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A universal form for the dependence of the second-order pion-nuclear optical potential on
the nuclear and pionic isospin and on the densities p and hp is derived, where p is the total
density and dy is the valence neutron density. The result is characterized by five complex
parameters for each partial wave channel contributing to the optical potential. Our result

applies to scattering in the vicinity of the (3,3) resonance, and the parameters may be most
cleanly determined phenomenologically by applying the theory to elastic, and single- and
double-charge-exchange data for medium to heavy weight X=0, spherical nuclei. The rela-

tionship between the parameters and a microscopic cluster decomposition of the optical po-
tential is explored. The parameters are calculated theoretically for selected second-order
processes to obtian a first orientation to the magnitude of the terms. The results show, in

particular, that large contributions to double charge exchange arise from nonanalog inter-

mediate nuclear states and that these contributions have a characteristic isospin dependence
which is different from that found in the simple models previously studied.

NUCLEAR REACTIONS Scattering theory for elastic, and single- and
double-charge-exchange to IAS in the region of the p33 resonance.

Second-order effects.

I. INTRODUCTION ty expansion. We express this expansion as

Pion-nucleus elastic, and single- and double-
charge exchange scattering to the single- and
double-isobaric analog states are related to the iso-
spin symmetry of strong interactions. To the extent
that isospin breaking effects can be ignored, these
scattering processes can be treated theoretically on
the basis of an optical potential of the following

U=Up+Ui(p T)+U2(p T)

where P is the pion and T the nuclear isospin opera-
tor. This form of the pion-nucleus optical potential
is analogous to the Lane' form of the nucleon-
nucleus optical potential. However, for pions there
is an additional term in the potential, the "isoten-
sor" term U2, which is allowed because in this case
the isospin of the projectile is unity. The quantities
Uo and U~ are the isoscalar and isovector terms. In
principle, Uo, U~, and U2 may be calculated micro-
scopically by an expansion in terms of the number
of active nucleons, commonly referred to as a densi-

(1.2)

where the superscript indicates the number of active
nucleons, so that U'" is the first-order optical po-
tential, U' ' the second, etc.

In the recent past, numerous theories of pion-
nucleus scattering have been proposed, some of
which are given in Refs. 2—8. All modern ap-
proaches such as these include second-order terms of
one form or another. The second-order terms are of
fundamental interest because they measure the ex-
tent to which multiple scattering differs from a se-
quence of free elastic scatterings of the projectile
with nucleons in their ground state. Most of the
theoretical effort has been directed toward charac-
terizing the second-order isoscalar terms. These are
now recognized as being large, and necessary for a
correct theoretical interpretation of the scattering
data.

For nuclei with a neutron excess, the isovector
and isotensor terms contribute, in. addition to the
isoscalar. Because most nuclei have a neutron ex-
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for J=0 spherical nuclei. Our main result is a
universal form for this dependence characterized by
five complex coefficients at a given energy. Such a
result should prove useful as a phenomenological
basis for data analysis. To obtain a first orientation
for their size, we calculate values for these coeffi-
cients corresponding to a few important second-
order processes. The sensitivity of single- and
double-charge exchange cross sections to these terms
will be demonstrated in a subsequent paper.

To accomplish our goal, we will assume that the
underlying dynamics is described in terms of meson
fields interacting with a collection of A fixed nu-
cleons. ' The important coupling of the pion direct-
ly to the isobar 533 is encompassed in this approach.
Because we are working in the context of a field
theory, our optical potential is crossing symmetric
and is used in a Klein-Gordon equation in order to
calculate phase shifts. For zero-range couplings to
the nucleon, we are led to a second-order potential
that can be incorporated easily into the computer
code PIRK (Ref. 17); for finite-range couplings an
adaptation of the code PIPIT (Ref. 18) can accomo-
date our results.

The outline of the paper is the following. In Sec.
II we briefly discuss the theoretical framework
which we adopt for our multiple scattering theory.
Since this framework has been developed for elastic
pion-nucleus scattering, we need a method of ex-
tending it to include the isobaric analog states. We
do this in Sec. III for a general pion-two-nucleon in-
teraction. In Sec. IV an approximation scheme is
proposed in which a nuclear matter calculation is
used to estimate the scattering from a finite nucleus.
The resulting local density approximation is dif-
ferent from the one normally employed and contains
an important correction arising from the rate of fall-
off of the density in the nuclear surface. In Sec. V
we discuss in detail specific examples of terms

which contribute to the second-order optical poten-
tial and we obtain our main result, Eq. (5.35), which
we argue applies to more general second-order dia-
grams that we have not explicitly evaluated. The
specific cases are evaluated numerically and the re-
sults are given in Sec. VI; Sec. VII summarizes the
main results of the paper.

II. SCATTERING THEORY

We consider the optical potential within the
framework of the fixed scatterer field theory of Ref.
16. In this reference, the optical potential for elastic
scattering was discussed in terms of the spectator ex-
pansion, ' which lead directly to the classification
scheme described below Eq. (1.1). The various
terms in U are given by a diagrammatic expansion

cess, a restricted treatment of the isospin dependence
of the optical potential limits the applicability of the
theory to a small subset of possible nuclear targets.
To treat T&0 nuclei with as much care as T =0 nu-
clei, a substantially more complicated operator U' '

is required: Each of the terms U~z ', UP, and U~q
'

becomes a quadratic function of the nuclear densi-
ties p and bp, as well as a function of the nuclear
isospin T. However, now that single- and double-
charge-exchange experiments are being done with
very high precision, the data warrant the introduc-
tion of these complexities. Indeed, because double-
charge exchange is driven by terms quadratic in the
density, a more sensitive analysis of U' ' is possible
than would be with only elastic scattering. The
prospect of a direct determination of the isovector
and isotensor terms has a practical consequence for
nuclear structure, because these terms also describe
the details of pion elastic scattering, which must be
understood in order to take advantage of the unique
features of the pion as a probe of the neutron halo in
nuclei.

In the description of higher-order scattering by
Eq. (1.1), scattering through intermediate single- and
double-isobaric analog states is singled out, and the
repeated transitions of this nature are treated expli-
citly by the scattering equation. Thus, U ' de-
scribes in a single action of the optical potential all
processes which do not involve isobaric analog tran-
sitions. Miller and Spencer' and Ericson and Er-
icson, " among others, have stressed the role of cer-
tain terms in charge-exchange reactions. Examples
of second-order effects include the Pauli principle,
the Lorentz-Lorenz Ericson-Ericson effect, mnin-.
teractions, ' and various 5-nucleus interactions. '

Second- (and higher) order terms are also generated
when U is calculated self-consistently'; such a treat-
ment is important for elastic scattering' and also
presumably for charge exchange in the resonance re-
gion. An often neglected term in U' ' which we
find to be important is the effect of nonanalog inter-
mediate nuclear states in the double scattering of the
pion from two nucleons through the elementary
pion-nucleon scattering amplitude.

Because so little attention has been paid to the
isospin dependence of the second-order optical po-
tential, we feel that it is appropriate in this paper to
limit our ambitions. We will not attempt a complete
calculation of second-order effects based on the
most up-to-date theory; indeed, as there exists no
complete microscopic model of pion-nucleus scatter-
ing theory, such a calculation is not possible at the
present time. Rather, we set as our main purpose in
this paper to seek a form for the dependence of the
second-order optical potential on the total nuclear
isospin and on the densities p and hp appropriate
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similar in appearance to Feynman diagrams and
evaluated in terms of propagators and elementary
pion-nucleon interactions, the rules for which being
fully specified in Ref. 16. A few of the terms con-
tributing to the second-order optical potential are
shown in Figs. 1 and 2. In these diagrams, upper
case letters A and B denote single particle states in
the normally occupied Fermi sea, that is, we en-
vision describing the nuclear ground state

~
40 ) by

I
@o&=~gf"l~» & ), '&j, (2.1)

where W is the antisymmetrization operator, fJ is a
two-body correlation function acting between parti-
cles i and j, and

~
A», . . . ) is a product of single-

particle orbitals representing the ground state con-
figuration of the nucleus.

Figures 1(a) and (b) are the direct and exchange
matrix elements of the double scattering terms in
Fig. 4 of Ref. 16. Figure 1(c) is the once-iterated
lowest-order optical potential which must be sub-
tracted from the sum of Figs. 1(a) and (b) in order to
obtain U, also shown explicitly in Fig. 4 of Ref. 16.
According to the discussion of Ref. 16, a completely
crossing symmetric optical potential is obtained by
adding to the optical potential all distinct crossed
terms. Figure 1(d) is the crossed process corre-
sponding to Fig. 1(a). It is easy to verify, however,

(a)

0

GAIA

O GAPA

(c)

FIG. 2. Additional two-nucleon processes contributing
to the pion-nucleus optical potential. (a) is third order in
the pion-nucleon scattering amplitude and is referred to as
a reflection process, whereas (b)—(d) involve various
isobar-medium effects. Each process has a corresponding
exchange and crossed piece.

