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The (p, d) reaction at intermediate energies is described in terms of the free pd scattering
at backward angles: The formalism is given in the distorted wave approximation. The
general features of the cross section, like the angular distribution, the variation with in-

cident energy, and the distribution with respect to momentum transfer, are well accounted
for by the predictions of the model.

NUCLEAR REACTIONS Quasideuteron, (p, d) reaction, intermediate

energies, distorted waves.

I. INTRODUCTION

The success of the (p,d} reaction at low energies'
in exploring the single neutron aspect of the nucleus
has led, in recent years, to the measurement on the
same reaction at higher energies (200—800 MeV)
(Refs. 2—4). This reaction, in the pickup model

[Fig. 1(a)], apart from measuring the spectroscopic
factor, explores the momentum component of the
neutron wave function in the nucleus corresponding
to the momentum transfer Q= k~ —kd. The higher
energy data, therefore, are expected to extend this
information, which is limited at lower energies to
lower momentum components (Q & 200 MeV/c), to
higher momentum components (200 & Q & 800
MeV/c). However, because of the involvement of
the high momentum transfer, it is not quite certain
if the reaction mechanism at these energies would

be confined only to the one-nucleon pickup mechan-

ism or would it involve two nucleons. In addition,
even if the "one-nucleon" mechanism is enough,
there are grave doubts about the description of the

neutron, in such a high momentum domain, as a
particle moving in an average single-particle poten-
tial. Nevertheless, calculations have been done in

the distorted wave Born approximation of the pick-

up mechanism. The results of these calculations,

depending upon the choice of the distorting poten-
tials for protons and deuterons and the bound-state
wave function for neutrons, vary a great deal in

magnitude (one order) and shape. ' ' For a particu-
lar choice of these parameters, of course, Shepard
and Rost have been successful in explaining the
data on ' O(d,p)' 0 at 698 MeV incident energy.
On the other hand, in the experimental studies of
the (p, m. +) and (p, d) reactions, in the similar range
of momentum transfer, it has been observed that

these two classes of reactions are very similar. The
similarity, in fact, is to such an extent that it is pos-
sible to successfully describe the (p,d) reaction in

terms of the (p, it+) reaction. This suggests that,
just like in the (p, sr+} and (p, y) reactions, in the

(p,d} reaction too it should be important to include

the mesonic and baryonic degrees of freedom. With

this in mind Boudard et al. have analyzed the
' O(d,p) data at 698 MeV incident energy in terms
of the rescattering diagram similar to that shown in

Fig. 1(a) for the (p, d) reaction. This diagram in-

volves the participation of two nucleons in the nu-

cleus through the baryonic excitation of one nu-

cleon and its subsequent deexcitation through its in-

teraction with another nucleon.
Generally speaking the results of this calculation

are of a similar quality as that of the conventional
DWBA calculations. However, this calculation
may be open to criticism because it is not clear to
what extent it includes the contribution due to sin-

gle nucleon pickup (or stripping) in the diagram of
Fig. 1(a). This contribution, as suggested by the
DWBA calculations, may be quite significant. In
this paper we follow a semiphenomenological ap-
proach. This approach, which originates from the
following observation on the free pd scattering at
backward angles, like Boudard et al. , involves two
nucleons from the nucleus at the interaction vertex.
In the p +d —+p +d scattering at intermediate ener-

gies (E~ & 300 MeV) it is found that for the success-
ful description of the angular distribution of pro-
tons at backward angles (or equivalently the deu-

teron at forward angles, i.e., 120'&8& &180' or
0'&Hd &40'), one must include, in addition to the
neutron exchange diagram [Fig. 1(b)], the rescatter-
ing diagram of the type shown in Fig. 1(b) (Ref. 10).
Comparing these diagrams with those in Fig. 1(a)
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FIG. 1. Interaction graphs.

