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Distribution of the dissipated angular momentum in heavy-ion collisions
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The angular-momentum distributions of both fragments in low-energy heavy-ion col-
lisions are calculated in a nonequilibrium-statistical model. The distribution functions are
obtained analytically via moment expansion on the basis of a transport equation. They in-
clude the correlations between the two fragments. In conjunction with a phenomenological
model for the description of the relative motion we compute fragment angular-momentum
distributions as a function of energy loss and compare with experimental data.

NUCLEAR REACTIONS Deeply inelastic heavy-ion collisions. Calcu-
lated angular-momentum distributions of both fragments. Comparison

with y-multiplicity data.

I. INTRODUCTION

Nonequilibrium-statistical concepts have proven
to be successful tools for the understanding of dissi-
pative processes in low-energy heavy-ion collisions.
Phenomenological models based on transport equa-
tions have been introduced to describe the transfer
of mass or charge between the fragments, and the
transport of angular momentum from relative
motion to intrinsic excitation. ' In both cases the
statistical fluctuations associated with the dissipa-
tive processes are the outstanding features of the ob-
servables. However, whereas the widths of the mass
or element distributions are directly accessible exper-
imentally, only indirect evidence exists for the
relevance of statistical fluctuations in the distribu-
tions of angular moments in the fragments. They
are most pronounced in the completely damped
energy-loss domain where equilibrium-statistical
models start to be valid. An indication of the im-
portance of angular-momentum fluctuations is
given through the flatness of y-multiplicity distribu-
tions and the loss of alignment at large energy loss
where the fluctuations dominate the mean value of
the dissipated angular momentum. The simultane-
ous fluctuations in energy loss for fixed impact
parameter complicate the picture since they wash
out the fall of the alignment at large Q value. 9

In detailed comparisons with experimental data, it
is necessary that the calculations provide the
angular-momentum distributions of both fragments,
with the correlations properly taken into account.
Some results of an analytical treatment of the corre-
lations in a nonequilibrium-statistical model have
been reported in Ref. 10. In the current work we
give the complete calculation on the basis of a

Fokker-Planck equation for the angular-momentum
distributions of both fragments. The differential
equations for first and second moments of the frag-
ment angular momentum are derived and solved
analytically in Sec. II. The coupling to the relative
motion of the fragments is considered in Sec. III.
Applications of the model to several reactions are
given in Sec. IV. Comparison with data from a y-
multiplicity measurement" is done for Kr+' Sm,
whereas results for Pb+ 3sU may be of interest
for a forthcoming double-sequential fission experi-
ment. ' The conclusions are drawn in Sec. V.

II. DERIVATION AND SOLUTION
OF THE MOMENT EQUATIONS

a2

, (Dki P) .
i,j,k, k' ~1k~1k

(2.1)

%e do not consider the relative motion explicitly at
this stage. Its treatment would give rise to inertial
and potential terms in (2.1}, whereas here only the
statistical process of angular-momentum dissipation
is considered. The description of the relative motion

In contrast to previous nonequilibrium-statistical
approaches we consider the intrinsic angular mo-
ments Ik (k =1,2) of the two fragments as in-
dependent variables. Hence the correlation of the
corresponding distributions will be properly includ-
ed in the treatment. The distribution function
P( I i, I2, t} of the respective fragment angular mo-
ments Ii, lz obeys a transport equation of the
Fokker-Planck-type

"tjP t}

Bt;k BIk
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that is necessary for applications will be given in the
following section. The angular-momentum dif-
fusion tensor D is given by a 6 X6 matrix with com-
ponents Dkjk corresponding to the fragments
k, k'=1,2 and spatial directions i,j=1,2&3. We take
the initial relative angular momentum 1 =(0,0, l} to
define the z direction. Nonvanishing in-plane com-
ponents of the angular-momentum diffusion tensor
in the x and y directions cause a misalignment ' ' of
the dissipated angular momentum. Owing to the
geometry of the composite system, these com-
ponents are generally different' froin those in the z
direction, and consequently the magnitude of the
fluctuations differs in the spatial directions. This
effect has also been investigated numerically in a
complementary model where quantum fluctuations
associated with elementary modes of excitation gen-
erate angular-momentum fluctuations. ' Here we
focus on an analytical treatment of the statistical
fluctuations. To be able to solve the transport equa-
tion (2.1) in closed form, however, simplifications of
the diffusion tensor are necessary. We take the spa-
tial components of the diffusion tensor in both frag-
ments to be equal. Hence, differences in the in-