(b)

(c)

FIG. 1. Two-nucleon processes contributing to the
pion-nucleus optical potential. These terms are second or-
der in the pion-nucleon scattering amplitude and are re-
ferred to as sequential scattering processes.

that the terms 1(a), (b), and (c) are automatically
crossing symmetric if the pion-nucleus amplitude
(represented by the rectangle in Figs. 1 and 2) is
crossing symmetric. We shall assume that this is
the case, and hence there are no explicit crossed
pieces needed corresponding to Fig. 1. We shall cal-
culate and study in detail the contribution of Fig. 1

to the second-order optical potential in succeeding
sections.

Figure 2 shows a few of the additional processes
which are second order and encompassed within the
framework of Ref. 16. Figure 2(a) shows a piece of
the triple scattering term of Fig. 4 of Ref. 16. This
is also called the "local field correction" in the nota-
tion of Ref. 20, and when evaluated self-consistently
can account in large part for the observed spreading
of the width of the 633 resonance. ' Figure 2(b)—(d)
are contributions to U' ' arising from isobar interac-
tions with the nuclear medium, which may give im-
portant contributions to double charge exchange. '

We will not calculate explicitly here any of the
terms of Fig. 2 or their crossed counterparts, but we
will give arguments that these and all other second-
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order terms may be cast into the same universal
form as those of Fig. 1.

In addition to the processes shown in Figs. 1 and
2, it is also possible to exchange a p meson between
the two nucleons. This process is believed to make a
large contribution at low energy. We have es-
timated the effect to be small for sequential scatter-
ing at resonance energy and it has therefore not
been included here.

Reference 16 deals with elastic scattering, and to
derive U of the form of Eq. (1.1) requires an exten-
sion of the ideas expressed there. The main differ-
ence is that the U in Ref. 16 is projected onto the
nuclear target ground state, whereas in Eq. (1.1}
there are also matrix elements of U connecting to
the isobaric analog states. Thus, we shall need to
utilize isospin symmetry to express the three quanti-
ties Uo, Ui, and U2 in terms of ground state matrix
elements discussed in Ref. 16. Secondly, we shall
have to be careful to restrict the intermediate states
in the subtracted term of Fig. 1(c) to the ground
state, and single analog. Since Figs. 1(a) and (b) in-
clude all nuclear intermediate states through the use
of closure, the difference, Fig. 1(a) + Fig. 1(b)—
Fig. 1(c), is the contribution of the nonanalog, dou-
ble step route to elastic and single- and double-
charge exchange.

III. GENERAL ISOSPIN DEPENDENCE

The assumption of total isospin invariance can be
used to obtain the explicit isospin dependence that
results from the pion-two-nucleon (m.-2N) interac-
tion. It can also be used to relate the m-2N isospin
dependence to the pion-nucleus isospin dependence.
I.et D~2 be an operator on the m-2N isospin space

(y)

I

U= g [Up(y}+ Ui(p)(f'T)+ U2(y)(f'T) ]

~

@o&=
~

u'T=To, M= —To&, (3.1}

where a contains all of the remaining quantum
numbers necessary to describe the target, and
To (N —Z)——/2 in terms of the number of neutrons
(N) and protons (Z). Within our model of isospin
invariance, we assume that the single- and double-
analog states are also described in Eq. (3.1) except
that M =—To+1 and M= —To+2, respectively.
From our two-body operator D&2 we can construct(y)

an operator on the entire nuclear space,
D'r'= QD(~j~ .

l+J

We may identify the optical potential U as gpr'
on the space of nuclear ground and analog states by
taking appropriate linear combinations of elastic
matrix elements of D'r' between physical states.
The relationships are~4

(3.2)

whose matrix element results from a specific process
contributing to the first two terms in Fig. 4 of Ref.
16, examples of which are shown in Figs. 1 and 2 of
this paper. (Throughout this paper a caret over a
symbol shall indicate an operator on the pion's iso-
spin. ) This operator will be a function of the isospin
operators for the pion (P ) and the two nucleons (r

~and rq). Total isospin invariance implies that Di&
must transform like a scalar under rotations in total
isospin space; thus its dependence on P, Pi, and ri
is constrained. Given the explicit ~~ and ~2 depen-
dence of D ir2, the next step is to make contact with
the nuclear isospin operator T. Toward this end, we
first need to explicitly display the isospin depen-
dence of the nuclear isobaric analog states (IAS).
For example, we denote the ground state as

where

U (y}=[(D' ')++(D'r') —2(D' ')o]/[T (2T —1)],
U, (}}=[&D"'&' &D"'&+]/-To+ ToU (y),

Uo(y) = (D'"') —ro Ui(y),

and the elastic matrix elements are defined as

(3.3}

(3.4)

(3.5)

(D'"') = (aTO, —To, k '1,m
~

D'"'
~

aTo, —To,' k l,m ) . (3.6)

In Eq. (3.6) k (k ') denotes the pion's initial (final) momentum and m denotes the pion's charge state. Also,
when summing over diagrams in Eq. (3.2), we remind the reader that exchange graphs enter with a minus sign.

For the purpose of identifying the optical potential of Eq. (1.1},our above prescription is to set up the prob-
lem in the physical elastic channels. As we have stressed, the advantage of this approach is that we may use
well known diagrammatic rules for calculating the optical potential.

Our goal is now to explicate the general structure of the second-order optical potential, which is, for exam-

ple, simply related to the diagrams in Figs. 1 and 2. According to the results of Ref. 16 and Sec. II, we may
write for each process depicted in these figures
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(D'r'(k', k)} = f dr, dr e 'b, '"'(k', k;r„r )e (3.7)

where the indices i and j take the value 1 or 2 depending on the specific diagram. From this expression, we see
that the specific dependence of D'i'' on p, r i, and Pz is contained within 6'r'. We find the most general form
for b'"' by building overall scalars out of various tensor products of P, xi, and r2. Since b'r' is defined by
ground state matrix elements, the combinations of xi and rz are further constrained from changing the total
isospin of the 2N subsystem. These scalars can be constructed by using standard recoupling techniques, and
then taking combinations of scalars that are symmetric under interchange of the nucleon labels (Dii ——Dzi }.
Our result is

X (I tA(1)ta(2)
I

IaÃ'a'+bAB rl +2+cAB f (+1++2)+dAB'rl2I
I
t~(1)ts(2) ni &

AB

(3.8)

where

(3.9)
g(y)

T [2T 1]
d' —'(k', k;ri, r2), (3.10c)

d'or'

——a'r'(k ', k; r i, r2)+b'r'(k ', k; r i, r2)

2d'r'(k, k;r, ,r2)

[2TO —1]
(3.10a}

c'"'( k ', k; r i, r2)
0

d'r'(k ', k;ri, r2), (3.10b)

Alternatively, we could have used the m-2N isospin
projection operators to decompose Da2 onto chan-
nels of total isospin and 2N isospin. The conclusion
is the same: There are four linearly independent
terms that characterize the isospin dependence of
the m. 2N ope-rator appropriate for analog transi-
tions. Of course the coefficients a, b, c, and d con-
tain spin and spatial dependences, and the details
that result from these additional degrees of freedom
will be different for different processes. We have
summed over all quantum numbers without restric-
tion in Eq. (3.8), recalling that there is no overcount-
ing in diagrams provided direct and exchange are
both calculated.