for the A (p,d)8 reaction we find that they are com-
pletely analogous. Taking advantage of this simi-
larity, we describe the interaction vertex for the
A (p, d)8 reaction in terms of that for the p(d, p)d
scattering [Fig. 1(c)]. This kind of approach has
been used in the past by Kallne et al. and others"
for the preliminary analysis of the He(p, d) data.
In this description, out of the two protons and a
neutron participating at the vertex, one proton is
captured back by the nuclear core and the remain-

ing one with the neutron goes out as a deuteron
The residual nucleus may be left in the one-neutron
hole states, coupled to the unexcited or excited pro-
ton states of the nucleus. Thus the energy spectrum
of the detected deuteron may be much richer in this
picture than that in the conventional pickup model.
The interaction of the continuum proton and deu-
teron with the (A —2} core is described by the dis-
torted waves. Since we are interested in the inter-
mediate energy induced (p,d} reaction, these distort-
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ed waves are described in the eikonal approxima-
tion.

In this paper we derive the expression for the
cross section for the A (p, d)B reaction in terms of
the quasideuteron vertex. This expression, as we
shall see later, in the energy region of interest
()200 MeV), apart from the kinematic factor, fac-
torizes into the free pd scattering cross section at
backward angles and a nuclear structure factor
[Eqs. (24) and (25)], i.e.,

dA
~ (kin f ac)o~( er, 8™»)

~

Fr "(Q)
~

where o~ is the free pd scattering cross section at
the appropriate energy and angle. F "(Q) is the
"distorted" nuclear structure factor, which contains
the information about the proton excitation and the
neutron hole in the nucleus. The formalism is
presented in Sec. II and its predictions are discussed
and compared with the experimental data in Sec.
III. However, before we go over to the actual for-
malism in the next section, it may be mentioned

I

that, due to the importance of only high momentum
components in the backward pd scattering, the va-
lidity of the quasideuteron model does not require
that the np pair in the nucleus exist as a deuteron all
the time. It is sufficient if it behaves as a deuteron
at a short distance, for which there are ample indi-
cations.

II. FORMALISM

The differential cross section for the A (p, d)B re-
action in the center-of-mass system is given by

=Fx g ~
Tsg (kg, k» )

~
(2)

where the kinematic factor Fx is

Fx (2m 'I(()——E»EgEiIEsE, (kd /k» ) .

g represents the appropriate sum and average over
the final and initial states, respectively. The transi-
tion matrix Tzz in the distorted wave approxima-
tion has the form

Tsg(kd, k»)= f dk» I dkgXi, '(kg)(B, d, kd
~

T ~A,p, k»)X+ (k») . (4)

Here X's are the "distorted waves. " They describe the relative motion of the proton and deuteron with respect
to the initial and final nuclei with asymptotic center-of-mass momenta k» and kd, respectively. E„, in Eq.
(3), is the total energy of the particle x and E, ( =E»+E„=Ed+Es} is the total energy in the center of mass.
The remaining factor in Eq. (4) is the matrix element of the interaction causing the event, taken between the
internal states of the colliding pairs. In the quasideuteron model [Fig. 1(c)], this factor is given by

(B,d, kd
i
T ~A,p, k») —=G(kd, k»)

Tp l J p g l J
V

(5)

Here i denotes protons and j denotes neutrons in the nucleus. g stands for the spectator (A —2) nucleons. In
order to simplify the treatment of G, initially we treat neutrons and protons separately and define an overlap
integral for neutrons

( WBN(EN )
I A~(4 j ) ) =4~ (~.)4 „(J» (6)

where (t(sN (fq~) is the neutron wave function for the nucleus B (A). ()(, (j) is the wave function of the jth
neutron in the nucleus. gsz(a„) is the normalization constant for l() and is related to the spectroscopic fac-
tor through

Here N is the "active" number of neutrons in a particular "shell" in the target nucleus. Now using Eqs. (6)
and (7) and considering that the transition operator T»(ij ) in Eq. (5) does not depend upon the neutron vari-
ables in the final nucleus, we integrate over them. This yields

G(kg, kz)=Sag(u„)(Ihip(iz, (&PE QT&((, () (l&tP (1)gyp(i, ()l. (&)