plane fluctuations which become important, espe-
cially at large mass asymmetry, cannot be described.
In addition, the mixed components of the diffusion
tensor are neglected such that the model is essential-
ly determined by the diffusion coefficients Di, D2
referring to the two fragments.

The components vk (k =1,2) of the angular-
momentum drift vector are related to the diffusion
coefficients Dk via the fragment temperature

T(l) (E(l)ya )1/2

with the excitation energy Ek ' and the level-density
parameter ak =A), l10 and Dkk =Dk

Dk ()Ul
(I)

vk = —
T(1) &I

(2.2}

The average excitation energy E'" will be calculated
for each initial relative angular momentum l in a
model that describes the relative motion. It is as-
sumed to be shared between the two fragments in
proportion to the mass such that the fragment tem-
peratures for each l value are equal. The centrifugal
part of the driving potential is

2
+ ~ +I1 I2 ( 1 —I 1

—I 2)

2g i 2/2 2g re)
(2.3)

with the respective intrinsic and relative moments of
inerita gk, g„iwhich we calculate in the rigid-
body approximation. The correlations in the
angular-momentum distributions of the two frag-
ments, as imposed by overall angular-momentum
conservation

1 = I )+ I2+ 1f, (2.4)

enter the model through the centrifugal part of the
driving potential and thus, through the drift coeffi-
cient. The less important correlations due to the
off-diagonal components of the diffusion tensor will
not be considered. We solve (2.1} for each initial l
value for fixed D'1 ',D2' with vi",v2' being linearly
dependent on the variables according to (2.2) and
(2.3). We derive coupled differential equations for
the mean values ( I k ), variances

k'=
& Ik') —

& I k )'
and covariance

ai2 =&1(12)-&Ii&&12& ~

They define Gaussian solutions

(Ii & Ii)}(r2 (I2 & 12)}(rl (Ii ( Il))(I2 & 12)}(r12
P( Ii, I2 t}=(2ir) d exp —— -- — — +

(2.5}

where

4d=o& 02 —Oi2 (2.6)

—(I2)=a, (I;)+b2(I))+c2 .
dt

The mean values of the fragment angular momen-
ta remain in the (positive or negative) z direction at
all times, ( I), ) =(0,0, (Ik ) ). In-plane components
of the angular momentum are generated by statisti-
cal fluctuations only. We obtain for the differential
equations of the mean values

The initial condition is taken as (I1 ) = (I2 ) =0 for
t =0 since a finite fragment spin in the ground state
is usually negligible compared to the large amounts
of angular momentum generated in the fragments
during the reaction. We derive the coupled equa-
tions for the variances as

d
(I', ) =a, (I', )+b, (I', )+c, ,dt

(2.7) +0
dt

(2.8)
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where
gy 2

0:—o, 0:—2Dg
2

Oiz

(2.9)

We have abbreviated T—:Tk
' and Dk =Dk '. The in-

itial conditions for the variances are
0.

&
——uz ——O.