By using Eqs. (3.7} and (3.8} together with the
procedure given in Eqs. (3.2)—(3.6), we may identify
the corresponding contribution of a specific diagram
to the isoscalar, isovector, and isotensor optical po-
tentials [U,(y);1=0,1,2]. That is, the U;(y)'s are
given by Eq. (3.7) with D'r' replaced by U;(y) and
h(y) replaced by b,;(y). The b„'"' in turn are con-
structed by taking the appropriate linear combina-
tions of elastic matrix elements of Eq. (3.8), and we
obtain

where

a '"'( k ', k; r „r2)= g a„'rs',
AB

(3.11a)

b ' '( k ', k; r i, r q}:—g bqtt'4' ts,
AB

(3.11b)

c 'r '( k ', k; r i, r i)= gcztt'2(tq + ttt ),
AB

(3.11c}

d'r'(k', k;ri, r2)= gdztt'4tzttt,
AB

(3.11d)

and where t =+—, is the nuclear isospin.
We see from these general results that our task

reduces to determing the coefficients a„'rs' —dies' of
Eq. (3.8). As mentioned above, these coefficients de-
pend upon k', k, ra, and r2, however, we may
separate the nuclear density dependence of these
coefficients. We shall proceed by ignoring the spin
density matrices, and hence the initial and final
states of the coefficients a through d below have the
same spins. As we discuss more fully in Sec. VII,
the contribution of the spin densities is small in
medium to heavy weight J=0, spherical nuclei. For
light nuclei, we have no strong argument that these
terms are negligible; however, the methods we have
outlined can also be applied to these cases, and fur-
ther investigations of this point would be useful.
Without making further assumptions, these coeffi-
cients can be shown to have the following form:

I

a+~~' I'zs(ri, r2)n„'tt'(r„r2)(sq(——1)s (2i)iI a 1, ,
1, (ri —r2) Is&(1)ss(2)),

bqrtt'=I hatt(ri, r2)nqrs'(ri, r2)(sq(1) si(t2)
I
b k, k (ri —r2) I

sq(1)ss(2) },
(3.12a)

(3.12b)
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(3.12d)

cA'B' ——I AB(ri, r2)nAB'(ri, r2)&sA(l)sB(2)
I
c k, i, (ri —r2)

I
sA(1)sB(2) &, (3.12c)

dAB' ——I'AB(ri, r2)nAB'(ri, r2)&sA(l)sB(2)
I
d k. i, (ri —r2)

I
sA(1)sB(2) &,

where I'AB is the radial distribution function, nAB is a product of single-particle density matrices, and s refers
to the z projection of the nucleon s spin. There are only two combinations of density matrices that arise, direct
and exchange. For the direct combination [Fig. 1(a)].

nAB'(ri r2)=&sA Ip "(ri ri) lsA &&sB Ip

whereas for the exchange combination [Fig. 1(b)],

nAB'('i r2)=&sA
I p

" (r2 ri)
I

sA &&sB
I p

' (ri r2)sB & .

In these expressions, p'"( r i, r2) is the single-particle density matrix for nucleons of isospin z-projection t,

&si lp'"(ri r2) ls2&= X &r2s2I A&&PA I
ri si &

Bet

(3.13a)

(3.13b)

(3.14)

where & r,s I gA & is the single-particle wave func-
tion.

The results obtained thus far are exact (within the
fixed scatterer framework), and are applicable to fin-
ite nuclei. To proceed further we must adopt specif-
ic models for the nuclear density matrices and for
the nN interaction. In the following sections we
shall make a series of approximations which are
physically motivated and which simplify our final
results. %e point out that our subsequent approxi-
mations are most appropriate for intermediate ener-

gy pions, where absorption is large.

IV. MODEL FOR THE NUCLEAR DENSITY
MATRIX

In this section our goal is to adopt a simple treat-
ment of the nuclear density matrices that is quanti-
tatively accurate. Since we are mainly concerned
with pion scattering in the resonance region, where
interactions are surface dominated, we seek an ap-
proximation that can accurately describe the density
matrix in the nuclear surface. We begin by consid-
ering the usual local density approximation. Then
we refine this approximation to incorporate the ex-
ponential falloff of the nuclear wave functions.

By the local density approximation one would
usually mean the following: The interaction of a
pion with a cluster in a finite nucleus is the same as
the interaction of the pion with the same cluster in
an infinite nucleus of the same neutron and proton
densities. This is accomplished in two steps. The
first is to replace the finite nuclear wave functions
by wave functions appropriate to an infinite nucleus

I
tA &

I
sA &

Q
(4.1)

where 0 is the volume of the box and
I sA & and

I tA & are the spin and isospin wave functions. The
second step is to replace the sum over states in a fin-
ite nucleus by that in an infinite nucleus according
to the replacement

dkg0 'g~ g J 28[kF(t, ) —kA], (4.2a)

where kF(t) is the Fermi momentum of nucleons of
isospin projection t We evalu. ate kF(t) as

kF (t)=3m p, (R), (4.2b)

and

R=—(ri+r2)/2 (4.4)

r—:r) —r2 . (4.5)

The substitution of Eqs. (4.1) and (4.2) into Eq.
(3.14) is

nArB'(R, r)=( , )pt (R)p—, (R)

for the direct combination and

nAB (R r) = ( —)p „«)S[kF(tA )r]

Xp, (R)S[kF(tB)r] (4.6b)

for the exchange combination, where S(x) is the
Slater function

where R is the location of the cluster in the nucleus.
Also we denote density matrices in the local density
approximation (LDA) with a tilde, i.e.,

LDA

nAB(ri, r2) ~ nAB(R, r),
where we define
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3 . xz x4
S(x)= i (sinx —x coax)=1—

(4.6c)

stant value as R~ ao on the order of the diffuseness
parameter of the charge density determined in ele:-
tron scattering, and become very large as R —+O. We
now write for large R

It is shown in Ref. 26 that the Slater approxima-
tion to the density matrix is an excellent approxima-
tion in the interior of the nucleus. On the surface a
new effect occurs, however, namely the exponential
falloff of the nucleon wave functions. As a result,
the Slater approximation overestimates the actual
density matrix. (See Fig. 1 of Ref. 26.) In order to
account for the exponential falloff of the nuclear
wave functions we apply the correction described
next.

Consider now the dependence on ri and r2 of the
functions bIr' in Eq. (3.10). Near resonance, the
dominant contributions of the optical potential
occur for r~ and rz large and corresponding to the
10% density region of the nucleus. In the surface
region (R large) an improvement over the Slater ap-
proximation would be to take

(y) (y), (R —r& )/a (R —r2)la
~gg L r] r2) =~gg L ~)&

(4.7)

where a is a characteristic diffuseness and the ex-
ponentials account for the falloff of the nuclear
wave functions in the surface of the nucleus. The
diffuseness a(R) will presumably approach a con-

r r Rr
r) ——R+—=R+

8R
(4.8a}

and

r
rz ——R——=R+-

2 SR
Rr
2R

(4.8b)

so Eq. (4.7) becomes

~AS(rl r2)—~AS(R «)e (4.9)

These arguments apply to the density matrix, and
the form of the result is different from that in Ref.
26. The reduction term found in Eq. (4.9) gives a
correction of 0.75 at r =2.5 fm in Pb, for R =7.5
fm and

a (R)—:—p(R)/p'(R) =0.68 .

This is very close to the size of the required correc-
tion, as deduced from Ref. 26, Fig. 1.

Now we may combine Eqs. (3.11), (3.12), (4.6),
and (4.9) to obtain in our local density approxima-
tion

a'"'(k', k;ri, r2)=I'(r}ni (R,r}e ' "'(a k. k(r)},„,
b'r'(k', k;r„rz)=I'(r)nz (R,r)e ' '(b-„, k (r)),„,
c'"'(k', k;ri, r2)=I (r)n3r (R,r)e "~ '(c z ~ k (r)),„,
d'r'(k ', k;ri, r2)=l (r)n2 '(R, r)e ' "'(d

z k (r)),„,

(4.10a)

(4.10b)

(4.10c)

(4.10d)

where we have assumed that the pair distribution function is state independent and a function of the relative
coordinate only, i.e., I „s(r„rz )=I'(r). In these expressions, we have defined the spin average,

(0),„—= ( —) g (s„(1}s(2) ~0~st(l)s (2)}, (4.11)
sAsB

and we have defined the six functions of neutron [p„(R)]and proton [pz(R)] densities:

n'i '(R, r) =[p„+pz]
n 2 '(R, r) =[p„+pq ]

ni '(R, r)= —2[p„+p~][p„—p~],

n, (R,r)=[p„S(kz„r)+p~S(kF~r)]

n 2'* (R,r ) =[p„S(ks„r) p&S(kzzr )]-
n 3

" (R,r) = 2[p„S(kz„r)+p&S(k—zz r )][p„S(kF„r) p&S(kF& r)] . —

(4.12a)

(4.12b)

(4.12c)

(4.12d)

(4.12e)

(4.12f)
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V. DETAILED FORMULAS

737

To complete our analysis, we need to obtain the spin-averaged matrix elements appearing in Eq. (4.10). We
shall identify these quantities by writing the specific operator expressions associated with the diagrams of Fig.
1. Briefly stated, ' the operator expression corresponding to each direct diagram can be calculated by taking a
n N scattering operator [4nf; ] for each vertex (r;), integrating over a free pion propagator

[ Jdk "(2m) sg]](k",r; —r )]

for each internal pion line (k "), and then forming the average coinbination that is symmetric under inter-
change of vertex labels. For example, from Fig. 1(a) we have

k"
D]2' (k ', k;Fi —ri)= J I [—4nf](k ', k ")]g]](k",r]—r2)[ —4irfz(k k)]

(2m )

+[ 4~f2(—k', k")]gQ(k", rz —r])[—4~f](k",k)]I( —, ) . (5.1)

