the net effect of using
the density of J=0 levels in place of the total densi-
ty of states is to shift the Ho estiinated g.s. energy
upward.

For Ho, the g.s. of the N =Z =8 system is a non-
degenerate J=0 level. Figure 4 displays the results
of using the low moments of p(O, E} to produce an
estimate, E,(J=0), for the energy of the lowest
J=0 level. q =1=Ds, /(2J+1) has been used in
the fixed-J counterpart to Eq. (13). As in Fig. 2, re-
sults are shown for both truncation schemes and for
a variety of choices for p, {J=O,E). By comparing
Figs. 2 and 4, the restriction to J=0 can be seen to
shift the predicted g.s. energy upward by roughly 1

to 3 fico for bases with d & 112. The pG2 and pg3 es-
timates, which are too low in Fig. 2, are thus im-
proved, while the pii estimates worsen. For fixed p,
and truncation scheme, the manner and rate at
which the estimated g.s. energy diverges from the
exact value as the basis dimensionality increases is
similar in Figs. 2 and 4.

Moments of the p(J,E) distributions can also be
used to estimate the lowest energy levels for a se-
quence of J values. The results of four such calcula-
tions for N =Z =8 are shown in Fig. 5. For a given
basis space, the p(J,E}with J& 10 differ only slight-
ly in their dimensionalities and low-moment charac-
teristics. As a consequence, the resulting estimates

IE,(J};J&10I lie within a narrow energy region.
This contrasts with the corresponding exact spec-
trum which extends 3%co above the J=O ground
state. Although there is some overall improvement
when the level degeneracies of the exact spectrum
are input into the fixed-J counterpart of Eq. (13),
the predicted ordering of the levels is poor. We con-
clude that using a few fixed-J moments will general-
ly lead to the incorrect assignment of the ground
state spin. The predicted order of fixed-J levels
found here for Ho resembles the predicted order ob-
tained in ' 0 moment-method calculations with the
realistic effective nuclear Hamiltonians of Ref. 7.
This suggests the existence of systematic, J-
dependent errors in this type of moment-method
prediction of low-lying states.
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gies of neighboring nuclei can often be obtained with
surprising precision, even when absolute errors are
large. Second, the systematic errors documented in
the present model calculations may serve as a bench-
mark for gauging the accuracy of absolute binding
energies predicted by moment methods for realistic
Hamiltonians. This will be particularly evident if
the dependence of predicted g.s. energies upon the
calculational ingredients (basis size, truncation
scheme, p~ form) is found to be similar for Ho and
for the realistic H. Our preliminary calculations
with a realistic nuclear Hamiltonian indicate that
this is indeed the case. In addition, previously pub-
lished results for no-core studies with realistic Ham-
iltonians ' have employed two moments, the energy
truncation scheme (ETS), and the Gaussian choice
of p, (E). There, the estimated g.s. energy of 'sO

was found to be too low when compared with
coupled-cluster results, ' and hence the apparent er-
ror is in the same direction as that noted here in the
corresponding soluble model calculation. We expect
to present elsewhere more complete moment
method results using realistic nuclear Hamiltonians.

There are other points worth noting in the soluble
model results. When using only two moments, the
optimum results for absolute and relative energies in
the ground state domain are achieved using a Gauss-
ian distribution and the conventional ETS. Howev-
er, we must caution that the exact DOS function
was found to possess a sizable skewness for each
ETS basis. This skewness is ignored when p, is
chosen to be a Gaussian distribution, and the accu-
racy of moment methods in such circumstances may
be in part accidental and peculiar to the soluble
Hamiltonian studied. Moreover, our calculations
with realistic Hamiltonians find that for a given
ETS basis the skewness in the DOS function is even
larger in the realistic case than for the correspond-
ing Ho problem.

Attempts were made to find symmetric truncation
schemes for which moment methods provided accu-
rate absolute energies with only two moments.
These attempts were not successful. However, with
three moments and the Weibull distribution, mo-
ment methods produced results of comparable accu-
racy in the ETS and in a simple symmetric trunca-
tion scheme (STS) which we selected for detailed
study. The Weibull distribution was selected to cure
a significant drawback of the Gram-Charlier (GC)
series. For three or more input moments, the GC
series yields unphysical regions of negative density
of states, whereas the Weibull distribution, which is
uniquely determined by three moments, is non-
negative everywhere.

We also explored the benefits of using fixed-I
densities rather than the total density of states.
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FIG. 5. Lowest energy level of total angular momen-

tum J as predicted by moment methods for 0&J&10,
Results are shown for four choices of calculational in-

gredients. The harmonic oscillator Hamiltonian

(N =Z =8) is assumed, and energies are measured rela-
tive to the predicted J=0 level. For the exact spectrum
we also indicate the number of times, dJ, that the
minimum-energy J level occurs. These degeneracies were
input to the fixed-J counterpart of Eq. (13) for the
moment-method calculation depicted at the far right.

V. SUMMARY

In view of the need for developing and testing
many-body methods for very large model spaces, we
have employed a soluble one-body Hamiltonian, Ho,
to test the ability of moment methods to yield accu-
rate spectral properties of nuclei in the ground state
domain. This soluble model retains some significant
features of the realistic problem in that the single-
particle representation is a conventional harmonic
oscillator. We tested the moment method as a func-
tion of the size of the model space for two trunca-
tion schemes, and for four choices of the smooth ap-
proximation, p, (E), to the discrete eigenvalue distri-
bution.

Our most significant finding is that the error in
predicting the ground state energy is systematic and
increases only slowly with increasing model space
size in many cases of interest. The systematic error
is different for the varying choices of truncation
scheme and of p, (E). Absolute errors are generally
less than the width of the total density-of-states
function when the conventional energy truncation
scheme is used.

The observation of a systematic error and a
characteristic dependence on the choice of in-
gredients for the moment method has two major
consequences for applications with realistic Hamil-
tonians in nuclei. First, relative ground state ener-
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Fixed-J bases possess smaller dimensionalities and
this tends to decrease the error in the predicted g.s.
energy when the g.s. spin is known. In addition, the
curves of error versus dimensionality are displaced
upward when fixed-J bases are used. This lessens
the magnitude of the error in some cases (e.g., ETS
with pa2) and increases it in others (ETS with pit ).
In no case were the fixed-J moment-method results
accurate enough to correctly predict the ground
state spin.

We close with a comment concerning the rise rate
of the state density in the ground state domain.
With the soluble Hamiltonian the true rate of in-
crease of state density with energy was typically
much larger than that of any of the p, (E) forms we
explored (e.g., see Fig. 1). Therefore, we argue, more
work is needed to develop a better continuous ap-
proximation p, (E) that will be useful for predicting
both the binding energy of nuclei and the level den-
sity in the ground state domain. Alternatively, it

may be worthwhile to explore methods that use the
moments of the realistic H in a given space to obtain
a soluble Ho for the same space with the same first
few moments. The level density from such an Ho
may well be more "realistic" in the g.s. domain than
those of the continuous approximations p, (E).
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