~z
——0 at t =0. We solve the coupled

2 2 2

equations via Laplace transformation. The analyti-
cal results are (k = 1,2)

and
r

2ai 0 2bi

M= 0 2a& 2b&

b2 b] (a]+a2)
(2.10)

(Ik) =
tot

—Bkexp( t lr, )—

I—Akexp( t!r—] )

(2.12)

with

Dk 7 re]+a kak=-
grel gk

Dk

T g„]'
Dk I

ck

(2.11)

with

and

Dg) Di g+1 ' I,
A, ]g 2 ]T (A2 —A, ])g„]T

Dz& Die+1 ' I,
A~2 ]T (A, ]—A2)g „]T

(2.13)

D] Dg(+]+g„l)— (g 2+/, .])
rel 1 2

2 2Di Dg 2, (g]+g„])+ 2(/2+/, .]) +

2D)Dg
(g ]+g„])(g2+g„1)

1 2
(2.14)

The total moment of inertia is g„,=g„]+/]+@2.For each impact parameter, two relaxation times
g ]2———1/A, ] 2 appear according to the two degrees of freedom taken into account in our model. For the vari-
ances we obtain

X]V'.]+F2)
0'& T+Elexp[ —2t/rl] —Flexp[ 2t/r2], —

tot

, r2V;.]+a])
CTp T+E2exp[ —2t /r] ]—F2exp[ —2t /1 2],

tot

where

+1,2[~1/ re& 1,2T++2, ]V re]+7 2, 1)l

A, ](A, ]—)],2)/;e~2 ]T

D],2[~27 2, 1/ l~ +D],2V ]+72, 1)]
~2(~1 ~2)g rehr2, ]T

(2.15)

(2.16)

Finally the covariance is

2— &]&2

D)Dp+
Z (Z -X )g T'"P[ (2.17)

f

It is negative for all times, and hence the distribu-
tions of the intrinsic angular momenta in the two
fragments are anticorrelated. '

The results at statistical equilibrium follow from
these equations for t »r],v2. For the mean values,
the equilibrium result is given in terms of the stick-
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(I&„„=t(y,+y, )/~,., (2.19)

In the formulation of Ref. 6, we have been dealing
with the fluctuations of the angular-momentum dis-
tribution in the composite system. They can now be
expressed as

ing limit

(Ik &„„I~=k/~„, (2.18)

and for the sum of the mean values we recover the
results

the ratio o~2 /o& can become much larger and a
calculation of the angular-momentum distribution
of the light fragment critically depends on the effect
of the correlation.

We have also considered the correlation angle of
the angular-momentum distribution

a =—,arctan[20&2 /(02 —o& )] (2.23}

which attains its maximum value of —45' for
equal-mass fragments where n~ o2 ——. In the equili-
brium limit it becomes

02 0 2+0 2+2~ 2 (2.20) 2g )gg
(2.24}

in terms of the variances hark of the angular-
momentum distributions of the two fragments and
the covariance o&z. The variances approach the
equilibrium limit twice as fast as the mean value.
This limit becomes

The corresponding correlation
X =a &2 /(o&o2) has the equilibrium limit

2g re1 arel arel

coefficient

' —1/2

AV'.i+So}~ $2V'a+7 i}

X-i Xi+Xz
tot tot

(2.21)

7 iXz T j
oi

(2.22)

has been discussed in Ref. 10. For fixed total mass,
the absolute value of the covariance reaches a max-
imum at mass symmetry where it is approximately

of o~ . For asymmetric systems with 0& &&o2

which is consistent with results from earlier none-
quilibrium and equilibrium statistical treatments.
The effect of the anticorrelation as expressed by the
negative value of the covariance,

(2.25)

These quantities will be calculated in the application
of Sec. IV.

Regarding the information that can be derived
from y-multiplicity experiments, the distribution
P(

~

I
& ~, ( Iz ~;t) of the absolute values of the frag-

ment spins is of interest because the y multiplicity is
not sensitive to the spin direction. Obviously this
distribution cannot be Gaussian since it is restricted
to positive arguments only. The calculation of the
distribution function

P(
I

1 i I I
121'~)= f P(1,, I2,'~)dQ, dQg

(2.26)

is tedious but straightforward. We obtain the result

P(
i I& i, i I@i;t)=P(Ii,I2', r)=m 'd /g 'exp

'9

Xexp — (0,'(I, '+ (I*,)')+0,'(I, '+ (I;)')—2o.»'(I; ) (I; ) )
2

X2 f exp sinh(x)dx
&r+v gx~

(2.27)

with the abbreviations

g =d '(~, 'I, (I', ) ~„'I-,(I', ) ), —
3'=d (ni I, (I;) —2o& o&2I, (I;)(Iz)+o~2I~ (Iz) +o~zI~ Iz ),
g=2d (o') cr»I) Ig(I)) cr» I)I2 (I2))—.