To obtain the corresponding exchange operator expression, we only have to multiply the negative direct expres-
sion by the product of spin, isospin, and position exchange operators P]2, P]i, and P]z, respectively, where

and

P]2 ——(1+o] o2)/2 (5.2a)

P]z ——(1+r] rz)/2 . (5.2b)

To take account of P]2, we substitute n'"' for n' "' in the final formulas. Continuing the example for Fig.
1(b), we then obtain

D]2 (k', k;r] —r2)= —D]z (k', k;r] —r2)P]zP]2P]z .~&(b) i .~ ~ ~1(a) p ~ ~ o (5.3)

In our subsequent illustrations, we shall assume that one partial wave (the P-wave) dominates the n N scatter-
ing amplitude; however, the final results may be easily generalized to several l values. For the fixed scatterer
mN scattering operator, we then take

4nf (k', k)= k]] [A,&~e], ek+iA, o "(ek Xek)],
v(k')v (k)

J '
2(k )

J 1 (5.4a)

(5.5)

and

or in terms of spherical harmonics

fj(k', k)= z g [AJ~5 „+Ail 2+(lm, lv
~
1n)crj„]Y]~(ek )Y]'„(ek),

v (k')v(k) ko
(5.4b)

v (k]])

where ek =—k/
~ kJ is a unit vector and (lm, lv

~

ln) is a Clebsch-Gordan coefficient. The isospin dependence is
contained within A~ and A, , i.e.,

A,i =A,]]]]+2
A,]]]f ' r1

AO
kj =A ]Q+ 2 A ]]f rj' (5.6)

where A,]]]], Q], A, ]]], and A, ]] characterize the scalar-isoscalar, scalar-isovector, vector-isoscalar, and vector-
isovector mN scattering amplitudes.

The basic manipulation in evaluating these diagrams is to expand the pion propagator in terms of spherical
harmonics, i.e.,

jL, (k "r)
=4m (i)

k2 —(k")2+ii)t
YL,M(ek-) YL,]]r(e.»

and use the identity
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1/2

dQ&, .YLst(ek-)Y1 (ek-)Yi„(ek-)=( —) (L —M, lm
~

ln)(L0, 10
~

10) .M 2L+1
(5.8)

This eliminates the angular integration over the internal pions, and we are left with radial integrals that we de-
fine by the functions

t dtjt (tr) u2(t)
Ht. (k, r, e)=

k —t E—+l'llu (k}
(5.9}

These integrals are evaluated analytically for special cases in Ref. 14.
In the following three subsections (VA—VC), we write detailed expressions for the b, s that correspond to

diagrams 1(a}—(c). These subsections contain straightforward, but tedious, manipulations involving no further
approximations. The casual reader may wish to jump ahead to subsection VE, where we accumulate our re-
sults of the previous sections and obtain our main result, Eq. (5.35).

as

A. The diagram shown in Figure 1(a)

By using the technique mentioned above, we may write Eq. (5.1) for the direct sequential-scattering diagram

D12'(k ', k; r ) =(0(k', k, kp)[Hp(kp, r, O)Ap+H2(kp, r, O)A2], (5.10)

where all of the spin and isospin dependence is contained within the operators Ap and A2, and we have defined
the recurring combination

(0(k', k, kp)=kp u(k')u(k)/[u (kp)12im. ] .

With the use of various tensor product identities, we evaluate these operators in the Appendix. Upon taking
the spin average of Ap and A2, only the spin independent terms survive and we obtain

(Ap~av ek' k[4' + 2 ~00~014 (&1+'r2)+ 4 ~0] +12] (5.1 1)

and

(~2~av +12[~00 + 2 ~00~01I( (+1+~2)+ g ~01 +12] &

where we have defined the scalar combination of two tensors of rank two as

(5.12)

+12= ek' ek 3ek' e ek

From Eqs. (5.10}—(5.12), we identify the spin-averaged matrix elements

((2 'k"
k (r) &..=(4o')(0[ek"ekH0+&12H21

(b'„"-„(r)).,=0,
(c „"k(r)),„=( Appkoi)(o[ek" ekH0+&12H2]

(d'&",
&

(r) ),„=(q Aoi )(0[ek"ekH0++12H2]

(5.13)

(5.14a)

(5.14b)

(5.14c)

(5.14d}

Now by using these expressions together with Eqs. (3.10) and (4.10), we may form the isoscalar, isovector, and
isotensor contributions from this diagram.

A,
2

A1(a) v I i —r /4Ra, ~ .~ ~r -~d11'~~ 2
LLp =coi (fJe . ek" ekHp 7l 1 App —n 2

2(2Tp —1.)

A,
2

yg~d' ~g 2 yg~d' ~

12 2 1 & 2 2(2T 1)
(5.15a)
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g1(a) r—/4Ra, ~& .~& I -{dir] 01 -{dir)g
k' k 0 2 2(2T 1} 3 N Ol

-(dir) o& -(dir)
2

+ It]2~2 n2 T 1
n3 ~00~0122 0—

(5.15b)

~01
~z =coI'(r)e " '{ek"ek~o+I~]2 2J 2 (5.15c)

B. The diagram shown in Figure 1(b)

For the exchange sequential-scattering diagram we need to consider the spin average of A;P]2 P]2 for i =0,2.
We consider first just the spin degrees of freedom. By using the Pauli identity, it is easy to show that there are
only three types of spin dependence in A; that survive the exchange spin averaging; constants, 01 02 terms,
and 0 1 p cr 2.q type terms. The spin averages of these type terms are

(5.16)

and

& 0']'~2P]2 &av= 2 (5.17)

( +] P &2 q~12 &av

From Eqs. (A15) and (A16) for AO and A2 given in the Appendix, we then obtain

(5.18)

and

ek" ek
&AOP]2&av= 2 &AO&av+ [4~]0 +2~]P]]4'(r]+r2)+~]] &]2]

4
(5.19)

(A2 12 &av 2 &A2 &av [ ~10 + ~1(P'110 ( r]+ 22)+~11 r]2] 'RV
8

(5.20)

(5.21)

and

These equations may now be multiplied by the isospin exchange operator, and through the use of the identities

('r]+'r2)P12 0 (+1++2)

v )2P)2 ——1 —T] 7 2+T~2

we identify the spin-averaged matrix elements

(5.22)

(a Lk, 'k (r) &,„=——,[(aLk". z (r }&,„+2(dLk", k (r) &,„]——,JV(2A]0 +A]] ),
(b Lk, 'z (r) &,„=——,[(a ~k", z (r) &,„—2(d Lz", z (r) &,„]——, W(2A, ]0 —A, ]] ),
(cLk, k (r) & „=——(c k', k (r) & „——WA]QA]],

(5.23a}

(5.23b)

(5.23c)

(5.23d)

where

~= [2ek ekHO +12H2]

These results together with Eqs. (3.10) and (4.10}give us

(5.23e)
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2]'4Rp ~ -+bo'"'= ——I'(r)e ' ' ek" ekHp n]'" (2A00 +4k]0 +Xp] +2)(,» )
8

(,„) 2 2 2 2 2( A,p] + 2A, ]] )+ n2 2A00 +4){lo
—ko] —2A]]-

(2Tp —1)

+E]2H2 n'']"'(2App —2A, ]p +Ap] —l]] )

2 2
-(x) 2 2 2 2+ ~2 2A,00 —2A10 —~01 +~11

(2Tp —1)

(5.24a)

gl(b) 0] I (r)e r2/4Ro—, e e H n(ex) 01 11 2n(ex)(g g +2g

2 2
(ex) ( 01 11 ) (ex)+ E]2H2 n2'" —2n&'* (Applp] —A]0)(,]])

(2Tp —1}
(5.24b)

I'(r)e " [ek"ekHQ(&p] +2&]] )+E]2H2(&p] —A]] )]n2"
4Tp(2T() —1 }

C. The diagram shown in Figure 1(c)

This.diagram is an iteration of the first-order optical potent]al

U' '(k', k)= f dr g (spy
~
[—4]rf(k', k)] ~s„tq)(s~ ~p "(r,r) ~s„)e

~A ~A

which can be written in terms of the nuclear isospin

k' kU"'(k' k)= k 'e ek f dre-"'"' "' X -(r)+
u (kp) 0

(5.24c)

(5.25)

(5.26)

where P
—=P„+Ps and bP =P„—Ps. In going from Eq. (5.25) to (5.26), we have omitted the sPin dePendence of

U'" because contr]butions that result from these terms vanish upon spin averaging. With U'" in the form of
Eq. (5.26), we may immediately write the isospin contributions from Fig. 1(c) in the form of Eq. (3.2),

](,) v(k')v(k) dk" „u2(k")
~0 2 kp ~00 p(rl }p(r2} 2

ek' ek"go(k ",r)ek- ek 2 (5.27a)
v (kp) (2m. )2 v (kp)

kp A00Ap][p(r] )bp(r2)+p(r2)hp(r] )]
&

ek" ek-gp( k ",r )ek- ek
u(k')u (k) 4 dk" „U2(k")

u (ko)2To (2]r) v (ko)

~](e) U(k )U(k)
k 4g ]g ( g ( )

dk (kgb )
U (k )

2
2(k )4T 2 0 01 P 1 P 2

(2 )2
k' k''gp s k" k

(5.27b)

(5.27c)

If we now adopt the approximations for the densities discussed in Sec. IV, we obtain from these expressions

—r /4Ra ~
Qp =Qje [ek 'ekHp +E 12H2]n ] $00

e ' "'[ek"ekH +E H ]n
"

A, A,

0

"'[ H{)+E]2H2]n 2
"'A,

4Tp

(5.28a)

(5.28b)

(5.28c}

One obvious difference between these results and those of Figs. 1(a) and (b) is the omission of the factor I'(r),
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which occurs because no correlations can arise between iterations of the optical potential in solving the loein-
Gordon equation.