In arriving at expression (8), by using the indistinguishability of active neutrons we have removed the sum
over j and replaced the jth neutron by the first. Like /san(f~~ } flap(pgp) is the proton wave function for the
residual (target) nucleus. At this stage we now invoke that the neutrons and protons in the target nucleus are,
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in fact, no«ompletely uncorrelated. At short relative distances they are correlated and these correlations are
very much similar to those in a free deuteron. With this observation, for which there are ample indications in
the literature, ' and writing the wave functions in momentum space, we get

G(kg kp)~Ss~ (a~) g f dgpdkidk dk( Psp(g k' )(k' kgb I Tp(i 1}
I kp KPg)

Xg (ki)gyp(gp, k;), (9)

where P~ denotes the intrinsic wave function of the deuteron. In the initial state it represents the deuteronlike
correlation between neutron and proton in the nucleus. K is the momentum vector associated with the
center-of-mass motion of the np pair in the nucleus A. It is defined by K=ki+ k;. Owing to momentum
conservation the transition matrix ( Tp ) in Eq. (9) gets factorized to

(k';, kgyd [Tp ~ kp, Kyd) =5(k +kj kp ——K)(a'~ T~ ~
a), (10}

( a '
( T~

~

a ) =T~(e, 8p ), ' (12)

where the relative energy e and the scattering angle
8p' ', in the pd center of mass are given by

e =A a /2@~, cos8p' ' =a ' a . (13)

Here }Mp~ is the reduced mass for the proton and
deuteron system. If, in the evaluation of e and
8p' ', we average over the directions of the bound
particles, the expressions for them get simplified to

where a and a ' are the relative proton-deuteron
momenta before and after the collision and are de-
fined as

a =(mpK m~k—p)/(mp+mg),

a '=(m kd —mgkI )/(mp+mg} .

The matrix element (T~) may be identified as
describing the pd scattering from momentum state
a to a '. As such this matrix element is completely
offshell and thus cannot be related to the measured
free pd scattering cross section. However, consider-
ing that the off-shell effect introducing sources like
the binding energy of participating nucleons and the
distorting potentials at high energies are much
smaller than the incident energy, we approximate
the ( T~ ) by its on-shell value and write

Xgzp((p, k;)g (k, ),

(16)

where Q
' is the momentum transfer and is given by

+

Q'=kp —kd . (17)

If the target nucleus is not heavy enough to justify
the neglect of terms of the order A ' expression
(17) for Q

'
gets modified to

I

straight line trajectories for the incoming proton
and the outgoing deuteron and thus the angle be-
tween k~ and kz is equated to the asymptotic
scattering angle Od. Furthermore, since the
momentum of bound nucleons in the nucleus oc-
curs, with significant probability, only up to about
200 MeV/c, E and ki in Eqs. (17) and (18) influ-
ence the value of e and 8p' '

only marginally.
These variables, therefore, in Eqs. (14) and (15) can
be replaced by their average values. With these ob-
servations the substitution of Eq. (10) into Eq. (9)
and integration over k,'. factorizes G to

G(kd, kp}= T~(e,8p' )Ssg (a„')

X g f dgpdkidk;itjsp(gp, K+Q')

EC 4
—,k'p

2p~ 9

cos(m —8p' ')

=cosOg

(14)

(15)

Q'=akp —Pkd,

where

a=1—2/A; P=1—1/(A —1) .

In order to put expression (16) in compact form we
introduce the form factor p ps' for protons, which is
defined as

where 8d is the angle of the outgoing deuteron in
the p —A center-of-mass system in the A (p, d)8 re-
action. In writing Eq. (15} we have assumed the Xf~p(gp k ) (19)

ps'�

(k i+Q ') = g f dk&dgpgsp(fp K+Q ')
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On substituting expression (20} for G in Eq. (4) for
the transition matrix, T~q, T~d, due to its depen-
dence on kz and kd [Eqs. (14) and (15)], still
remains entangled with the distorted waves. How-
ever, if we notice that the depth of the real part of
the optical potential at intermediate energies, say
between 300 MeV and 1 GeV for ' C, varies be-
tween —5 MeV and + 20 MeV, we can neglect the
effect of dispersion in T~. Or we can replace k~
and ke in Eqs. (14) and (15) by some typical local
values. With this assumption the transition matrix
Tsz in Eq. (4) gets expressed as

Tgg(Q)=T~(e, 8p )Si'ig (a'„)'F "(kd, kq),

where

F~"(kg, kq)= f dkpdkdXi, *(kg)

(21}

X f dkip5'ig(ki+Q')l( (ki) .