(2.28)
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The remaining one-dimensional integral in (2.27) is performed numerically. The mean values of the distribu-
tion

( i Ii i
)= f d Iid I2 i

Ii iP(Ii, I2;r)

= I d
/
Ii /d(12/Ii Iq [ Ii /P( [ Ii /, /

I2/;t)

and correspondingly (
~

I z ~
) are obtained as (k = 1,2)

l
(

~
lk

~

)=(2ir) ' 'Ok '(Ik) ' I x exp —,(x —(If))' —exp
0 20k , (x+(I,'))'

(2.29)

The sum of the mean values is related to mean y
multiplicities that are accessible experimentally.

A convenient analytical expression of the mean
value in the limit of large variances (Ik) «ok is
given by

I

teraction times for each impact parameter. '

In the expression of the deflection function,
' I/1,

(e(&))=e, (I)—pe„,l 5

ls, p

(2.30)

(3.1}

(
~

Ik
~
) =2&2&ir 'Ok .

(Ik ) «0'k
(2.31) with the Rutherford deflection angle equi (I), the graz-

ing arigular momentum

The variance in the absolute value of the spin of one
fragment becomes

(2.32)
and

ls,-0.22R [A„q(E, —V(R;„,))]'~2

eii4 ——eR(l, )
with the limiting value for large fluctuations

the two parameters 5,p are monotonic functions of
lim ol ——(3—8

~
ir)ok

(Ik )' «&k
(2.33)

rl'=Z, Z,e'iv' (3.2)

From (2.33) it is obvious that large statistical fluc-
tuations ok of the fragment-spin distribution do not
immediately translate into large variances of the ab-
solute values of the spins. It will turn out that the
ensuing difficulty6 in understanding the experimen-
tally observed large second moments of y-
multiplicity distributions is not remedied through
the consideration of the correlations in the angular
momentum distribution. To perform an actual reac-
tion calculation, we sketch the treatment of the rela-
tive motion in Sec. III.

III. COUPLING TO THE RELATIVE MOTION

The statistical model for the angular-momentum
dissipation outlined above may be coupled to any of
the available theories that describe the relative
motion of the two ions, such as classical dynamical
calculations based on a parametrization of the
nucleus-nucleus potential' or time-dependent
Hartrce-Fock calculations. ' Here we use a
phenomenological description of the relative motion
that relies on a parametrization of the deflection
function rather than the potential. It has been ap-
plied to numerous reactions between heavy nuclei
where it yields mean total kinetic energy loss, deflec-
tion angle, mean angular-momentum loss, and in-

with

v'= (E, —V(R—;„))2
p'

1/2

the velocity at the interaction barrier V(R;„,). We
have investigated the dependence of P and 5 on il' in
a comparison with angular distributions for various
heavy systems to obtain the approximations

P=75f(iJ') + 15, g' & 375

=36exp[ —2.17X10 ~rl'], i)'&375,

5=0.07f(i)')+0. 11, i)'&375

=0.117exp[ —1.34X10 rI'], i) )375,
where

(3.3}

f(g') = 1+exp
g' —235

32

These functions are shown in Fig. 1 together with
the values determined from experiment. Minor
modifications may be necessary when further reac-
tions are analyzed. The parametrization is not ex-
pected to describe very light systems with large frac-
tions of the reaction cross section going into fusion.
For sufficiently heavy systems we use it to predict
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FIG. 1. Parameters P,5 determining the mean deflec-
tion angle (8(l)) as functions of i)'=Z, Z, e /v'. Sym-
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FIG. 2. Correlation between mean energy loss (bE)
and deflection angle (8, ) as calculated for the reaction
8.5 MeV/u Pb+ U. Lower part: deflection function and
Rutherford deflection angle.

the relative-motion information. The resulting de-
flection function for the Coulomb-dominated system
8.5 MeV/u Pb+ U is shown as an example in
the lower part of Fig. 2. Owing to the large value of
il', both p and 5 are small and the resulting devia-
tion from the Rutherford deflection function is also
small.

