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Effective operators in the relativistic meson-nucleon system
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Taking the meson-nucleon system below threshold as an example, it is shown that it can

formally be described by nucleonic degrees of freedom alone. In the Fock space of nucleons

one has eigenvalue equations with different optional versions of effective interactions. The
Hermitian version explicitly exhibits full relativistic invariance. The non-Hermitian form

can be decomposed into one, two, three, . . . , particle operators. The latter requires the solu-

tion of the vacuum, one, two, . . . , nucleon problems. The techniques proposed are known

from coupled cluster many body theory and do not invoke perturbation theory.

NUCLEAR STRUCTURE Nucleon-nucleon interaction, meson ex-

change.

I. INTRODUCTION

It is often desirable to introduce effective opera-
tors which exactly describe in principle a given
number of physical nucleons without mesonic de-

grees of freedom. Most of low energy nuclear phys-
ics assumes that such a description is possible. The
nucleus is considered as a set of A =N +Z nucleons
interacting via two (maybe three, four, . . ., } body
forces. Indeed it is possible to eliminate the mesonic
degrees of freedom, leading to a theory which
divides the Hilbert space into two separate parts: a
Pock space with nucleons only and an "effective
Hamiltonian. " The other part contains additional
mesons. The separation traditionally is made—
using a method due to Okubo' —by block diagonal-
izing the relevant operators with respect to the two
subspaces. In this form it has often been used to-
gether with perturbation theory. Of course the ef-
fective operators are determined by both subspaces,
such that a complete solution requires the use of the
whole Hilbert space. Still the use of effective opera-
tors, i.e., the elimination of mesonic degrees of free-
dom, offers so many evident advantages that it is
worthwhile to explore its structure and possibilities
further.

One question is whether these methods are tied to
perturbation theory; another is whether a fully rela-

tivistic description is possible. Finally, one might
wish to explore the structure of the effective Hamil-

tonian. Is there a decomposition into genuine two

body, three body, etc. operators' It is known that,
for instance, the usual Hermitian effective two body

operator in a three nucleon system depends on the
c.m. of the two particles. It thus is influenced by
the third nucleon; it is not a genuine two body quan-
tity.

In this paper we shall construct relativistic, non-
perturbative effective operators, thereby allowing for
a fully relativistic description of the nucleon system
below meson threshold without mesonic degrees of
freedom. This can be done without invoking pertur-
bation theory and in a much more general form
than Okubo's. The ten generators of the Poincare-
Lie group will be considered and the corresponding
effective operators will be constructed guaranteeing
relativistic covariance. This scheme is necessarily
restricted to energies below meson threshold. The
procedure is not unique. In particular there are
non-Hermitian generators (which can be made Her-
mitian afterwards, if desirable). These operators do
not satisfy the standard Lie algebra; however, they
yield eigenvalues and eigenfunctions of the four-
momentum. This is the version allowing for a
decomposition into effective one, two, three, . . .,
body operators. We shall demonstrate this in Sec.
III.

The ideas behind this presentation are well known
in nonrelativistic many body theory. In this pa-
per we adapt them to quantum field theory, which
requires the consideration of relativistic covariance
as well as the detachment from perturbation theory.
The latter aspect is important in view of the fact
that nonperturbational methods recently have be-
come important. ' The many body theory used here
is the coupled cluster version, which also can be
used to derive nonperturbative results.
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II. CONSTRUCTION OF EFFECTIVE OPERATORS
AND RELATIVISTIC INVARIANCE

Now we define the partial isometry G by

G = g 1
y(a) &(y(a)1. (2.8)

Let 4 be the Hilbert space of the interacting field
theory. We are dealing with the subspace P ~ EP
of N interacting nucleons with no mesons present;
i.e., A ~ contains only states below meson thresh-
old. 4 s can be represented by an infinite set of
orthonormal eigenstates of the four-momentum

Thus

~.,=&y(a}
1 y(P })=(y(a}1G'G

1
y(P }& .

(2.9)

P„ 1
f(a) ) =~„(a)

1
f(a) ), (2.1)

Note that we do not require 6 to be unitary. We
have

with

(y(a ) 11((P)) =& p . (2.2) and

11((a))=G
1
p(a)) (2.10)

These states 1((a ) are the (bound or scattering) states
of N physical nucleons. The Hilbert space is decom-
posed:

5.,=&y( )11((P)&.