XX+- (kr)

and Q is the momentum transfer and is defined
analogous to Eq. (18), i.e.,

(22)

Q=ukq —Pke . (23)

Correspondingly the expression for the cross section
for the neutron from a given orbital "n„," after
suro. ming over the spin projections, becomes

F
i
T (e 8c.fli. ) ~2

Sm (IJ')
Xg, (F,';"(Q) ~', (24)

where we have identified the orbital "a„"with the
shell model orbital "jim." The matrix element

~ T~ ~

can be related to the experimentally mea-
sured free pd scattering cross section by

where ps„ is normalized such that psi (0)=Z, the
number of protons in the target nucleus. This form
factor could be elastic or inelastic. With this form
factor Eq. (16) becomes

G(ke, kq)= T~(e, 8r' )Ssq (a„)

X f dkg@~(ki+Q')g~ (ki) .

(20}

where mz is the nucleon mass and cr~ is the free pd
cross section in its center of mass at laboratory en-

ergy er and center of mass scattering angle 8&

8&™,as given by Eq. (15), is related to 8e and cor-
responds to backward scattering. eL is related to e
[Eq. (14)] by (ignoring terms of the order of A ~)

3
6'L =

2 E

A+2 ' A+1 ' 2(A+1)
(26)

where T~ is the laboratory energy of proton in
A (p,d)B reaction and U(Tz } is some typical value
of the real part of the optical potential. e =J /4m,
where E is the average value of E, and can be ob-
tained from the following or any equivalent relation
of average momentum of a group of N nucleons in
a nucleus with A nucleons'

N(A N) 3—E = —,k~ (27)

where kr is the Fermi momentum. The value of e
could be around 25 MeV.

Using the following transformations for g(k&},
pres(q), and the distorted waves, expression (22) for
F„"(Q) can also be written in the configuration
space

1(t(k&)=(2ir) ~ f e ' f(r)dr,

pL(q)= f "'pii~( }d",

Xl, (k')=(2ir) ' f e '" 'Xk(r)dr,

(28)

(30)

where g(r} is normalized to unity and X-„(r), in the

plane wave, takes the form exp(ik r). F(Q), then,
in r space becomes

Fj~i~ (Q) =(2n') ~ f d r X & d (P r )X+ (a r )

Xg;, (r)p,„(r) . (31)

Since in the intermediate energy range the eikonal

approximation is expected to be a good approxima-
tion, the distorted waves in Eq. (31) are written as

Dk (Pr}=exp

Xz&(Pr)X+ (ur)=e''O''Dz&(Pr)Dk (ar),
(32)

where D's are the distorting functions. They are de-
fined by

4 2m~

x(eL, ,8,' ), (25) X f Vd( ~Pr+kgs i
)ds, (33)
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D-„(ar}=exp i'
Ac kP

X J V~( (
ar —k~s

~
)ds . (34)

Since in the A (p, d)B experiments the deuterons are
I

measured near the forward directions ( g30'), for
the evaluation of D k we approximate the deuteron

path length in the nucleus by that parallel to k&.
With this approximation and taking z axis parallel
to kz, the distortion functions do not depend upon
the azimuthal angle y. Thus one gets

PBA (Q) (2~)5/2( I )m

)& J b db dz e ~~ J~(Qqb)D &&(Pb,Pz)D & (ab, az)ptt„(b, z)R„~J(b,z)C~~(8),
P

where J is the cylindrical Bessel function. Q~~ and

Qj are the longitudinal and transverse components
of the momemtum transfer g, respectively. R„~l is
the radial part of the neutron wave function and

Ct is defined as

with

Yt (e,qr)=C( (6)e' 4'

8=tan '(b/z) .