The subsequent calculation of average energy loss,
angular-momentum loss, and interaction time has
been described in detail in Ref. 17. Here the relaxa-
tion times rii for radial kinetic energy and r, for
spheroidal deformations' have been determined as

rg-0. 3)&10 ' s,
~,=4)& 10 s,

(3.4)

and we use these values in the subsequent calcula-
tions. The result for the mean total kinetic energy
loss as function of the scattering angle is shown in
the upper part of Fig. 2. The large energy damping
below the interaction barrier reflects the fragment
deformation. The description of the average
angular-momentum loss from the relative motion is
treated in a consistent way with the generation of
mean fragment spin as implied by (2.12). Hence the
constant angular-momentum relaxation time

ran=1. 5 X 10 ' s of Ref. 17 is replaced by

T'" X-i(Xi+Xi)
I (1) (I)Di +Di /tot

(3.5)

with the angular-momentum diffusion coefficients
Dk

' that are used in the statistical calculation. They
contain a form factor' in the large-l region. The
mean interaction time r;„,(I) for given initial relative
angular momentum I is calculated as in Ref. 17.

IV. APPLICATIONS

DI ——20)& 10 s (4.1)

This value has been chosen on the basis of the

The results of our statistical model of Sec. II for
the angular-momentum dissipation can now be
evaluated with the help of Sec. III as a function of
initial relative angular rnornentum l or energy loss
hE. The mean value of the energy loss is a mono-
tonic function of 1 as shown in Fig. 3 for both frag-
rnents k =1,2 in the Pb+ 8U reaction discussed
above. The mean value of the dissipated angular
momentum in both fragments already approaches
the sticking limit at comparatively large values of l
for a saturation value of the angular-momentum dif-
fusion coefficient
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FIG. 3. Average energy- and angular-momentum loss
for both fragments k =1,2 in the 8.5 MeV/u 2 Pb+ U
collision, together with variances ok, convariance o~2,
correlation coefficient g, and correlation angle a of the
angular-momentum distribution.

analysis for other systems, and the microscopic
model of Ayik et al. It may have to be adjusted
when the data become available. We have divided

Dt according to the fragment-mass ratio in order to
obtain the angular-momentum diffusion coefficients
D„Dzreferred to in Sec. II.

In Fig. 3 we also exhibit the variances of the
angular-momentum distributions in both fragments,
together with the corresponding covariance, correla-
tion coefficient, and correlation angle. As discussed
in Ref. 10, the latter quantities become negative
since the angular-momentum distributions in the
two fragments are anticorrelated.

The impact-parameter dependent quantities of
Fig. 3 provide the ingredients for the calculation of
the angular-momentum distribution functions for
various mean total kinetic energy losses (b,E). As
functions of the z components Ii,I2 of the intrinsic
angular momenta, P(Ir, Iz, (bE)) is Gaussian. The
mean values (Ii ), (I2) first rise as the energy loss
increases but then fall towards zero since the largest
energy loss corresponds to small initial relative an-
gular momenta and consequently small values of
(Ik ) . The distribution function

P(
)
I i ), ( I2 (;(bE)) exhibits a completely dif-

ferent behavior. It is constrained to the positive
domain and hence is not Gaussian, as discussed in
Sec. II. The mean values (

~

I k ~
) first rise as the

energy loss increases, but then they remain large and

is shown in Fig. 5 in the approximation

(g) 3 &I'„"& 1 3 (Ik ) +rrp 1

2 &Ik'& 2 2 &Ik&'+3~k'

(4.3)

which is valid for the Gaussian distribution func-
tions of Sec. II. Obviously the alignment is very
sensitive to the model assumptions used for the cal-
culation of the in-plane fluctuations. As a conse-
quence of the siinplifications described in Sec. II,
the fluctuations in the three spatial directions are
equal, such that the alignment values shown in Fig.
5 are expected to represent lower limits.

