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We perform a critical discussion of the efficiency of the Ernst-Shakin-Thaler method for
a separable approximation of arbitrary two-body interactions by a careful examination of
separable S&- D

&
N-N potentials that were constructed via this method by Pieper. Not only

the on-shell properties of these potentials are considered, but also a comparison is made of
their off-shell characteristics relative to the Reid soft-core potential. We point out a pecu-

liarity in Pieper s application of the Ernst-Shakin-Thaler method, which leads to a resonant-

like behavior of his potential 3SD1D. It is indicated where care has to be taken in order to
circumvent drawbacks inherent in the Ernst-Shakin-Thaler separable approximation
scheme.

NUCLEAR REACTIONS Critical discussion of the Ernst-Shakin-
Thaler separable approximation method. Pieper's separable N-N poten-

tials examined on shell and off shell.

I. INTRODUCTION

In recent years it became necessary to include the
vast complexity of two-body interactions into calcu-
lations of few-body systems in order to arrive at
reasonable and conclusive results. Therefore one
had to struggle with the difficulties associated with
the introduction of realistic two-body forces, which
in general are quite complicated. For example, with
respect to the N Nsystem it i-s rather troublesome, if
not impossible, to use in few-body applications
modern interaction models, which were derived
from first dynamical principles and have commonly
been desired because of their appealing features.
Separable approximation schemes always served as
an essential tool to overcome these difficulties. Un-
fortunately the resulting separable potentials did not
always resemble the properties of "true" two-body
interactions in a satisfactory way. They did not
only fall short in their on-shell results, but above all
suffered from unrealistic off-shell characteristics. '

Therefore separable representations that allowed one
to reproduce the on- as well as off-shell properties of
the model potential became important. A particular
method of that type is provided by the approach of
Ernst, Shakin, and Thaler (EST). In the literature
this method was already used for practical applica-
tions, e.g., by Pieper. Unfortunately, like other
separable approximation techniques * the EST
method is also not free of deficiencies which might
lead to spurious results. Indeed, in Pieper's work
not enough care was taken in the construction of the
separable potentials. This led to unphysical proper-

ties, particularly in his 3SD1D model. This obser-
vation made us perform a critical examination of
the abilities of various separable approximation
schemes.

In the present work we will concentrate on the
EST method. In Sec. II we give a brief account of
the formalism generalized to arbitrary (spin-
dependent) forces acting in coupled partial waves.
There a few hints are already made concerning a
competent application of the method. In Sec. III a
discussion of the results (re)calculated for Pieper's
potentials is presented. We also consider the half-
off-shell behavior of his separable potentials and
compare them to the Reid soft-core (SC} potential.
In the final section we summarize the abilities of the
EST method and point out at which stages care has
to be taken in order to avoid unreasonable results.

II. THE EST METHOD

A. Outline of the formalism

Consider the general partial-wave decomposition
of the Lippmann-Schwinger equation for the wave
function belonging to some X-N potential V with
spin-dependent forces (tensor force, spin-orbit force,
etc.). For coupled partial waves with angular mo-
menta l& ——J—1 and I& ——J+1 (J being the total
angular momentum}, this equation reads

I PEtL & =
I %EL &~tL.

+ g Go,r(E) Vz, L, '
I A. 5.' ) (2 1)
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for I.=I&,I&. The label I, which can assume the
values I & and I &, designates the initial-state angular
momentum. Though in Eq. (2.1) and throughout
this paper we adopt standing-wave boundary
conditions —according to the use of the principal-
value Green's operator Go L(E) we—emphasize that
the method and the results do not depend on the
specific boundary conditions employed.

It is convenient to introduce a matrix notation so
that one can combine the coupled wave functions

l pp~q ) two by two into the kets
l
q7~~'), which then

represent two-dimensional column matrices. The
potential and resolvent operators become (2&&2) ma-
trices denoted by P" and $0, respectively.