(36)

III. RESULTS AND DISCUSSION

The experimental data on the (p,d) reaction exist
at 700 MeV on ' C and 800 MeV on ' ' C and

Ca. Data are also available at lower energies
(200—500 MeV) on He, Li, and at a fixed angle
(22.5') on ' C (Refs. 2 —4). In this paper we have
mainly done calculations for ' C and some results
are obtained for Ca. As regards the input infor-
mation needed for the calculations, the situation is
not very good. The proton optical potentials are
taken from the following sources:

(i) Batty and Phillips, for the energy range
200—800 MeV and 1 GeV (Ref. 14};

(ii) Blanpied et al., for 800 MeV on ' C (Ref. 15};
(iii) Meyer et al., for 200 MeV on ' C (Ref. 16);
(iv) Abdul Jalil et al., between 100—200 MeV on

' C (Ref. 17).
For the deuteron optical potential little informa-

tion exists. In view of this we have employed the
phenomenological deuteron optical potential as ex-
tracted from the analyses of the elastic scattering
data on ' O(d, d) at 698 MeV by Shepard and
Rost. Alternatively we have constructed the deu-

teron optical potential by summing those for the
proton and neutron at half the deuteron energy.
This approximation should be alright for the real
part of the potential. The imaginary part (Wd),
however, would be underestimated as this prescrip-

I

tion does not include the deuteron breakup channel.
As a first attempt to understand the gross features
of the (p,d) data in the quasideuteron model this
choice of optical potential should be enough. For
the same reason the calculations are done only for
the transition to the ground state of the residual nu-

cleus. For the density matrix in Eq. (35} we have

employed the groundstate charge density. In this
paper we have not done any detailed investigations
about the nuclear structure aspect, like any possibil-
ity of an inelastic contribution of the proton core to
the ground-state transition. If it does contribute,
the magnitude of the cross section may change. For
' C the elastic charge density is parametrized as

with

p(r)= p[p1 +ar Ib ]e (37)

2Z/b
n ~ (2+3a)

For Ca it is written as

p(r)=pp(1+ar Ib )I[1+e'" ']
with

(38)

pp
——Z b (b'+m'c')

3

( 3b 4+ 104r 2c 2b 2+ 7%4c4)
sb'

(40)

The parameters, a, b, c, which fit the elastic elec-
tron scattering data, are taken from De Jager
et al. ' For ' C, a =1.247 and b =1.649 fm. For

Ca, a =—0.102, b =3.661 fm, and c =0.594 fm.
The neutron wave functions in the nucleus are gen-
erated in a Woods-Saxon potential whose parame-
ters are taken from Elton and Swift. ' These
parameters are found to fit the elastic electron
scattering and the (p, 2p) and (e,e'p) data. The
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FIG. 2. Differential cross section for the reaction
' C{p,d)"C{g.s.) at Tp —800 MeV. The two curves corre-
spond to two choices of the optical potentials.

calculations were also done using the bound-state
wave functions of Negele. ' However, it was ob-
served that the predictions from these two classes of
wave functions do not differ significantly. This is
understandable as these two wave functions differ
only in the region of high momentum components
which the quasideuteron model, due to the presence
of proton density matrix in Eq. (3S), does not neces-
sarily sample.

The free pd-scattering angular distribution at
backward angles exists at 598 MeV, 1 GeV, and
in some restricted angular region at some other en-

ergies. For 0& ) 175, of course, a complete docu-
mentation is given in a paper by Bonner et al.
Using all this available information we have inter-
polated as judiciously as possible the free pd cross
section required in our calculations.