Thus

(2.9')

with

~= +11((a)&(y«}1

(2.3)

(2.4)

GG = g 1$(a))(g(a)1=9' .
a

G'G = g 1
y(a)) &y(a)

1
=~o,

a

[GGt,P„]=0 .

(2.1 1)

(2.12)

(2.13)

as projection onto A @ and B=1—9'.
We also consider another set of states

&y(a)
1
q(P) &=a., (2.5)

which we later chose to be states of N noninteract-
ing (bare) nucleons, and define 1$(a})=m„(a)1$(a)). (2.15)

Then we define Hermitian effective operators by

(2.14}

Multiplying from the left by G and using (2.8) and
(2.12) we obtain from (2.1}

(2.6) This is an eigenvalue equation in the nucleon space.
We also need an equation that determines G. This

is obtained by projecting (2.1) onto Bo='1—9 o.Bo——1 —9'o .

(2.16)

(2.7)
I

&&olP, G
I 0«}&—2 &&ol G14(p}&&4(p}IPp" 1((«}&=0.

Equations (2.15) and (2.16) are equivalent to the ori-
ginal equation (2.1). So far everything is quite gen-
eral and there is as of yet no explicit construction of
G. We have introduced this general form only to
show that Lorentz covariance in the nucleon space
does not hinge on special forms of effective interac-
tions.

To see this we recall that there are ten Poincare-
I ie operators t.; with the commutation relations

[Li,L, ]=pa,lL, , (2.17)

where the aij are known coefficients. The construc-
tion of the L,; from the stress tensor is standard. "
Four of the L; are the four-momenta P& (generating
translations}. There are six rotations, three of them
being I.orentz boosts. Consider the mass operator
M,

M = —P~P~, (2.18)

[L;,9']= [L;,GGt] =0 . (2.19)

Here we have used (2.11). From (2.14) and (2.17) it
follows that

[L,LJ' ]=[GtL;G, G LJG]
k eff= ga;, Lk

k
(2.20)

which as a scalar commutes with all the L;. Return-
ing to our problem we recall that we are below
meson threshold. Thus we are in a subspace with
eigenvalues of M below the lowest eigenvalue of a
state with one additional meson. The operators
L;—commuting with M—therefore cannot connect
states in 4 s with A @ [see Eqs. (2.3) and (2.4)].
Thus
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x&~(pi (2.21)

This establishes the desired commutation relations
of the effective operators in the nucleon space and
thus leads to a relativistic description even after the
mesonic degrees of freedom have (formally} been el-
iminated. Neither perturbation theory nor unitarity
of 6 was necessary for this result.

To obtain an explicit construction of 6 in terms
of known practical methods, we make the following
assumptions:

(1) All wave functions P(a ) EA ~ have a nonvan-
ishing component P(a) in the Fock space of N nu-
cleons.

(2) The components P(a) are complete in the
Fock space of n nucleons, i.e.,

+o—= X I N«}&&0«}I

a

= f dpi dp~ I P(pi pN}&

The square root takes care of the normalization.
Comparing with (2.10) we obtain

6 =(1+F) 1

( 1 +FtF)1/2
(2.24)

with

F=&oF9'o ~ (2.25)

(1+F )L((1+F)(1+FtF)'/

Thus F creates noninteracting mesons and nucleon-
antinucleon pairs. We do not need to write the pro-
jection B in front of the right-hand sides of (2.23)
and (2.24). Owing to (2.1) this operator has no com-
ponents connecting with A @. (In fact, 6 is now a
part of Okubo's unitary operator. ) By the same to-
ken, the effective operators

Here X (1+F'F)'" (2.26)

~
f(a)&=(i+F) t, /, ~(('(a)& .