The EST method aims at the construction of a se-
parable potential P that resembles the on- as well as
off-shell properties of some arbitrary given potential
P . For the general case of coupled partial waves it
is designed to reproduce exactly the half-off-shell
elements of the reaction matrix A(E) pertaining to
the potential P at selected energies. Let the ensem-
ble a; = I E;l; J denote an energy point E; in the par-
ticular channel characterized by the initial angular
momentum l;. Then the equality of the half-off-
shell elements of the reaction matrix components
RLr (E; ) and RL. I.(E;) corresponding to the potentials

and P", respectively, is achieved by demanding
that the form factors of the separable potential con-
sist of the objects P

l
4, ), where

l
ql ) is a solu-

tion of the Lippmann-Schwinger equation with the
model potential P . Hence the separable potential of
the form

N

$7J =1
(2.2)

guarantees that for N combinations a; (i = 1,. . .,N)

r
l
e ) =&

l

ql j)=%(E )
l
e, ), (2.3)

if the coupling parameters M
z

fulfill the condition

N

QMj(% lP i@1 )=f7,
j=1

(2.4)

We remark that E; can as well be chosen to be a
bound-state energy, of the deuteron, say. This case
is contained in the formalism if the inhomogeneous
term is omitted in Eq. (2.1). The EST method
would then lead to a separable potential P with
bound-state wave functions

l %E, ) being exactly the

same as
l
%E ) pertaining to the potential P . Note

the similarity of this special case (namely, if & is
given only rank 1) to the unitary pole approximation
(UPA).

From Eq. (2.4) it is already seen that some care
has to be taken in the selection of the ensembles

+Dij (E)(+a.
l
~

l
@E"L")

J

(2.5)

for L',L"=1,/&. The matrix elements Dj(E) are
defined by

&(E)= [M ' —8'(E)] '= [I—M9 (E)]

(2.6)
where

G,j(E)=(q7~
l
P So(E)P

l
%~ ) .

B. Discussion of the method

(2.7)

In this subsection we will briefly explain how the
formalism just outlined can be employed for various
purposes. Of course, we will mainly have in mind
application to the X-N system, since we will later on
examine in detail the work by Pieper. By the way,
we will thus also have occasion to make evident the
potency as well as the limitations of the EST
method.

Let us first have a look at uncoupled partial
waves L =L'= 1 If VL is req. uired to reproduce the
half-off-shell R matrix at N energy points E;
(i=1,. . ,N), it follo.ws from Eq. (2.3) that the
separable potential has to be of rank N (Ref. 8):

N

VL(k', k)= g gL;(k')M&gLJ(k) (2.8a)

with form factors

k fi
gL~(k) (GAEL l

VL I
4'E L) E=

8 2p
(2.8b)

From the latter equation it is clearly evident that the
form factors of separable potentials constructed by

[E;l;I. Since evaluating the coupling parameters
M,

&
requires inversion of the matrix

(4
l

W
l

0', ), one must beware of choosing sucha. ak

a;, for which this matrix becomes singular. We will
come back to this and similar drawbacks in the next
section when discussing the practical application of
the EST method.

The objects needed for the evaluation of the (off-
shell) matrix elements of A'(E) (and equivalently of
1")can be calculated using the half-off-shell R ma-
trices belonging to the potential P taken at the
fixed preselected energies E;. The final solution for
the matrix elements of 9t(E) reads:

RL'L"(E E E) (@E'L'
l
+(E)

l
@E"L")

N
= y &,eE.L l~l~. )
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+&&Ei, I Vi, i, ICE, i, i, &

gi t(k)=&@si
~

P" ~+, &

(2.9a)

+&PEi, I Vi, i, I PE, i, i, &

Ak
2p

(2.9b)

These form factors enter into the separable partial-
wave potential in the following way:

VLI (k, k') =gL i(k)MgL i(k');

L,L'=I „l, .
(2.9c)

Here, according to Eq. (2.4), the coupling parameter
M, which is independent of the orbital angular mo-
menta L,L', takes the value

M=(&%~
~

P"
~
%~ &}

However, such a choice for P amounts to the par-
ticular case where only two of the four R-matrix ele-
ments, viz. , the ones corresponding to the same ini-

means of the EST method consist of the half-off-
shell elements of the R matrix of the model poten-
tial V taken at the selected energies. If the coupling
parameters M;i are determined via Eq. (2.4), it is
guaranteed that

Rl (E,E„;E„)=Ri (E,E„;E„)
for all E.