The results of Fig 6for .the system s Kr+'54Sm
at bombarding energies 5.7 and 7 MeV/u may be
compared to available data. " The calculation
proceeds as described for Pb+ U, but the angular-
momentum diffusion coefficients have the smaller
values of I

Dt (5.7 MeV/u)=7X10 s

Dt (7 MeV/u)=10&(102 s
(4.4)

which have now been determined according to the
comparison with the measured y-multiplicity
values. " In the upper part of Fig. 6 we show the
calculated energy spectra

f 1P(b,E,r;„,(l))dl (4.5)dE g2

integrated over all fragments and scattering angles.
At both energies they extend well below the barrier.
The Gaussian distribution function P(bE, t) has an
impact-parameter dependent mean value calculated
as in Ref. 18. The variance in energy loss for a
given initial relative angular momentum is

almost constant in the completely damped regime
shown in Fig. 4. The fluctuations of the spin in the
heavier fragment are larger than the ones in the
light fragment, essentially due to the larger moment
of inertia. We have restricted the calculation to
fragments of the entrance-channel mass asymmetry.
It would certainly be of interest if these distribution
functions could be measured in the future.

In Fig. 5 we display the mean values (
~
I k ~

) for
both fragments k =1,2 as functions of the initial
relative angular momentum l. Their insensitivity to
l in a broad range is the underlying reason for the
independence on energy loss in the completely
damped regime. The alignment of the respective
fragments,

1(z)2

(4.2)
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shown.

represented by

(4.6)

where &&'„"sis the loss of radial energy for each /

value. For the reaction 7 MeV/u Kr+' Sm, this
corresponds to an upper limit in the FWHM of the
energy loss of

1 FwHM & (8 1n2)'~s&&28. 2 MeV 66 MeV .

(4.7)

The value (4.6) has not been chosen on theoretical
grounds although one might justify it on the basis of
a diffusion equation for the energy loss. In a com-
parison of calculated energy spectra with experimen-
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FIG. 5. Mean absolute values of the intrinsic angular
momenta for both fragments and fragment-spin align-
ment P as functions of the initial angular momentum I
in the Pb+ U reaction.

upper limit to the variance of the (correlated) distri-
bution I'(

~
I~

~
+

~
Iq

~
) of the sum of the spins.

e projected distributions ~(
I

I I I
) ~(

I I21) are
shown in Fig. 7 together with their sum for a fixed
value of the total kinetic energy loss. Its variance is
the quantity that should be compared to the second
moment of y-multiplicity distributions which do not
distinguish the fragments. Experimental results for
the ratio between standard deviation and mean ob-
tained from the y-multiplicity distribution are"
a/&

~

I
~

&=0.45 for 5.7 MeV/u and 0.37 for 7
MeV/u Kr+' Sm. The theoretical values as ob-
tained from Fig. 6 are smaller, o/&

~
I

~
&=0.32 and

0.29 for the respective two energies. Again the com-
parison between theory and experiment crucially de-
pends on the conversion between angular momen-
tum and y-multiplicity values, but the underestimate
of the experimental second moments in the calcula-
tion persists when the correlated angular-
m.omentum distributions are considered. It is noted
that the variance provided by the triangular distri-
bution of initial 1 values should not be added to the
theoretical values calculated here. The various l
values contributing to a given energy loss have al-
ready been taken into account since the fluctuations
in energy loss are included in an ad hoc but realistic
%'ay.

tal results for several heavy systems the ansatz (4.5)
yields good agreement in the tails of the energy
spectra, whereas energy-loss fluctuations that are
calculated from the shape fluctuations at scission
only' are consistently too small.