( 1+FtF)I/z (2.23)

0(pi'''pN} a (pl} a (pN}40

[with Po the bare vacuum; a (p) creates a nucleon
with momentum p;; spin and isospin labels are
suppressed]. We shall discuss these assumptions
later on. With these assumptions we can write f(a )

as

again do not need the projections H. The states
P(a) can be written as

~
p(a}&—= f dpi dp

I 4(pi

Xr(a pi p„) . (2.27}

The eigenvalue equation (2.15) becomes an equa-
tion for the "vector" r(a p& p~} and the "equa-
tion for F"becomes

&F,(1+F} t », I((}V» pN}& f dphil dpN@oF t, /g I ~(p& pÃ'}&
(1+FF)'/' (1+FF)'/'

x&y(p( . piv) Ipi',"14(p) pN)&=0. (2.28)

This equation explicitly exhibits the facts that F de-

pends neither on the eigenvalues nor on the boun-
dary condition of scattering states. Remember,
there are two unitarily equivalent sets of states
f+(a) and g (a) in 4 ~, corresponding to outgo-
ing and ingoing scattered waves. Owing to the
second assumption we are allowed to use free nu-
cleon states in Po and Bo and hence have no
asymptotic behavior to watch. This is different in
the eigenvalue equation (2.15). Indeed here we must

pay due attention to the scattering conditions and
have either P+,r+ or P

The question may fairly be asked whether the two
assumptions are really necessary. With some reser-
vations the answer is yes. If we relax the first as-
sumption, then some f(a) would have no com-
ponent in 4 ~, and these states would be "lost." If

the P(a) would not be complete the momentum in-

tegral in (2.18) [right-hand side of (2.21}] would
have to be replaced by a sum over states P(a),
which we do not know. This would make (2.28) use-
less and F dependent on the scattering boundary
conditions. We expect that above meson threshold
the completeness is lost as a new channel is open.

We cannot prove that in a given situation for a
given field theory the assumptions are valid as in
two body scattering theory, where the completeness
is proven for a large class of potentials. However, in
a reasonable field theory the g(a) and P(a)—
describing asymptotically free particles in a scatter-
ing situation —should have the desired features.

Inspecting the zeroth and first order terms, it is
found that both assumptions are made implicitly in
perturbation theory. The zeroth order assumes that



768 H. KUMMEL

there is a P(a) in terms of nucleon states. Specifi-
cally, below meson threshold the energy denomina-
tors never vanish (no boundary condition}. Al-
though perturbation theory supports the theory
presented here, it is hoped that the latter is more
general, valid also for nonperturbative solutions
such as coherent states.

A final remark concerning our first assumption.
In all existing field theories —including those we do
not need to renormalize —the bare nucleon com-
ponent in the physical state is infinitesimally small
if the normalization volume becomes infinite. This
fact concerns very many papers using perturbation
theory, especially those using Okubo's transforma-
tion. They all would be wrong without this assump-
tion. The reason why —assuming we have a well-
understood underlying field theory —they probably
are correct is the following. For physical
quantities —like the energy —only infinitesimal parts
of the wave functions are important. The bare nu-
cleon component is one major infinitesimal contri-
bution among others. Leaving this component out
would make the energy grossly incorrect. In other
words, we need it, infinitesimally small or not. The
fact that only infinitesimal parts of the exact wave
function are relevant becomes even more evident if
one considers the realities of measurement pro-
cedures. For instance, "measuring the energy,

" we
"know" that our object is in the laboratory. In addi-
tion, there are some errors involved in the measure-
ment process. In other words, the Hamiltonian and
its eigenstates do not correspond to realistic mea-
surements of energy. Some averaging, smearing,
andior coarse graining is required. Such a pro-

I

cedure will affect mainly the "complicated" contri-
butions to the wave function. That is to say, only
relatively few "simple" components are needed for a
"realistic" wave function. Although we cannot
prove it, it is assumed that the bare nucleon com-
ponents now constitute a finite component of the
realistic wave function and that we may compute it
using the idealized Hamiltonian, wave functions,
eic.

The preceding construction of effective operators
is not unique. There exist several other versions.
Here we write the siinplest form we can imagine. It
is adapted from the form employed mostly in many
body theory.

We replace the orthogonal set P(a ) by a biorthog-
onal set

+0=/ ly(&))(y(&)l,
a

(y(~}
l y(p)) =~,

The wave function is written as

l
P(~)) =G

l P(u)),
with

(2.29}

(2.30)

G =P(1+F)9'0 . (2.31)

Using essentially the same methods as before we ar-
rive at the eigenvalue (Schrodinger) equation in the
bare nucleon space

P„' lP(a))=n„(a}lP(a)) (2.32)

and the "equation for F"

BOP„(1+F)
l
p(a) ) —g BOF

l {t (p) ) (p(p)
l
P„"

l p(a) ) =0, (2.33)

with the non-Hermitian effective operator

P~ 9'Opq(1+F) %——0 .