For the case of coupled partial waves, in addition
to selecting energies E; it is necessary to discern be-
tween the possible initial configurations 1;. To
demonstrate this let us first consider the simplest
choice for P" allowed by Eq. (2.2}, namely, with
only one ensemble a&

——[Etlt j. From Eq. (2.2) one
sees immediately that two form factors occur,
which are given by

gi t(k)=&@Et
~

W~ qi

= &NEi, I Vi, i, I ttE, (,i, &

tial angular momentum I~, are reproduced at the en-

ergy E~. Then the equality

RLI (E,Ei,E, )=RIL (E,Ei,E, )

holds for only one particular value L'=l &.

Thus for coupled partial waves a rank-1 separable
potential as in Eqs. (2.9) is in general not able to
reproduce all the off-shell information available at a
single (scattering) energy.

In view of the correspondence between the form
factors and the half-off-shell matrix elements [cf.
Eqs. (2.9)] it is evident that four form factors are
needed if one wants the separable potential to repro-
duce all four R-matrix elements of the model poten-
tial at a single energy E, . Therefore P" has to be at
least of rank 2. The ensembles a; to be selected for
this particular case are

a, = [Et,li 1(j, ——

a2 ——[Ei,12 ——1) j .

It turns out that in practical applications, espe-
cially for the N-N system, the rank N can be kept re-
latively low. Thus it is often not necessary to
demand all four R matrices to be reproduced at
every energy desired. It happens that fixing a half-
off-shell RLI matrix element at some particular en-

ergy already guarantees that it is close to RLI over a
large energy range (above all when it is a function
slowly varying with the on-shell energy). So one can
exploit the freedom in choosing a; by requesting
that (pairs of) Rir elements agree with (pairs of)
RLL at some crucial energies. For instance, for the
S~

- D ~
N-S channel the ensembles a; could

be staggered like [Et,l i ——0j, [E2,lz ——2 j,
[E3 13 2 j, . . ., and thus lead to a reasonable result.

The explanations just made apply to the case
where E; are scattering energies. Nevertheless the
EST method is also applicable to bound-state ener-
gies. The formalism is even simiplified, because it is
not necessary to distinguish between different initial
configurations 1; the corresponding index can be om-
itted. At the location of the bound state the interest-

TABLE I. Ranks of the separable potentials constructed by Pieper under the assumption of
the ensembles a; = {E;1;j quoted.

Potential
rank

[E;,1; j

3SD1A
1

{-2.227, —j

3SD1B
2

{-2.227, —j
{200,2j

3SD1C
4

{—2.227, —j

{125,0 j
[125,2j
{400,2j

3SD1D
5

{—2.227, —j

{50,0j
{50,2j

[300,2j
[400,0 j
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ing half-off-shell entities are represented by the
(coupled) wave functions

I PEq ), (L =l&, l & ). In
order to reproduce both of them, i.e., all half-off-
shell characteristics of the model P, at a single
bound state only one rank is needed in the separable
potential P . From this it is also evident that the
EST method can include the possibilities offered by
the UPA.

-10

Ul
OPa

-20

III. PIEPER'S POTENTIALS

We now come to discuss the application of the
EST method performed by Pieper for the Si Di-
state of the N Nsyst-em. 3 Specifically we would lik=
to demonstrate how reasonable a description of the
on- and half-off-shell behavior of the N Ninte-rac-
tion is provided by the particular separable poten-
tials he constructed. Clearly we will take the RSC
potentials as a measure for comparison, since this
potential was used as the input model. We will

mainly concentrate on the off-shell behavior of the
separable potentials, because these aspects were not
considered by Pieper in his original paper. Still we
will include the on-shell properties, since we will

thereby have the occasion to correct some erroneous
results given in Pieper's work. Furthermore this
will shed light on the practicability of the EST
method.

A. Representation of separable potentials

Pieper constructed four separable potentials of the
form (2.2) each having a different rank N (cf. Table
f). By applying a unitary transformation

(3.1)

to diagonalize the matrix of the coupling parame-
ters, he cast the separable potentials into the form9

-30—

I I I l I I

0 100 200 400
ELtMev)

FIG. 2. D~ phase shifts for Pieper's potentials as com-
pared to the results of the Reid SC.