The mean absolute values of the dissipated angu-
lar momentum are shown in the middle part of Fig.
6 as functions of energy loss. Their sum is com-
pared to the y-multiplicity data of Christensen
et al." The scale on the right-hand side (rhs) refers
to the data. The conversion shown in the figure cor-
responds to

& I l~ I &+&
I lil &=2&~,&-10

%'e attribute the discrepancies between data and cal-
culations in the low-energy loss regime mainly to the
fact that this conversion should be energy depen-
dent. However, a careful investigation of the energy
dependence of (4.8) does not appear to be available.
The data are well reproduced in the completely
damped region. Experimental information concern-
ing the individual fragments is not available.

The lower part of Fig. 6 shows the calculated
fluctuations in the distributions of the absolute
values of the dissipated angular momentum in the
two fragments together with their sum. It gives an

V. CONCI. USIQNS

We have calculated angular-momentum distribu-
tions for both fragments in deeply inelastic heavy-
ion collisions. A nonequilibrium-statistical model
has been given and analytical results for the distri-
bution functions of the angular momenta and their
absolute values have been derived. Expressions for
mean values and variances of the spin of both frag-
ments and their absolute values have been calculat-
ed. The latter are relevant in comparison with y-
multiplicity experiments. However, experimental re-
sults which discriminate between the two fragments
are not yet available.

In conjunction with a phenomenological model
for the description of the relative motion we have
applied the results of our statistical treatment to the
reactions 8.5 MeV/u Pb+ U as well as 5.7
MeV/u and 7 MeV/u Kr+ ' "Sm. For the
Kr+ Sm system, experimental results for the sum
of the y multiplicity from both fragments exist. '"
The mean values of the calculated distribution as a
function of energy loss are consistent with the data
whereas the standard deviations of the correlated
distribution functions appear to be too small. A sys-
tematic comparison with a large set of data at dif-
ferent bombarding energies could clarify the origin
of the disagreement, together with investigations of
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FIG. 6. Energy spectra, mean value, and variance of the dissipated angular momentum in the Kr + Sm reaction at two
different bombarding energies. Data points from the y-multipicity experiments of Ref. 11 refer to the scale of the rhs.

the relation between spin and y multiplicity and its
energy-loss dependence.

To provide the analytical treatment outlined in
this work several approximations, especially con-
cerning the diffusion tensor, have been unavoidable.
The angular-momentum diffusion coefficients corre-
sponding to the two fragments are taken to be con-
stant for each initial I value, and a distinction of
components in the spatial directions is not made.
As a consequence, we cannot describe differences in
the components of the in-plane fluctuations. This
certainly limits our description of the angular-
momentum transport, especially at large mass asym-
metries. Numerical solution schemes of the trans-

port equation which allow for a more complicated
structure of the diffusion tensor are ne:essary to
deal with the differences in the in-plane fluctuations.
This will provide more realistic values for the spin
alignment and alignment correlations between the
two fragments, whereas our calculation yields a
lower limit for P~'. The comparison with align-
ment data for the fissioning fragment'9 or both frag-
ments in double-sequential fission experiments may
require a refined treatment of the in-plane fluctua-
tions. it might also be of interest to investigate the
influence of the mixed components of the diffusion
tensor on the correlations of the fragment spins.

Another topic of considerable interest which we
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0.15—

0.05

&b,E) = 145 MeV

have not investigated is the dependence of the
transferred angular momentum and its fluctuations
on the fragment-mass asymmetry " ' "' The
increase of y-multiplicity values toward mass sym-
metry found in Ref. 20 reflects the rise of the sta-
tistical components. This effect can be treated by
coupling a diffusion equation for the mass-
asymmetry mode to the transport equation for the
angular-momentum dissipation. Regarding the ob-
servables that we have calculated, it will be of in-
terest to deduce experimental information on mean
values and variances of the angular-momentum dis-
tribution in both fragments, and eventually measure
the two-dimensional distribution function.

I

10
I

20 30
I 1 I

I

40 50

FIG. 7. Projected angular-momentum distributions
~iI I~l» PiI I21» and ~iI iil ~+J'iI I2li for 7
MeV/u Kr+ Sm at a mean total kinetic energy loss of
145 MeV.
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