P(a) of course can be written similarly as in (2.34).
form

(2.34)

For later use we rewrite this equation in a more explicit

and

I dp'i dp~(pi » lP„' lp'i pN)r(& p1»}=~„(~}r(~Jpi »)

&OP~(1+F)IPi'''»& —Jdp'i ' d»&oF IP'i ' '»&&Pi '' »IPi' I»'' »&=0

(2.35)

(2.36)

with

(2.37)
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It is clear that the operator F in both versions dis-
cussed here is the same. Thus one may use the
simpler equation (2.33} instead of (2.28} to obtain F
and insert it into (2.15), to retain Hermitian opera-
tors P& and mutually orthogonal P(a). Of course
(2.34) may also be made Hermitian. But this does
not lead to any simplification.

Equations (2.32) and (2.33) lead to the folded dia-
gram expansion well known in many body theory.
The coupled cluster method is another way to treat
these same two equations. It is not tied to perturba-
tion theory. The operators L defined in the same
manner as Pz [Eq. (2.34)] do not have the same
commutation relations as the I.;, in contrast to the
Hermitian choice (2.26). Instead

[L,",LJ' ]=ga"Lk GtG . (2.38)
k

~off
The oy

—ators L still represent the translations
and rotations in the biorthogonal representation
P(a } of the nucleon states. They seem not to be of
any use, however.

III. DECOMPOSITION OF EFFECTIVE
OPERATORS

We explicitly construct a series of non-Hermitian
effective Hamiltonians for the 1,2, . . . , nucleon
problem. We start by assuming that we have solved

I

the vacuum problem, writing the vacuum state
preferably in the form

e sHes
~
Pp) =E

~
Pp) . (3.2)

We now proceed to the one body problem, writing
its state (using momentum conservation} as

~ P, (P) & =e'(1+F'")a'(p)
~ Pp & . (3.3)

F'" is the operator to be determined. It can be writ-
ten as

F'"=g F„'"
n, m

with n /rn as the number of created nucleon-
antinucleon pairs/mesons. F'" also changes the
momentum of the one nucleon present "before"
creation. The following example illustrates its struc-
ture:

of the coupled cluster theory. This form is closely
related to the Gell-Mann —I.ow form of the ground
state' and could be computed within the coupled
cluster formalism, S= gS„, where S„creates n

mesons and nucleon-antinucleon pairs. S is con-
sidered to be known, e.g., by somehow solving the
eigenvalue equation in the form

F~'~ —— p~ p2 p3 p4 a p~ a p2 a p3 a p4 F'~'~ p~p2p3p4

(bt resp. a create a meson resp. an antinucleon. )

FI'I(p& k) is the yet unknown amplitude which
must include momentum conservation. The
Schrodinger equation is written as

e He (1+F"')a t(p)
~ yp )

=EJ,(1+F"')at(p)
~ Pp) . (3.4)

e s is applied to extract from this equation the vac-
uum state and energy. Projecting this equation onto
a state P (p) we obtain

(P(p') ~e He (1+F"')at(p)Pp) =E&5(p —p') .

(3.5}

Ie He (1+F"')a (p)]I~ .

This leads to

&p'
I
Herf'

I p & =(~p E-.@(p —p')—

=e~5(p —p'),

with

and

H,",,' ~ p &
= te-'He'(1+F"')a'(p}I~

~
yp) .

(3 6)

(3.7}

We now perform the contractions within the matrix
element on the left-hand side of this equation. Col-
lecting all contractions not connected to F"'a (p),
we obtain the vacuum energy [compare with (3.2}].
All other contractions lead to completely linked
terms, connecting operators directly or indirectly
with each other. We denote this part by

Equation (3.6) is the eigenvalue equation for the
one body problem. Whereas ez is known to be
(p +M )'~, it is by no means trivial to calculate
F'". The equation for the latter is obtained by pro-
jection of Eq. (3.4) with Sp [projection onto states
different from the one nucleon states P(p)]:
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& &o
I
H.'rr' I Po &

—
& &o

I

F'"
I
PV') & &p IHIrr~

I & &
= (3.8)

This equation corresponds to (2.36). It is clear that
(3.8) must be solved by some method, either pertur-
bation theory in QED or a scheme truncating
beyond a certain number of meson and nucleon-
antinucleon pairs. The latter corresponds to the sub-
system approximation in coupled cluster theory. '