I

300 500

(3.2a)

with

(3.2b)

The form factors

gri(k)= (@El. I
~

I +i ~

were approximated by the functions

(k2+p 2)2

hi;(k) = C(;
(I 2 p 2)3

(3.3a)

(3.3b)

While the parameters p~ were fixed to p~ =3m/2,
the numerical values for Cz; were obtained by a
fitting procedure.

160-
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10-

80

40
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"""""P 3SD1D
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-20
0

I
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200 300
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FIG. 1. S~ phase shifts for Pieper's potentials as com-
pared to the results of the Reid SC.

I

1000 200 300 400
EL(Mev)

FIG. 3. Mixing parameters e~ for Pieper's potentials as
compared to the results of the Reid SC.
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Reid SC predictions.

B. Discussion of separable po
'

ptential roperties

mon the four separable potentials that Pteper
constructed via the EST me o,
here ony t e1 h three more refined models
P3SD1C, and P 3SD1D Except for the deuteron,

3SD1A does not provide asim lest model P

S h h'f dostance, the corresponding S~ phase s i

g h'l the D& phase shift evenass through zero, w i e epa
nd the mixing parameter e& ishas the wrong sign, an e m' '

thismuch too arge. el Th refore we decided to drop t is
model in the presen wor

For the construction of his separa e po en
'

mbles o. as quoted in Table I.Pieper chose the ense
That means that all mode pels re roduce all t e a-
off-shell information at the deutero d teron bound state
(i.e., they ave t e samth same deuteron properties ED, pD,
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FIG. 5. Same as Fig. 4 at E~,b ——300 MeV.

Q~, ri, etc., and the same wave function as the Reid
SC). Specific R-matrix components RLL were addi-
tionally fixed at energies E~,b 50, 125, ——200, 300,
and 400 MeV (cf. Table I).

Let us first have a look at the one-shell scattering
data. As can be seen from Fig. 1, only the rank-4
potential P 3SD1C yields the S& phase shift in a sa-
tisfactory way. The rank-2 potential P 3SD1B only
simulates the zero of 5( S~ ) without changing the

sign, while the rank-5 potential P 3SD10 even
comes up with a phase-shift behavior which is com-
pletely wrong. At the position where this phase
shift should pass through zero, it actually shows a
resonantlike increase up to 180'. This fact was not
observed by Pieper; rather he depicted a 5('S, )

curve with wiggles around this energy. Also in the
'D~ phase shift the potential P3SD10 yields un-
reasonable results (see Fig. 2). Again only I' 3SD1C
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can be considered to be a good approximation of the
Reid SC. The same is true for the mixing parameter
e& in Fig. 3. The potential P 3SD1B produces an e&

much too high at low energies which furthermore
passes through zero at E~,b-350 MeV. The in-
correct behavior of P 3SD1D has a tremendous in-
fluence on the mixing parameter and therefore leads
to unacceptable results for e~.

The separable potential P 3SD1D, whose unphysi-
cal characteristics we have just seen in Figs. 1—3, is
an example of an application of the EST method
where not enough care was taken in the selection of
the ensembles [E;l; j. The latter cannot be chosen
completely arbitrarily. We have already remarked
in subsection II A that one must refrain from allow-

ing the matrix (4
~

1
~

4 ) in Eq. (2.4) to be-

come singular. Unfortunately there are further cal-
trops inherent in the EST method. So it could
happen —as was actually the case with the potential
P 3SDlD—that the matrix [I—M S(E)] occurring
in Eq. (2.6) becomes singular at some particular en-

ergy E. When recalculating Pieper's potential
3SDlD we found that the determinant of the corre-
sponding matrix [I M9—( E)] changes sign at
E~,b-310 MeV. This gives rise to a pole in the R-
matrix elements RLL whose effect is seen in the
resonantlike structure of the scattering data (Figs.
1—3). Such a failure of the EST method happens
more or less accidentally. It is due to the fact that
half-off-shell R-matrix elements of the model poten-
tial are used as form factors of the separable poten-
tial & (cf. also the discussion in the final section).
However, we would like to mention that other separ-
able approximation methods too, e.g., the one by
Oryu or the expansion by Adhikari and Sloan, are
afflicted by similar difficulties.