D. Other terms

After having seen numerous specific examples, it should be clear that the direct, exchange, and crossed terms
associated with Fig. 2, as well as all other second-order processes driven by the 533 resonance, can be straight-
forwardly expressed in terms of b,I"'s of similar structure to those corresponding to Figs. 1(a) and (b).

E. Accumulated results

From the results of the above subsections [Eqs. (5.15},(5.24), and (5.28)], we note that all of the 6's have the
same general structure,

&';r'(k', k;R, r)=ek" eI M '(R, r)+&iiN "'(R,r), (5.29)

(5.31)

where the functions M and N for any particular diagram can be identified from the appropriate equations. The
final step in obtaining the second-order optical potentials from these results involves an integration over the
two nucleons s positions. If we use the center-of-mass and relative position variables given in Eqs. (4.4) and
(4.5), this integration [Eq. (3.7)] for Fig. 1 becomes

U '(k', k)= f dRe 'q "f dr e ' '6;'"'(k', k;R, r), (5.30)

where q =k ' —k and p =(k '+ k)/2. Now considering just the d r integration in Eq. (5.30), we observe from
Eq. (5.29) that the angular part (dQ„) may be performed analytically. To obtain our result, we expand e
in terms of spherical harmonics and use the relation

g f d&, I'i~(e, ii~f~(e, )=&ii(ek"ek 3ek"—e, ek e, »

which may be easily proved using Eqs. (5.8), (A4), (A7), and (A8). The general result for the d r integration is

f 4 k~k
dre 'u''5, '"'(k', k;R, r}= '

kp f r dr[ ek" ekjp(pr)M; '(R, r)
u (kp)

+(3ek"ezek ez —ek" ek)j2(pr)N '(R, r)] .

(5.32)

This expression makes it clear that the contribution of any term to U' ' is, in general, nonlocal and contributes
to all partial waves even iff N consists of only one partial wave. We may simplify Eq. (5.32), however, by us-
ing the fact that at medium energies the scattering is diffractive, and therefore predominantly in the forward
direction. Then by approximating p=k in Eq. (5.32), we use

3ek e~ek e~ —ek" ek 2ek" ek

to obtain

f 4 k' k'&''b, r(k', k;R, r)- k e,"e„f "r'dr[J, (kr}M '(R, r)+2j (kr)¹r'(R,r)] .
u2(kp)

(5.33}

With the approximation of Eq. (5.33), we may easily combine U"' and U' ' to obtain our total optical poten-
tial

k' k

0

+[/ ( ppk, R }+(i(kp R )P'T+ f2(kp R )(P T) ]

(5.34)
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(5.35b)

where we have introduced the constant density pp=0. 16 fm so that the first- and second-order parameters
will have the same units. We have not explicitly indicated a dependence of A,; on N Z in—Eq. (5.35), anticipat-
ing a main result of the next section that this dependence is very weak. Again, we emphasize that all second-
order contributions driven by p-wave pion-nucleon scattering can be cast into this same universal form. In
writing our results for the A, 's, we wish to separate the short-range from the long-range correlation dependences
of these functions, i.e., A, =A(SR)+ A(LR). This separation may be accomplished by introducing

-(ex)
~ 3 2 —r2/4Ra ~ ni (R,r )

Gtl(LRP, R)=ikp r dre " 'jt(pr)H)(kp, r, O) (5.36a)
nj' '(R, r)

and

-(ex) R
G)J(SR p,R ) =ikp f r dr e " 'jt(pr)H)(kp, r, O) iz, )

[I'(r) —1], (5.36b)
nj '(R,r)

where we have extended the definitions of nj in Eq. (4.12) to include the label j =0, np'"' np" —= 1. We——then
obtain the following expressions for the A, 's:

We close this section by displaying the general density and isospin dependence of the functions g;. These
dependences result from the functions M and N and do not depend upon our particular approximation, Eq.
(5.33). Subtracting the contribution of Fig. 1(c) from the sum of contributions of Figs. 1(a) and (b), we obtain

R b, 2R iI) 2R
gp(k, R ) = Ap(A, k,R ) A3(A, k,R ) — Aq(A, k, R ), (5.35a)

gi(k, R)= Ai(A, k,R)+ Ag(A, k,R),p(R)hp(R } + (R)

gg(k, R ) = A2(A, k,R )+ A4(A, k,R ),Ap (R) Ap
(5.35c)

To 2To —1 Pp To po

Ap(SR;k, R)=poApp Gp (SR)——(2App +Api )Gi (SR)——(2Aip +Aii )Gi (SR),
8 4

(5.37a)

Ap(LR;k, R)= ——(2l)op +Api )Gi (LR)——(2Aip +A)i )Gi (LR),

A i(SR;k,R ) =ppAppApi[26o (SR)—G3 (SR)]—pp2A, ipse, i r63 (SR},
A, i(LR;k,R ) =—ppAppAg)63 (LR)—po2A ipse i)63 (LR),

~01 + + ~11
2 2

A2(k, R ) =pp [2Gp —62 ]—pp 62
4 2

A3(k R )= (2App —Api )G2 — (2A ip
—A )i )622 2 + I 2 2

8 4

A,4(-SR;k,R ) =0,
2

A,4(LR;k, R)=—pp Gp (LR),
~01

where the non-spin-fiip (6+) and spin-fiip (6 ) combinations of 6's are defined as

6;+(SR)= —,[Gi);(SR;k,R )+262i(SR;k,R )],
6+(LR)= —,[Gpi(LR; k, R )+26gi(LR;k, R )],
6; (SR)= —,[Gp;(SR;k,R )—62;(SR;k,R )],
Gt (LR}= i [Gpt(LR;k, R )—62I(LR;k,R )] .

(5.37b}

(5.37c)

(5.37d)

(5.37e)

(5.37f)

(5.37g)

(5.37h)

(5.38a)

(5.38b)

(5.38c)

(5.38d)



27 ISOSPIN DEPENDENCE OF SECOND-ORDER PION-NUCLEUS. . . 743

The omission of the (SR) or (LR) label from any of
these equations just indicates the equation has the
same form for either (SR) or (LR).

Note that the (long range) contributions of the
isoscalar and isovector terms for Fig. 1(c) cancel
identically against corresponding terms in Fig. 1(a).
This arises because the optical potential is defined in
such a way that its iteration by the Klein-Gordon
equation accounts for higher-order terms in the mul-

tiple scattering expansion. However, this cancella-
tion does not occur in the isotensor potential. The
reason is that U has matrix elements only between
the ground state and single- and double-isobaric ana-

log states. On the other hand, the second-order pro-
cesses in Figs. 1(a) and (b) consist of all possible in-
termediate states. Thus, the contribution to the iso-
tensor potential that me have evaluated

Fig. 1(a)+Fig. 1(b)—Fig. 1(c)

is precisely that arising from the sum to all nonana
log intermediate states. It is interesting to note that
this contribution to double charge exchange has a
characteristic T dependence which will clearly show

up in cross sections. We shall show the effect on
cross sections in a companion paper.

VI. NUMERICAL RESULTS

The coefficients of the second-order optical poten-
tial have been expressed in Eq. (5.37) in terms of 16
integrals defined by the functions G,+ and G; .
These integrals are of the form

G+= f ridr F;(r,R)[jp(kr)Hp(k, r, O)
3 0

equivalent. This is accomplished through the func-
tions HL, [see Eq. (5.9)] by the substitution in Eq.
(6.1)

HL (k, r, O) Ht [k,r, U"'(R)], (6.2a)

where

V RU'"(R)= —kp p(R)A, pp 1+
2kp2p(R)

(6.2b)

or

6; (SR)=6p (SR)—:6+-(SR),

which in turn gives us from Eq. (5.38)

(6.3b)

which is the equivalent local form of the p-wave
pion-nucleus optical potential. The Laplacian
term accounts for the effects of the nuclear surface.