In Figs. 2 and 3 using the spectroscopic factor of
3, we show the calculated angular distributions for
' C at 800 and 700 MeV. The 800-MeV data are
from Ref. 3 and the 700 MeV data from Baker
et al. The dashed curves in both figures, which

1 1

have normalizations of —, at 800 MeV and —,
3 at

700 MeV, use the 800-MeV proton optical potential
of Blanpied et al. ' and the 698-MeV deuteron opti-
cal potential for ' O. The solid curves are obtained
using the deuteron optical potentials constructed

102

101

12((p d)11(

eV

10 "

0 10 20
8, (deg )

30

FIG. 3. Same as Fig. 3 except that T~ =700 MeV.

from the nucleon optical potentials due to Batty. '

The proton optical potential at 800 MeV is retained
as that in the dashed curve while at 700 MeV it has
been taken from Batty. ' The normalization fac-
tors, as shown in the figures, are —, at 800 MeV and

1
at 700 MeV. As we see from these figures the

shapes of the measured distributions, are repro-
duced well. The magnitudes are, of course, overes-
timated by about an order of magnitude. This
overestimation of the cross section may be remedied

by employing better nuclear structure information
about ' C and better known optical potentials. For
example, as regards the nuclear structure, it is
known that the ground state of the ' C nucleus is
deformed. The deuteron optical potentials con-
structed from summing the neutron and proton po-
tentials at half the deuteron energy (which we use
extensively in this paper), as mentioned earlier, do
not include the breakup channel. The imaginary
part of the actual potential should therefore be
larger than that corning from this prescription.
Since the probability for the breakup of the deu-
teron becomes larger at higher energies, this in-
crease in the imaginary part of the potential ( W~)
may be substantial. In order to see the effect of in-

creased 8'd we calculated the cross section at 700
MeV for the forward angle by making Wd one and
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a half ( —,) and two times that used in the solid

curve. The cross section correspondingly gets re-
duced by a factor of about 1.5 and 2.5, respectively.

In order to see the variation of the cross section
with the incident proton energy, we show in Fig. 4
the cross section at fixed deuteron angles, 8&

——2.5'

and 22.5', as a function of Tz from 200 MeV to 1

GeV. The deuteron optical potentials are construct-
ed from the nucleon potentials. The nucleon poten-
tials themselves are taken for above 250 MeV from
Batty' and for below 250 MeV from Meyer et al. 's

and Abdul Jalil et a/. ' The experimental data on
' C below 700 MeV do not exist. However, they do
exist on ' C at Od=22. 5'(Ref. 4}. Therefore from
200 to 500 MeV we have shown in the figure the
data for ' C. They are, of course, renormalized cor-
responding to the spectroscopic factor 3 in the ' C
transition. The spectroscopic factor for ' C
(p,d)' C is taken as unity and the difference due to
the 1Pi/2 and IP3/2 neutron wave functions is ig-
nored. It is very impressive to observe that the
trend of the measured cross section is remarkably

well reduced. The bumps in the ct'oss section be-

tween 300—600 MeV arise due to the similar pla-
teau in the pd scattering data at backward angles.
At 22.5' it gets more pronounced as the node of the
structure factor F„"(Q}[Eq. (22)] also occurs in the
same region.

In the literature one has also plotted the mea-

sured cross section as a function of the momentum
transfer Q. It is found that with respect to this
variable the cross section falls off rapidly and
can be fitted by an exponential function
cr=croexp( —Q/Qo), with Qo-47 MeV/c for car-
bon isotopes. From our calculations at 400, 600,
800, and 1000 MeV incident energies, in Fig. 5 we
also show the cross section for ' C as a function of
Q. As we see, like the experiments, the general fall-

off of the calculated cross section in the momentum

range 300—800 MeV/c also follows the exponential

103—

103

1Q2

10
L

V)

Xl

C

, 10o—

C(p, d} C(g.s.)

102—

101

c, 10'
U

' x

12'(p d)11'

'='0 exp(-a'ap)

Qp=43 Mev/c

10-1

10 2—

1-x—x- X-
9
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X9

102—

200
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800

~ 1000

I I I I
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1000

200 400 600 800
Ts (MeV)
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FIG. 4. Variation of the cross section for
' C(p, d)"C(g.s.) at 8~ ——2.5' and 22.5' versus the incident
proton energy T~. The k data are the ' C(p, d)' C(g.s.)
data renormalized corresponding to the ' C(p, d) "C(g.s.)
spectroscopic factor (3), Other data are for ' C.