Let us continue with the examination of the half-
off-shell functions

RgL (p, k;E)
s.L(p k)=-

RrL (k, k;E)
Ak
2p

(3.4)

of Pieper's potentials. Firstly we state that all po-
tentials adequately reproduce the off-shell behavior
of the Reid SC for the channels and energies given
in Table I. Only at intermediate energies and/or
other channels do deviations occur. We may
demonstrate this situation, e.g., at E],b ——50 MeV.
While for P3SD1B and C all four functions f~L
differ significantly from the Reid SC, the potential
P 3SD1D works well at this energy (see Figs. 4). Be-
cause the latter was designed to reproduce all half-
off-shell characteristics of the Reid SC, the small
discrepancies that can still be observed must be attri-

buted to the facts that firstly, Pieper used a slightly
modified model potential, namely, a so-called sim-
plified Reid SC (SRSC) potential rather than the
true one, and secondly, that the a priori form factors
of the separable EST potential F were approximat-
ed by the functions of Eqs. (3.3).

Similar results could be expected at E~,b ——300
MeV (cf. Table I). Unfortunately, here also the po-
tential P3SD1D falls short, though an ensemble
[E;=300, 1;=2j was selected (see Figs. 5). This
may be an effect of the R-matrix pole, which al-
ready lies nearby.

We calculated half-off-shell functions at many
other energies ranging from E~,b ——0—500 MeV.
The observations we made were always consistent
with the exemplifying results given above: Except
for configurations quoted in Table I there often
occur considerable deviations from the off-shell
behavior of the Reid SC.

IV. CONCLUSIONS

In the present paper we examined the efficiency of
the EST method in its generalization to coupled
channels. For this purpose we employed Pieper's
potentials, stressing the comparison of their off-shell
behavior to the Reid SC potential. We demonstrat-
ed that by means of the EST method an accurate
separable approximation of the on- as well as off-
shell properties of the model potential can be
achieved at fixed energies. If the rank of the separ-
able potential is taken sufficiently high, a reasonable
description of the model interaction is possible over
a wide energy range. Particularly in applications to
the N-N system, a potential of not too high a rank
could suffice if the energies [E;1;j are chosen ade-
quately. Thus the EST method can compete with
other separable approximation schemes or might
even turn out to be superior in ability.

However, as became clear in our discussion of the
EST method and by accurately (re)calculating the
results of Pieper's potentials, some care has to be
taken in the application of this method. In particu-
lar, one has to check whether the matrices
(4

~
&~ 4 ) as well as [I—M8'(E)] are well

behaved under the choice adopted for the ensembles
[E;1; j. Above all, a careful inspection of the energy
dependence of the matrix [I—M S(E)] over the
whole energy range is necessary in order to avoid
unphysical poles of the R matrix. Consequently the
ensembles a; cannot be chosen arbitrarily. There-
fore, if one determines for physical reasons that the
o;; contain some crucial energies, there is no guaran-
tee that [I—M9'(E)] will not become singular.
Indeed, with Pieper s potential 3SD1D it incidental-
ly happens that the determinant of [I—M S(E)]
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passes through zero at a laboratory kinetic energy of
about 310 MeV, thus giving rise to the unreasonable
resonant structure observed. We emphasize that
such limitations for the choice of a; are not always
peculiar to the special case of coupled channels. In
a similar study of the EST method in uncoupled
partial waves of the N Ns-ystem, we found much the
same characteristics of the matrices in question.
The principal reason for these drawbacks of the EST
method lies in the fact that the form factors of the
separable approximation are furnished by the half-
off-shell R-matrix elements of the model potential.
The latter are in general uncorrelated functions with
a complicated (oscillatory) momentum dependence.

Though neither one of Pieper's potentials proves
adequate in all respects, one must admit that separ-
able potentials constructed by the EST method usu-
ally do better than separable models of comparable
rank which exist in the literature and which were
produced by conventional techniques. ' Above all
with respect to the off-shell behavior, EST poten-

tials are superior. Therefore they will be of good use
in few-body applications, where off-shell sensitivi-
ties play an important role. " Thus the method is
predestined to remedy a long-standing shortcoming
of separable potentials, viz. , that they suffer from
unrealistic off-shell properties. If enough care is
taken in the application of the EST method, it
represents an efficient tool for the separable approxi-
mation or abitrary potentials.
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