There are now several issues of interest. One is to
evaluate the sizes of the various parameters A,;, and
another is to see the extent to which they depend on
A, p, rip, and R.

The study of the 6;—functions is made easier by
noting that there exist rather simple approximations
to the Slater functions in the region of the reso-
nance. The point is that x =kFr is small in the re-
gion of space where the dominant contributions to
the 6;—integrals arise. For the A,;(SR), this is clear
because the integrals have a range of about 0.5 fm,
and therefore kFr &0.68 taking k~ ——1.36 fm '. We
may therefore set S(x)=1 [see Eq. (4.6c)] and

n
" (R,r )In;

'" (R,r ) =1 (6.3a)

+2j2(kr )H2(k, r, O)] Ap(SR;k, R ) = —(6App —Api )G+(SR)
8

and

ikp
G; = f r drF;(r, R)[jp(kr)Hp(k, r, O)

3 0

(6.1a) (2A, )p +i(i) )6 (SR)
4

A, ](SR;k,R ) =pgppkpiG+(SR)

—pp2A, ipse, iiG (SR),

(6.4a)

(6.4b)
—j2(kr)H2(k, r, O)] .

(6.1b)

We now want to study these integrals. First, howev-
er, we want to take into account the fact that in
propagating the distance r in the nucleus, the pion
undergoes interactions with the medium, which can
be described by including self-energy insertions on
the pion propagators in Fig. 1. We include this ef-
fect only in lowest order, by replacing the pion prop-
agator in Eq. (6.1) by its renormalized, local-density

A,2(SR;k,R ) = —
iLp& G+(SR)

4

6 (SR),
2

Ai(SR;k, R )= (2App —Api )6+(SR)
8

——(2A, ip —A, ii )6 (SR) .
4

(6.4c)

(6.4d)
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For the A,;(LR} it is necessary to take into account
the first correction in Eq. (4.6c). We find

n "(R,r)/n; "'(R,r)= 1 y;—(k~r) +5;(k~r)

(6.5)

A )(LR;k,R ) = —ppkppAp, (1—p3 )g+(LR )

—2pp&ipl, ii(1 —p3 )6 (LR),

(6.6b)

2 1 4 1 1 1

where y;= 10~ 3 15 and 5'
100 36 60 for i=1,

2, and 3, respectively. The corrections to this are of
order (+/p) and would contribute to the optical
potential in higher orders than U' '. We therefore
neglect these corrections, which we shall demon-
strate below to be numerically small. This estab-
lishes that the explicit dependence on Ap and T in
Eq. (5.37) accounts for the dominant dependence on
the neutron excess in O' '. Now combining Eqs.
(5.36), (S.37), (6.1), and (6.5), we find

Ap(LR;k, R)= (2App +Api )(1—
JMi )6+(LR)

A2(LR;k, R )= —
Api (1+@+2)g+(LR)

4

——
A, )( (1—pq )G (LR),

Po 2

(6.6c}

A3(LR;k, R ) = (2App2 —gp)2)( 1 —@2+)g+(LR)

—
4

(2Aip —Aii )(1—p2 )6 (LR),

(6.6d)

——(2Atp +Ati )(1—pi )G (LR),
4

(6.6a)
I

ij+ =y;kr'(r')+ 5;kr4(r4)+,—

@( =y;kp'(r') -5;kr (r )—

A, (LR k,R ) =—
A, 26+(LR)Po

4

where

(6.6e)

(6.7b)

(r")+= r +"dre "~ '[jp(kr)Hp(k, r, U'")+2j2(kr)H2(k, r, U'")],
3G+(LR)

O 2 ~ r2 4g(r") = r2+"dre ' 4"'[j
p( kr)H p(k, r, U'")—jz(kr)Hz(k, r, U"')],

36 (LR)

6+(LR)=— f r dre "~"[jp(kr)Hp(k, r, U'")+2j2(kr)H2(k, r, U"')],

sko 2
G (LR)—= r dre "r '[jp(kr)Hp(k, r, U"')—j2(kr)H2(k, r, U"')],

(6.7c)

(6.7d)

(6.8a)

(6.8b)

G+(SR)—= f r dre "~ '[I (r)—1][jp(kr)Hp(k, r, U"')+2j2(kr)H2(k, r, U"')],

6 (SR) =— f r dr e " ~ '[I'(r) l][jp(kr—)Hp(k, r, U"')—jz(kr)H2(k, r, U'")] .
3 0

(6.8c)

(6.8d)

In all of the calculations that we are about to dis-
cuss, we have taken u(k) to have the form

u(k) =k(1+k2/P2) (6.9)

with P=4.82 fm '. We have also used the phase
shift analysis of Ref. 28 to obtain the mN parame-
ters, and at 180 MeV we find (in units of
fm ) App ——0.52+9.1Si, Ap) ——0.82+9.13i, A)p
=0.73+4.S3i, and A,

&&
——1.11+4 53i For th. e n. u-

clear densities, we have taken a two-parameter Fer-
mi shape with the same half-density radius
(R, =1.1A'r fm) and diffuseness (ap ——0.56 fm) for

I

both neutrons and protons. The radial distribution
function we have used is a step function
I'(R) =8(0.5 —R).

To study the extent to which the parameters A,;
depend upon A and R, we have calculated them
from Eqs. (5.36), (5.37), and (6.2) for various values
of A and R. These results are displayed in Fig. 3,
~here

k, =A,;(SR)+I,;(LR) .

The circles are our results for the targets 0, Ni,
~zr Sn and 2ospb at the correspondjng values



27 ISOSPIN DEPENDENCE OF SECOND-ORDER PION-NUCLEUS. . . 745

20-
II

I I I I I I I I I I
~I I I I I I I I I I I I

l6-

l2-

8-

4-
9XOVAVAXVAV VXAOXNX'()($006%

XAXXXA&&&&X4XXNXXXXXXXXXXXXXXXX~

q)001%694V 9,NOVA%%9. 'tV,XXQ

„,~~wwxWN'At9%9%49l6999l6%9N&

E
I=O

(*4
I=8

M

~xxxxewxNQNVX9VV9VAVV'
w

w1QQXXXX ,-I=3ootV'ANvAwsaxwawwxxwwwxi

NY, NNBAXYANNXXXXXXXXXXY

-8—

I I I I I I I I I I I 11

0 40 80 l 20 l60 200
A

I I I I I I I I I I I

40 80 120 I60 200
A

FIG. 3. Calculated parameters characterizing the
second-order pion-nucleus optical potential at T =180
MeV as a function of nuclear mass number A. The solid
dots result from setting R to the values listed in Table II.
The hatch marks show the variation as R is varied by
+0.5 fm.

R =3.50, 5.50, 6.37, and 8.12 fm. The hatch marks
indicate the variation in the A, 's that correspond to a
variaton of these average radii by +0.5 fm. These
values of R were taken from Ref. 24, where a dif-
fractive model of n.-nucleus scattering was used to
obtain them. In the diffractive theory, the parame-
ter R corresponds to the impact parameter at which-
the derivative of the profile function for elastic
scattering peaks. The variation of +0.5 fm corre-
sponds approximately to the fullwidth at half max-
imum of the same quantity and therefore it is iL

within this range of R which determines the scatter-
ing in semiclassical theories and presumably more
exact theories as well. Note that for all A,; the varia-
tion is small in this range, compared to the variation
of the density over the same interval. Therefore, we
shall approximate the R dependence by choosing lj,;
to be evaluated by its value at R; this is the value

which should be compared to the phenomenological-
ly determined one.

From Fig. 3 we observe that the mean values,
A,(R ), show a very smooth dependence on A and are
independent of N Z.—For the most part, the lE, s
are essentially independent of A. The exceptions are
A,

&
and ImA, 2, where the A dependence of these can

be phenomenologically described as

Re&,(A)-14(1+exp[( —40 —A )/60])

imp ~(A )=16(1+exp[(10—A )/50] )

and

Iml, 2(A)= —3.2A ~'

In Table I we have listed the individual short-
range (SR) and long-range (LR) components of the
A, 's for a typical case, 9 Zr with R=R =6.37 fm.
From this table, we see that LR components dom-
inate over the SR components. This LR dominance
holds for all the values of A we have considered.
Furthermore, the SR values listed in Table I are
within 10% of all the SR values we have obtained
by varying A and R.