FIG. 5. Calculated cross section versus momentum
transfer Q at 400, 600, 800, and 1000 MeV incident ener-

gies. The continuous line with the slope parameter
Qo-43 MeV/c is drawn to show the trend of the falloff
of the cross section. The experimental data, not shown in
the figure (Ref. 4), also show the similar behavior with
QD-46 MeV/c.
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behavior with Qc-43 MeV/c. Also, comparing
these distorted wave results with our corresponding
plane-wave results (shown in Fig. 6) this general
behavior of the cross section with respect to Q does
not change much due to distortion. Because of this
observation, in Fig. 6 (right-hand curve), from our
calculation at 400, 600, 800, and 1000 MeV, we also
show the plane-wave results for Ca (p, d) Ca(g.s.)
as a function of Q. Like ' C, these results also fol-
low the exponential falloff and interestingly enough
have approximately the same shaped parameter (i.e.,
Qo-43 MeV/'c). Considering that the ' C and Ca
nuclei involve completely different neutron shells
( 1p in ' C and ld in Ca), this observation is a little
surprising as well as interesting. At present it is not
quite clear to us as what real significance should be
attached to this observation. It, however, appears
that, since in the present model the net falloff of the
cross section with Q arises due to the combined de-
crease of the structure factor F~ (Q) and the free pd
scattering cross section, any difference in F (Q)an
due to different a„ is smoothed out by the latter
factor. Thus the net result (apart from the magni-
tude) does not depend very much on the target nu-
cleus.

As mentioned earlier the experimental data are
also available at 800 MeV on Ca. The inspection
of the experimental data on ' C and ~Ca itself re-

veals that relative to ' C the cross section in Ca
comes down by a factor of about 40. Purely on the
basis of distortion, it is not expected that such a
reduction could be introduced. In fact, in the con-
ventional pickup model DWBA calculation on Ca
it has been found that apart from the reduction due
to distortion one needs an additional factor of 30 to
come near the experimental cross section. With
this background and the fact that the optical poten-
tials for ~Ca are not known, we had a little hesita-
tion in comparing our calculated results with the
experiments. Nevertheless, the calculated angular
distribution for Ca(p, d) Ca at 800 MeV is shown
in Fig. 7. The spectroscopic factor is taken to be 3
and the optical potentials for the proton and deu-
teron are taken to be the same as those for ' C (for
the proton from Blanpied et al. ' and for the deu-
teron from Shepard-Rost ) except that the radius
parameter is enhanced in proportion to A ' . Again
the shape of the distribution is well reproduced. In
comparison to ' C the magnitude requires an addi-
tional reduction by about a factor of 7.5.

In summary it may be concluded that the
quasideuteron model discussed in this paper ac-
counts very well for the gross features of the (p, d)
reaction at intermediate energies. The magnitudes
of the cross sections for ' C, however, are overes-
timated by order of magnitude. Considering the
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FIG. 6. Same as in Fig. 5 except that the distortions of

proton and deuteron are switched off. The Q scale for
Ca is shown on the top, that for ' C on the bottom.

FIG. 7. Differential cross
Ca(p, d) Ca(g.s.) at T~ =800 MeV.

section for
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uncertainties in the input parameters and our reluc-
tance, in this first attempt, to critically look into the
nuclear structure effects, this at the present stage is
not considered a source of great anxiety and disap-
pointment.

ACKNOWLEDGMENTS

In acknowledgment it is a great pleasure to thank
Prof. J Hufner for making several useful sugges-

tions about preparing the manuscript. Thanks are
also due to him and other members of the Institut
fiir Theoretische Physik for their warm hospitality.
The author also thanks Dr. R. C. Johnson of the
University of Surrey for valuable discussions about
the treatment of distortion. This work was partly
supported by the German Federal Ministry of
Research and Technology (BMFT}.