One also could think of other nonperturbative

methods. Here we take the position that we can deal
with relativistic quantum field theory, which implies
that we at least know what the physical vacuum and
one particle states approximately look like. We are
aware of the fact that in realistic field theories this
is not the case. However, in field theoretical models
the situation sometimes is much better. ' We now
proceed to the two nucleon problem, going very
much along the same path as before. The wave
function is written as

I yp(a) &= f dpidp2e (1+F'"+ , :F'":—+F'')
I y(pip2)&7-(a:p]p2) . (3.9)

The idea behind this ansatz is, of course, that we want to incorporate vacuum fluctuations as well as the
"clothing" of the nucleons, such that F' ' carries only those contributions which come from meson exchange
between the two particles. The factor —, is needed to avoid overcounting; the normal product to avoid contrac-
tions. F' ' has the same structure as F"', except that now two nucleons are involved. The eigenvalue equation
again is written as

' f dpidp2e He (1+F'"+, :F"':+—F'')
I $(pip2) &r(a:pipz)

=E~ f &pi&p2(I+F'"+ ,':F"":+—F"')
I P(p,p2) &r(a p,p, ) . (3.10)

By projecting onto a state P(pipi) of two nucleons we obtain the eigenvalue equation in the nucleon space in
the form

f dp'dJ 2I ,'&pip2 I-H'rf Ip'is 2&+&pi IH'rf I pi &~V» —~z)+&p2 IH'ff I» 2 &~(PI Pl)jr(af lp2)

=Ep(a )r(a:p ip2), (3.11)

where

H.'rf I air» &
=

I e 'H"(1+F'"+ , :F'":+F"'—)~'9i)~'V»)) ~ I ko & . (3.12)

Equation (3.12) has been obtained in a similar way as before: It contains all contractions producing completely
linked structures. Those linking only with one a (p) produce the one particle operators and wave equations,
those linking with no a (p) produce the vacuum. On the left-hand side a decomposition of the total effective
two body operator H, g~ into a two body part and one body part has been achieved:

(2)

Heff Heff+ g Heff(i) . (3.13)
i =1,2

The equation for F' ' is obtained as before by projecting onto states different from p(p ip2):

&&olHeff ls u2& —f ~ÃduzI , &&olF—"'+,~"':+F"'I09 'ipz)&&pa 2 IH'rr' lpa2&

+ & &o
I

F' '
Iuip2 &I:&Pi I Herr I pl &59» —p2)+ &P2 I Heff IP2 &(iV i

—pi1l =o .

(3.14)

We may proceed to the three particle problem; as no new ideas and methods enter, we just state the main re-
sults. The wave function now is

I
1(i(a) &= f ~pi&p2~pse (1+F'"+, :F'":+F'"F"':+—,:F"':+F' ')

I 4(a—ipzp3)&«a piSzp3) .

The total effective interaction becomes

1
3— 3

H ff =H ff + 2 QHeff(i, j)+ g H,ff
i=1

(3.15)

(3.16)
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with

H, rr ~pip2ps) = Ie He (1+F'"+ , :F—'":+F''. :F—'":+F'')at(pi)at(p2)at(pi)]~
~ $0) .

3t

M(3)
We may extract from H, ~~ via (3.16) .and (3.6) the one particle energies obtaining

f dpidpzdps(pip2p3 ~H,ri'+ 2 QH, g(ij)~pip2p's)r(apip2p'3)=[E3(a) —ez, ez—, ez—, ]r(apip2p3) .
lJ

(3.17)

Again the desired decomposition is obtained. H, ff
consists of a three body part, two body parts, and
(trivial) one body parts, where the two body part is
known if the two body problem has been solved.