There are two additional points we can make
from the results listed in Table I that universally ap-
ply to all of our results. Firstly, by comparing the
columns labeled total and approximate, we see that
the approximate equations for lI,;, Eqs. (6.4) and
(6.6), are accurate. This establishes the validity of
the approximation in Eqs. (6.4) and (6.6) of drop-
ping the (bp/p) correction terms from the A,l's.
Secondly, in considering the LR components, we ob-
serve the exchange-spin-flip contributions to be
negligible with respect to the direct and exchange-
non-spin-flip terms. Therefore, to qualitatively
understand the variations of the A, 's plotted in Fig.
3, we shall focus on the LR components of A,; given
in Eq. (6.6) and characterized by the G+(LR) func-
tion.

TABLE I. Individual components of calculated second-order optical potential parameters
for ~Zr at T =180MeV with R =6.37 fm.

Direct
Exchange

(non-spin-flip)
Exchange
(spin-flip) Total Approximate

A,p(SR)
A, i(SR)
A,2(SR)
A,3(SR)
A,p(LR)
A, i(LR)
A.,(LR)
A,,(LR)
A&4

1.89+ 0.12i —0.70—
3.78+ 0.12i —1.88—
0.95+ 0.00i —0.47+

—0.23—
4.47+

11.75+
6.92—11.05i 2.95+

1.28+

0.03$'

0.06i
0.00i
0.03i
5.57i

12.99i
2.83i
1.60i

—0.34+0.07i
—0.91+0.20i
—0.23+0.07i
—0.11+0.00i

0.28+0.33i
0.26+0.22i
0.08+0.14i

0.84+ 0.16i
0.99+ 0.26i
0.25+ 0.07i

—0.35—0.03i
4.74+ 5.90i

12.01+13.21i
—3.89—8.08i

1.28+ 1.60i

0.84+ 0.16i
0.97+ 0.26i
0.25+ 0.07i

—0.35—0.03i
4.75+ 5.73i

12.59+ 13.50i
—3.72—7.85i

1.35+ 1.82i
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The quantities needed to calculate the A,;(LR)
terms according to Eq. (6.6) are given in Table II.
In the upper portion of Table II, we have listed, for
different targets, the quantities (r }+, (r }+,and
G+(LR) evaluated at the centroid value of the ra-
dius, R=R. The combinations of these quantities
that are appropriate for calculating Ao(LR), A, i(LR),
A,q(LR), and A,3(LR) are listed in columns one
through four, respectively, of the lower portion of
Table II. We note that the A dependence of each
column in the lower portion of Table II is essentially
the same and, except for the imaginary terms of
column three, the values in these columns are essen-
tially the same for each nucleus. The factors that
determine whether the A dependence of these
columns is enhanced or suppressed are the different
combinations of the mN parameters A,oo and Aoi.
The combination appropriate for A, i(LR)[—AOOAoi]

is much larger than any of the other combinations;
thus the greater A dependence of A, i.

We should point out that the isoscalar and isovec-
tor potential corresponding to Figs. 1(a}—(c} have
been calculated in numerous contexts. The parame-
ter A,(SR} contains the physics of the Lorentz-
Lorenz effect." Eisenberg et al. 29 carefully studied
the effect of the exchange terms on charge exchange
scattering from ' C. They found large enhance-
ments, which is consistent with the large coefficient
A, i(LR) we find. The dependence on the parameters
characterizing the free pion-nucleon amplitude in
these terms is the same as that found by Delorme
and Ericson.

No one, to our knowledge, has carefully worked
out the isotensor correlations arising from the con-
tributions in Fig. 1. It is clear from Fig. 3 that large
isotensor contributions to the potential arise from
the difference between the iterated pion-nucleon

scattering amplitude and the iterated optical poten-
tial. These terms have a different dependence on TN
and will significantly affect the nuclear dependence
of the double-charge-exchange cross section. Al-
though we 'have found the A,; coefficients that result
from the processes in Fig. 1 to be large with respect
to the nNc. oefficients, until the processes in Fig. 2
are evaluated we may not place any particular signi-
ficance on the sign or magnitude of the overall
terms in the second-order potential.

VII. SUMMARY AND DISCUSSION

The main goal of this paper was to obtain a
theoretically inotivated form for the isospin depen-
dence of the second-order pion-nucleus optical po-
tential, U' ', for pion scattering near the (3,3) reso-
nance. Assuming isospin invariance, we have taken
U' ' to have the most general dependence on P T,
namely

U"'= U'"+ U"'(( T+ U"'(P T)' (7.1)

where P is the pion and T the nuclear isotopic spin
operators. Our main result is that all second-order
processes contributing to Uo ', U'j ', and U2

' which
are driven by the (3,3) resonance have the same
dependence on T, p=p„+pz and bp=p„(r) pz(r}, —
which is given by

U~'~(k k)
U (ko)

f dg —'R (k' —k)g(g)

(7.2}

where

(r'&+ (r'}+ G+ (LR)Target

TABLE II. Approximate quantities arising from long-range correlations that qualitatively
describe our results of Fig. 3.

R (fm)

18p
' NI
90z
120Sn

208Pb

3.50
5.50
6.37
6.87
8.12

0.204
0.094
0.071
0.072
0.057

4.02+2,47i
5.68+2.91i
6.58+3.1 1i
6.97+3.26i
8.21+3.56i

39.0+36.8i
83.0+56.9i

114.2+68.5i
130.0+77.0i
182.7+98.1i

0.55+ 1.22i
0.67+ 1.61i
0.72+ 1.80i
0.71+1.86i
0.74+2.09i

Target (1—p& )G+(LR) (1—p3 )G+(LR) (1+p& )G+(LR) (1—p+ )G+(LR)

18p

"Ni
~Zr
120Sn

20sPb

0.55+0.71i
0.69+1.02i
0.75+ 1.18i
0.74+ 1.21i
0.77+ 1.37i

0.53+0.63i
0.68+0.91i
0.73+1.04i
0.73+1.07i
0.77+ 1.23i

0.63+ 1.79i
0.70+2.32i
0.73+2.57i
0,73+2.64i
0.76+2.95i

0.47+0.65i
0.64+0.90i
0.71+1.03i
0.69+ 1.08i
0.72+ 1.23i
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go(R)= A, A,

p. "p.
1 bp(R)&

2 72T —1 po

( (R)
1 p(R)rip(R) ~

2T po

1 lip (R) ~
2T(2T—1) po

(7.3a)

(7.3b)

gi(R) = Ai+ q (R) .
1 hp (R} ~4 hp

T 2T 1 —po g pp

(7.3c)

These results can be easily extended to include non-
resonant pion-nucleon dynamics, resulting in a form
similar to Eq. (7.3} but including additional n 2N-
partial wave contributions.

The five quantities A,o
'—A,4

' depend upon the de-
tails of reaction dynamics and nuclear structure
physics, but do not depend upon p or hp. We have
evaluated A,

' ' for specific second-order processes,
viz. , the sequential p-wave scattering of the pion
from clusters of two nucleons in the nucleus. We in-
clude the effect of both long- and short-range corre-
lations and the spin dependence of the pion-nucleon
scattering amplitude. In cases where comparison is
possible, namely for the isoscalar and isovector po-
tential, our results are similar to those found by oth-
ers. However, the details of the isotensor potential,
as well as the simple universal form for the overall
isospin structure of U we have found, are completely
new.

In our numerical calculations we found a large
co'rrection to the isotensor potential arising from
nonanalog intermediate states in sequential scatter-
ing of the pion from two nucleons. The significance
of this correction for the isospin dependence of the
double-charge-exchange cross section will be
evaluated in a subsequent paper and shown to
resolve a puzzle observed in the systematics of the
measured forward cross sections.

We found that the A,; have a weak residual depen-
dence on R and A, but are essentially independent of
N Z. Additional R—dependence may arise from
third- and higher-order terms in U which could be
taken into account in our results as renormalizations
of the coefficients A,;. One example of these renor-
malizations is our use of the optical potential damp-
ing on the pion propagation between r& and r2 in
the evaluation of Fig. 1, which means that our re-
sults actually go beyond a strict second-order calcu-
lation. In any case, for scattering near the (3,3}reso-
nance, the pion elastic and charge exchange scatter-

where the spin density matrix is

+l r)x r2p(r„r,)= R„&J(ri)R„&,(r&)
4m r

X&i(e., e., ) (7.5)

for an orbit P,i, (j=1+—,),

Rntg
(r) [ Yi„&in)jr

(7.6)

we find that the average of two powers of p, the
spin-dependent density matrix, is proportional to
(see Table II)

(r'& 1=—(R in fm},
R R

(7.7)

where r and R are the quantities defined in Eqs. (4.4)
and (4.5}. The proportionality constants are approx-
imately the same as those in the expression for the
spin-independent piece of the density matrix, so Eq.
(7.7} is also a measure of the relative importance of
the spin-independent to spin-dependent density ma-
trix. For a light nucleus, this term may be of order
unity, but for a medium or heavy nucleus it is rela-
tively small. If we include nucleon motion, then
there may be induced current effects which occur
linearly in the spin density. These are suppressed by
factors of co„/(co„+m„), but have been conjectured

ing is dominated by interactions with the nucleus in
the surface near R =R, where

p(R )/p(0) =0.1 .
Thus, in practice it should be a good approximation
to regard A,;(R) as constant in Eq. (6.4) and evaluate
them at R =R.