'Permanent address: Nuclear Physics Division, Bhabha
Atomic Research Centre, Bombay 40085, India.

R. J. Philpott, W. T. Pinkston, and G. R. Satchler, Nucl.
Phys. A119, 241 (1968).

S. D. Baker et al., Phys. Lett. 52B, 57 (1974).
3C. A. Whitten, Jr., Nucl. Phys. A335, 419 (1980).
~T. S. Bauer et aL, Phys. Lett. 67B, 265 (1977};Phys.

Rev. C 21, 757 (1980); J. Kallne et al., ibid. 21, 675
(1980);Phys. Rev. Lett. 41, 1638 (1978).

5K. Gottfried, Ann. Phys. (N.Y.) 21, 29 (1963).
A. Boudard et al., Phys. Rev. Lett. 46, 218 (1981); 47,

147 (1981);A. I. Yavin, Nucl. Phys. A374, 297 (1982).
7J. R. Shepard and E. Rost, Phys. Rev. Lett. 46, 1544

(1981).
D. G. Measday and G. A. Miller, Annu. Rev. Nucl. Sci.

29, 121 (1979);R. E. Anderson et al., Phys. Rev. C 23,
2616 (1981); H. A. Thiessen, Nucl. Phys. A335, 329
(1980).

C. Wilkin, J. Phys. G 6, 69 (1980).
N. S. Craigie and C. Wilkin, Nucl. Phys. B14, 477
(1969); V. M. Kolybasov and N. Ya. Smorodinskaya,
Yad. Fiz. 17, 1211 (1973) [Sov. J. Nucl. Phys. 17, 630
(1973)].
B. Schoch, Phys. Rev. Lett. 41, 80 (1978); H. W. Fear-
ing, Phys. Rev. C 11, 1210 (1975); 11, 1493 (1975).
E. Hadjimichael, S. N. Yang, and G. E. Brown, Phys.
Lett. 39B, 594 (1972).

~ A. S. Goldhaber, Phys. Lett. 53B, 306 (1974).
C. J. Batty, Nucl. Phys. 23, 562 (1961);G. C. Phillips,

in Few Body Problems, Light Nuclei and Nuclear In-
teraction, Brela, Yugoslauia —)967, edited by G. Paic
and I. Slaus (Gordon and Breach, New York), p. 701.
G. S. Blanpied et al., Phys. Rev. C 23, 2599 (1981).
H. O. Meyer et al., Phys. Rev. C 24, 1782 (1981).
Abdul Jalil and D. F. Jackson, J. Phys. G 5, 1699
(1979).

~SC. W. De Jager, H. De Vries, and C. De Vries, At.
Data Nucl. Data Tables 14, 479 (1974).

~9L. R. B. Elton and A. Swift, Nucl. Phys. A94, 52
(1967).
R. Shanta and B. K. Jain, Nucl. Phys. A175, 417
(1971).
J. W. Negele, Phys. Rev. C 1, 1260 (1970).
J. Vincent et al., Phys. Rev. Lett. 24, 236 (1970).
G. Bennett et al., Phys. Rev. Lett. 19, 387 (1967); E.
Coleman et al., ibid. 16, 761 (1966).

24J. C. Alder, R. M. Heinz, O. E. Overseth, and D. E.
Pellett, Phys. Rev. C 6, 2010 (1972); G. A. Leskin, Zh.
Eksp. Teor. Fiz. 5, 440 (1957) [Sov. Phys. —JETP 5,
371 (1957)].

25B. E. Bonner et al., Phys. Rev. Lett. 39, 1253 (1977);J.
E. Simons, in High Energy Physics and Nuclear
Structure 1975 (Sante F—e and Los Alamos), Proceed-
ings of the Sixth International Conference on High En-
ergy Physics and Nuclear Structure, AIP Conf. Proc.
No. 26, edited by D. E. Nagle et al. (AIP, New York,
1975), p. 103.