It is clear that one may go on to higher nucleon
numbers in the same way. A general theory for the
corresponding many body problem is described in
Ref. 5. We could have used the same procedure for
the momentum operators as well. %e remark here
that we have used this special non-Hermitian
version —closely related to (2.34)—because in the
Hermitian version with operators (2.26) the factor
(1+FF) ' with

I

properties. Take, for instance, the two body case

l(2(~)) =e (1+F)p(~)), (3.18)

(3.19)

have the same translational symmetry as if there
were no mesons, i.e.,

r"[~ «}pip2] ~[pl+p2 ir.«}]

with F given by (3.9}. It is easily seen that the
r"(a.p,p, ) of

i(()(&}&=f dpidp2
~
P(pipi))r(~ pip2)

p y(&)+ ~(&) .+p(2) Xr[~ (~)pi —p2] (3.20)

mixes two and one body effects in such a way that
they cannot be disentangled. In this case the nice
feature that, e.g., the two body force to be used in
the three body problem is the force of the two body
problem, is lost. As all versions are equivalent, fi-
nally it must be possible to reshuffie, e.g., the per-
turbation series such that the decomposition is
recovered —but this is a long way to go. For obvi-
ous reasons it is desirable to extract from, e.g., the
three body equation, what we "knew" already about
the vacuum, and the one and two body problems.
This can be achieved only with the non-Hermitian
orm.

It is important to recall that the operators I' do
not depend on the state to be considered. They do
depend only on the number of nucleons (or the
eigenvalue of the mass operator). Thus the effective
operators also do not depend on the eigenvalues
nz(a). Knowing that, for instance, the center of
mass momentum is a good quantum number, we im-
mediately realize that the effective operators do not
depend on it. In the case of non-Hermitian opera-
tors [nonorthogonal P(a)] this leads to desirable

where n;(a) is the center of mass momentum. We
use the fact that in the interaction representation at
t =0 the momentum can be written as

P; =Pi(N)+P;(m), (3.21)

i.e., a sum of "free" nucleon and meson momentum
operators. Inserting this into the eigenvalue equa-
tion for the momentum

(P(p&p2
~

e P;fi(a)) =m;(a)r[m;(a) pip2]

(3.22)

we obtain for all (p ip2 )

m;(a)r[m;(a) pipi]

=(pi+p2)&l~ «)pip2]

which yields (3.20). (The introduction of the vacu-
um amplitude S is not essential, such that this result
is quite general. } The orthogonal P(a) or their ex-
pansion coefficients r(apip2) are related to the
nonorthogonal ones via

r«pip2}= f dp'idp2(4(plp2)
I t i' I(('(plp2))r(apip2)(1+FF)'i (3.23)

and therefore do not have property (3.20). This is
not surprising, as the P(a) are the direct bare nu-

cleon components of P(a) [see (2.30)], whereas the
P(a) are not [see (2.23)]. In this way it is made

I

clear why the non-Hermitian effective operators
have somewhat simpler features, allowing for a
decomposition into genuine one, two, . . ., body
operators.
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IV. SUMMARY AND CONCLUSIONS

We have obtained a (formally exact) relativistic
representation of the meson-nucleon system below
meson threshold in the space of nucleonic degrees of
freedom only. One has either Hermitian effective
operators (interactions) acting in this space with all
desirable transformation properties under the Poin-
care group, or non-Hermitian ones with the other
desirable feature of allowing for a decomposition
into one, two, three, etc., particle operators. No per-
turbation theory has been used. This leads to a pro-
gram requiring the solution of the vacuum, one

body, two body, etc., problem. The underlying ideas
borrowed from the coupled cluster many body
theory seem to be helpful. Solution of the set of
coupled cluster equations via perturbation theory
leads to the well-known folded diagram expan-
sion. Indeed the recent paper by Li et al. ' is a
special case of the general method described here.

A recent study of the Goldstone boson' has
shown that the methods proposed in this work can
be applied sucessfully. In this model the renormali-
zation problems easily can be overcome. The one
particle state can be computed using the standard
coupled cluster truncation. The results are en-

couraging up to large coupling constants. It is re-
markable that the violation of relativistic invariance
due to this truncation is consistent with the errors
introduced via this approximation. Note that one
should not expect exact Lorentz invariance. On the

contrary, forcing an approximate wave function into
an invariant form may make the wave function
worse.

It is clear that for realistic quantum field theories
there are several obstacles we have to overcome.
First, one has to reorganize standard renormaliza-
tion procedures away from perturbative methods to
coupled cluster structures. This is not easy, but we
believe that it can be done. Second, some good argu-
ments are needed to justify the coupled cluster trun-
cation scheme. There are several such arguments in
nonrelativistic many body theory. None of them
seem to apply to relativistic field theories —except
numerical evidence for good convergence (which
may be deceiving).

Although many problems have still to be solved,
the knowledge that effective operators with desirable
features exist has helped to guide calculations.
Hopefully it will do the same in future applications.
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