A major correction to be applied to our result is
pion scattering from the spin density of the valence
nucleons. We have explicitly ignored these effects,
although our methods are sufficiently general to al-
low their calculation. However, if the theory is ap-
plied for medium to heavy J=0 spherical nuclei, we
estimate that the contribution of the spin density is
small. We can make a straightforward calculation
of the relative contribution of these terms by first
noting that in the static approximation the terms
linear in the spin density average to zero, and that
the leading nonvanishing contributions come in qua-
dratically, from exchange diagrams. If we write the
density matrix as

p(o ir i,'ardri) =p(r i, ri}5,

+(~i
I
~

I
~2)'p(ri rz) (74)
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to contribute appreciably to charge exchange. ' For
nonspherical nuclei the situation is not clear, and an
explicit calculation of the spin density terms would
be a useful exercise in all cases.

We believe it to be very interesting to determine
the coefficients in Eq. (6.4) phenomenologically in
order to compare them to theoretical models of pion
reaction dynamics. The potential is simple enough
in form to be incorporated into the currently avail-
able coordinate and momentum space programs and
it is sufficiently motivated by theory that calcula-
tions of the characteristic parameters are straight-
forward. The parameters to be adjusted are
A,o'—A, &

', these can be determined separatel~ for
each nucleus and each energy. The quantity A,4

' is a
correction term which should be calculated from
theory even for data analysis, since it arises from the
iteration of the lowest-order optical potential.

Based on our theoretical analysis, we expect to
find that dependence of A,o

'—A,3
' on A will be quite

weak, and that there will be no dependence on the
isospin of the target. However, there may be some
scatter of the parameters due to shell effects not ac-
counted for in our nuclear matter averages. Our ap-
proximations are most valid in the vicinity of the
(3,3) resonance, so that these expectations may prove
to be borne out to a lesser extent as energy is varied
away from the resonance region. Because the (3,3}
resonance is the basic building block of the A,I ', we
expect a strong energy dependence to be found for
these parameters.

The main assumption used to derive U' ' in the
form given in Eqs. (7.1)—(7.3) is isospin invariance.
We have also made the fixed scatterer approxima-
tion; corrections to Eqs. (7.1)—(7.3) arising from
Fermi motion and relativistic kinematics for nu-
cleons may be made in a straightforward fashion
and will be considered in a subsequent paper for
the case of zero-ranged pion-nucleon form factors.

An important question is how to account for iso-
spin breaking in our framework. Miller and Spen-
cer' have shown that the isospin breaking effects in
the reaction theory are small, but Auerbach has

emphasized that isospin breaking in the nuclear
wave functions requires bp to be the valence neutron
density p„„, rather than (p„—p»). Of course, if bp
is identified with p„„, then there is some mistake
made in elastic scattering (and hence the distortions
included implicitly in the coupled channels} since
the pion elastically scatters with p„—p~ in the iso-
vector potential. Thus, whether we identify +with
p„—p» or p„„ in Eq. (3.7), an isospin breaking
correction hU must be added to the theory to
correct the mistake, b U being of course different de-
pending upon the identification. The preferred
prescription for b,p is the one which leads to the
smallest hU, since one would like to be able to han-
dle hU perturbatively. We believe that the best
prescription is to take hp=p„„, because 4U would
then correct for a small percentage error in the dis-
torting potential as opposed to a relatively large er-
ror in the transition densities for charge exchange.

Various minor approximations were needed to
achieve the fairly simple form of Eqs. (7.1)—(7.3).
These incorporate a truncated density matrix expan-
sion and the assumption of forward scattering of the
pion from the two-nucleon clusters. The version of
the local density approximation that we have used
gives special consideration to the nuclear surface,
which dominates pion scattering close to the (3,3)
resonance. As the pion energy is varied away from
resonance, especially to lower energies, these approx-
imations must be reexamined. The sensitivity of the
cross sections to the parameters A,o

'—A, 4'
' which we

find in our subsequent paper lends support to the
long expressed hope that charge exchange reactions
will lead to new insights into nuclear structure and
reaction dynamics. On the basis of our analysis, we
propose that the parameters A,o

'—I,&

' should be the
object of both phenomenological parametrizations of
the elastic and single- and double-charge-exchange
data and evaluations of theoretical models of nu-
clear structure and reaction dynamics.

This work was supported by the U.S. Department
of Energy.

APPENDIX

Here we list some tensor product identities that we have used in obtaining the operators A 0" and A 2". We
also display these operators, however, we keep only their spin dependence that is euen in the number of Pauli
spinors, because odd spin dependences vanish upon spin averaging. The notation we adopt is that of Ref. 25
where T&

' denotes an irreducible spherical tensor of rank m and projection p. The tensor product of T&
'

(m&)
and Tz is denoted asPg

(Al}

Denoting unit vectors by e and arbitrary vectors by A and B, we list some familiar tensor products
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[AxB]' '= A B
3

(A2)

[AX8]'"= AXB,
2

(A3)

[AXB]' '[e, Xe,]' '=A e„B e„——,A B,
1/2

[[e,Xe,]' 'XA]'"= — ——e,(e„A)

(A4)

(A5)

(A6)[[c„Xc ]"'XA]"'[[e„Xc ]'"XI]'"=— e„Ae, B+

where Eqs. (A4) and (A6) are valid provided [B,e„]=0. We also have basic relations involving spherical har-
monics and Pauh spinors,

' 1/2

Y,„(e)= (e)„'",
4~

(A7)

Y2~(e) =
' 1/2

5 3

2 4m

' 1/2

[CXC]„"', (AS}

1/2

y Yip(ek )(2m, 11M
I
lv)Yl, (ek)= —— [ck X ok]

5 4m.
J

' 1/2

g Yi&(ek)o„(lp, lv
I
lm) ~ [ekxo]' '.

(A9)

(A10}

From the above equations, we obtain

y Yip( e k )(2M, lp I
1v ) Y2M ( er ) Y 1 y ( ck ) = (ek"ek —3ek"e, ek e, ),4~ v'S~ (Al 1)

g Yi& (ek )o„(1)(lp',1v'
I
1M)(1M, lv

I 1p)o„(2)Yl&(ek) = (ek X o'1) (ek X o2),
8m

g Yi&(ek) o(1)(lp', lv
I

lm )(1m 1"
I

lm)cr„(2)Y2kr(e„)(2M, lm
I 1p)Y'iq(ek)

(A12)

2&2 jcri o2[ek" ek —3ek" e„ek e„]—ek" cr2[ek ol —3ek e„e„.oi]I, (A13)
s~ '"

g Yi& ( ek )o„(1)(11M', lv'
I
lm') Y2kr( e„)(2M, lm'

I
1m }o„(2)(lm, lv

I 11M )Yiq( ck }

( g )2/2 I v 1
' o2 ck"ck ck"o2c—k ' o 1 (e„Xe k )—cr 1( e„X'c k ) '

o 2) (A14)

where the sums in these expressions run over all the projections. Now following the discussion of Sec. V, we
use Eqs. (5.4b)—(5.9) in Eq. (5.1) and (5.10) to obtain the operators in Fig. 1 coen in numbers of spinors,

00r 01Ag
Ao= ~oo + 41(ri+&2)+ &12 ek" ek

2 4

10 11A, A,
2

-+ -+ -++ ~10 +
2

tt 1(+1+r2)+
4

'r12 ck' cko1 o2

2
~10~11 ~ ~ ~ ~, ~ ~11

A lo + p '( Fi+ 7 )o2'12(k ', k) — X12(k,k '), (A15)

and
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A A 00 01A A A,
2

A2= A11—3 Zoo + (() (r, +r2)+ F12 ek" e, ek. e„

23~—3 &to'+ p (r1+r2) trt2(k'Xr, kXr) — X12(k'Xr, kXr), (A16)

where

o'12(P, q):——,(o'1 epo2 eq+cr2 epcr1 eq),

~12(f»q)=—2 (0 rtk r2o.t eptr2 eq+0 r24 rto2 epol eq}

The definition of F12 is given by Eq. (3.9).

(A17}

(A 18}
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